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Properties of the Multiscale Maxima and
Zero-Crossings Representations

Zeev Berman, Member, IEEE, and John S. Baras, Fellow, IEEE

Abstract—The analysis of a discrete multiscale edge represen-
tation is considered. A general signal description, called an in-
herently bounded adaptive quasi linear representation (AQLR),
motivated by two important examples, namely, the wavelet
maxima representation, and the wavelet zero-crossings repre-
sentation, is introduced. This paper mainly addresses the ques-
tions of uniqueness and stability. It is shown, that the dyadic
wavelet maxima (zero-crossings) representation is, in general,
nonunique. Nevertheless, using the idea of the inherently
bounded AQLR, two stability results are proven. For a general
perturbation, a global BIBO stability is shown. For a special
case, where perturbations are limited to the continuous part of
the representation, a Lipschitz condition is satisfied.

I. INTRODUCTION

A N interesting and promising approach to signal rep-

sentation is to make explicit important features in
the data. The first example, taught in elementary calculus,
is a “‘sketch” of a function based on extrema of a signal
and possibly of its few derivatives. The second instance,
widely used in computer vision, is an edge representation
of an image. If the size of expected features is a priori
unknown, the need for a multiscale analysis is apparent.
Therefore, it is not surprising that multiscale sharp vari-
ation points are meaningful features for many signals, and
they have been applied, for example, in edge detection
[51, [18], signal compression [15], pattern matching [14],
detection of transient signals [8], [11] and speech analysis
[24].

Traditionally, multiscale edges are determined either as
extrema of Gaussian-filtered signals [23] or as zero-cross-
ings of signals convolved with the Laplacian of a Gauss-
" ian (see, e.g., [10] for a comprehensive review). Mallat
in a series of papers [14], [15], [17] (the middle joint with
Zhong) introduced zero-crossings and extrema of the
wavelet transform as a multiscale edge representation.
Two important advantages of this method are low algo-
rithmic complexity and flexibility in choosing the basic
filter. Moreover, [14], [15] propose reconstruction pro-
cedures and show accurate numerical reconstruction re-
sults from zero-crossings and maxima representations. In
[14], [15], as in many other works in this area, the basic
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algorithms were developed using continuous variables.
The continuous approach gives an excellent background
to motive and justify the use of either local extrema or
zero-crossings as important signal features. Unfortu-
nately, in the continuous framework, analytic tools to in-
vestigate the information content of the representation are
not yet available. The knowledge about properties of the
representations is mainly based on empirical reconstruc-
tion results. From the theoretical point of view, there are
still important open problems, e.g., stability, uniqueness,
and structure of a reconstruction set (a family of signals
having the same representation).

A. Previous Works

The multiscale edge representation has mainly been in-
vestigated in the zero-crossings case. The best-known re-
sult concerning the reconstruction of a signal from zero-
crossings is the Logan Theorem [13]. This theorem ba-
sically states that zero-crossings uniquely define the sig-
nal within the family of band-pass signals having the
property that the width of the band is smaller than the
lower frequency of the band. Proving this theorem, Logan
made an analytic extension of the signal and used standard
properties of zeros of analytic functions. These tools are
known as unstable and Logan has noticed that the recon-
struction from zero-crossings appears to be very difficult
and impractical. Under certain restrictions on the class of
signals, usually polynomial data have been assumed, sev-
eral additional proofs that zero-crossings form a complete
(unique) signal representation have been published. All
known proofs do not provide any stability results since
they are based on unstable characterizations of analytic
functions. The reader is referred to [10] for more details
and further references.

In addition, in the case of general initial data, the re-
striction to polynomial data or even to band-limited sig-
nals may provide a poor approximation of the original sig-
nal. The situation is similar to the fact that a polynomial
is determined by its zeros, but any nonzero value of a
continuous function cannot be determined from zero-
crossings of the function.

In spite of the last remark, there have been a number
of attempts to reconstruct signals from multiscale zero-
crossings, especially in image processing, €.g., [6], [21],
[25]. They have been based on the belief that the restric-
tion of a given reconstruction scheme into ‘‘natural’’ im-
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age data will be sufficiently stable and precise. Although
good reconstruction results have been shown, stability re-
sults have not been proven.

Hummel and Moniot [10] have exhibited the stability
problem by showing two significantly different signals
having almost the same multiscale zero-crossings repre-
sentations. In order to stabilize the reconstruction of a
function from its zero-crossings, the authors have in-
cluded the gradient along each zero-crossing. In fact, im-
proved numerical results have been reported but stability
has not been analyzed. The reconstruction algorithm in
[10] is based on the solution of a Heat Equation; this ap-
proach is valid only for the Laplacian of a Gaussian filter
and it is required to record the zero-crosgings on a dense
sequence of scales.

Aware of the above problems, Mallat [14] proposed to
use the wavelet zero-crossings representation as a com-
plete and stable signal description. In order to overcome
the apparent instability of zero-crossings, he has included
the values of the wavelet transform integral calculated be-
tween two consecutive zero-crossings. Using a recon-
struction algorithm based on alternate projections, very
accurate reconstruction results have been shown. In sub-
sequent work, Mallat with Zhong [15] introduced the
wavelet maxima representation as an alternative to the
wavelet zero-crossings representation. As . in the zero-
crossings case, they have demonstrated very accurate re-
construction results. But, in both papers, neither unique-
ness nor stability has been proven.

Recently two independent counterexamples for umque-
ness have been published. One counterexample was given
in Berman [3] and will be described later. The second
example was given in a continuous context by Meyer [19].
His example is based on function f,(x) and a parametric
family of functions f, (x). Meyer [19}] has shown that, for
a particular wavelet transform, all functions of the form
fox) + f,(x), for a suitable set of sequences a =
{a}o , have the same wavelet zero-crossings representa-
tion.

B. Outline of the Work

Open problems regarding uniqueness and stability have
motivated this work. Our objective is to analyze these the-
oretical questions using a model of an actual implemen-
tation. The main assumption is that the data is discrete
and finite. The discrete multiscale maxima and zero-
crossings representations are defined in the general set-up
of a linear filter bank, however, the main goal is to con-
sider a particular case where the filter bank describes the
wavelet transform. Since reconstruction sets of both max-
ima and zero-crossings representations have a similar

structure, a general form is introduced and named adap- |

tive quasi linear representation (AQLR). Moreover, many
generalizations of the basic maxima and zero-crossings
representations fit into the framework of the AQLR. This
work uses the idea of the AQLR to investigate rigorously
fundamental questions: uniqueness and stability.
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Regarding the uniqueness question, first, conditions for
uniqueness are presented. By applying these conditions to
the wavelet transform-based representation, a conclusive
result is obtained..It turns out, that neither the wavelet
maxima representation nor the wavelet zero-crossings
representation is, in general, unique. The proof is based
on constructing a sinusoidal sequence, whose maxima
(zero-crossings) representations cannot be unique for any
dyadic wavelet transform. In view of additional counter-
examples by Meyer [19], the importance of our result is
mostly related to its generality. In addition, the question
of how a particular representation can be tested for
uniqueness is discussed. An example of a nonunique rep-
resentation is described and analyzed.

The next subject is stability of the representatlon This
issue is of great importance because there are many known
examples of unstable zero-crossings representations. Us-
ing the idea of the inherently bounded AQLR; we are able
to prove stability results. For a general perturbation,
global BIBO (bounded input, bounded output) stability is
shown. For a special case, where perturbations are limited
to the continuous part of the representation, a Lipschitz
condition is satisfied. To the best of our knowledge, these
are the first rigorous stability results established in the
context of multiscale maxima (zero-crossings) represen-
tations.

In the framework of the inherently bounded AQLR one
can obtain many further results. For example, in [2], [4]
we propose a new reconstruction scheme and several
modifications to the basic multiscale maxima representa-
tion.

II. Basic DEFINITIONS

The multiscale maxima or zero-crossings representa-
tion is based on the following idea: smooth the signal at
various scales, and detect, at every scale, sharp variation
points. These points are chosen using local extrema or
zero-crossings of the first or the second order derivative.
This kind of reasoning requires continuous-time signal
model. On the other hand, practical implementations de-
mand discrete-time signal description. The relations be-
tween these different signal model types yield an active
and interesting research area. See, for example, [14], [15]

‘for a comprehensive discussion about different aspects of

wavelet-based representations for continuous and discrete
signals.

This work deals with signals and representations from
the implementation point of view. Our study begins with
the assumption that all signals are discrete and of finite
duration. In other words, signals under consideration be-
long to £, a linear space of real, finite sequences

S{fif={fm}¥4, fmeR}.

Note that £ can be viewed as a vector space. Indeed,
many concepts, like convex sets, null and range space of
a linear operator, etc., will be used with standard nota-
tions of RY. However, to define local maxima, minima
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and zero-crossings, the notion of a linear sequence space
is required. '

The definitions of the multiscale maxima and zero-
crossings representations are based on those described in
[14], [15]. However, there are two noticeable differences
between the approach of [14], [15] and ours. First, we
assume no knowledge about the continuous-time version
of signals, namely, the original signal is assumed to be
discrete (time) and all representation properties (unique-
ness, stability, reconstruction) are considered with re-
spect to this signal. Second, the wavelet transform, used
in [14], [15], is generalized here to an arbitrary collection
of linear operators.

Before the general structure is formbilated, let us first
introduce the discrete wavelet transform used in [14],
[15]. The discrete dyadic wavelet transform is character-

‘ized by two discrete filters H and G, and the number of
levels J. Let H;, G; denote the discrete filters obtained by
putting 27 — 1 zeros between all two consecutive coeffi-
cients of the filters -H and G, respectively. The following
recursive formula defines the sequences W, f and §; f:

Wieif = G * §f

Sje1f = Hy * S
wherej =0,1;2,---,J -1, 8§f=f, Hy = H, and
Gy = G. The discrete dyadic wavelet transform of a signal
f consists of J + 1 signals, (W, f )f -1 and Sf. We can in-
terpret W; as a linear operator, defined by consecutive
convolutions with H, H,, - -+, H;_,, G;. Similarly, §;
corresponds to a linear operator equivalent to successive
convolutions with H, Hy, - -+ , H;_,, H;. Henceforth,
since J is fixed, the convention W, . | f = S; fwill be used.

In this work, the multiscale signal representation of a
signal f € £ is assumed to be of the form

Wzl
such that

. W; are linear operators
e (W,;f)Z] is a complete (unique) representation of a
signal f.

Note, that the discrete wavelet transform and any com-
plete filter bank are particular instances of this structure.

A. Multiscale Maxima

The multiscale maxima (extrema) representation, R, f,
is composed of local extrema (arguments and values) of
sequences W, f(j = 1,2, - - - , J). In addition one entire
signal W, fis allowed to be a part of the representation.
Let us explain why we use interchangeably the terms ‘‘the
multiscale extrema representation’’ and ‘‘the multiscale
maxima representation.”’ The term ‘‘the wavelet maxima
representation’’ has been introduced in [15], because the
basic wavelet extrema representation has been further
modified by removing local minima of absolute values of
W, f. The reason to preserve this notation is twofold: a
~ “‘historical’’ rationale and the fact that the most important
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extrema appear to be maxima of absolute value of signals
at different scales.

Now, the goal is to derive a precise definition of the
discrete multiscale maxima representations. Analysis of
discrete extrema (zero-crossings) requires some careful-
ness and an additional notation will be introduced. The
collection of local extrema of a signal f € £ and their
arguments will be called one-level maxima representation
and denoted M(f). Let X(f) and Y(f) be sets of argu-
ments of local maxima and local minima, respectively, of
a sequence f. The formal definitions are

X(fy="{kfk+1) <f(k) and f(k—1) =< f(k)
k=0,1,2,-+,N~ 1} (1)
Yfy={kfk+ 1) =f(k) and fk - 1) = f(k)
k=0,1,2,--+,N~1}. @)

In this work, in order to avoid boundary problems, an N-
periodic extension of finite sequences is assumed.

The set of arguments of local extrema is denoted 1, ( f)
and defined as a pair of two sets

Lf& X(), Y(f).

Now, the sequence of local extrema, values of f at ex-
treme points, V,(f) can be written as

Vo(f) & (fF®eers)

Using this notation, one-level maxima representation,
M(f), is written as

M(f) & @,(H), Vo ().

Observe, that I,(f) consists of discrete indices, while
V,(f) is a sequence of continuous values.

To illustrate one-level maxima representation let us
consider the following example:

Example 1: Let f be the sequence (N = 8) depicted in
Fig. 1. The values f (k) are given as follows:

fO =30 fH=23 f@Q)= A1.0 f(3 = -22
f@® = -32 f(5) = -2.1 f(6) =03 f(7) =1.6.

The one-level maxima representation, M (f) consists
of an index part, I,(f) = ({0}, {4}}, and a sequence of
values, V,(f) = (f(0), f(4)) = (3.0, —3.2). Hence-
forth, curly brackets are used to indicate sets of integers,
while parentheses describe sequences: of real numbers or
sets.

Using the notation of the one-level maxima represen-
tation, M (f), the multiscale maxima representation, R, f,
is defined immediately v

Ruf & (MW ))=1, Wisi ).
This representation can be cast to the following structure:

R.f = If, V)
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Fig. 1. The signal fin the maxima representation example.

where If is a set of all indices used in the representation,
ie.,

If = (Io(ij))J!=1- »
Vfis a collection of all continuous values included in R,f

Vf = (VoW )1 Wiir f).

Consider R, (a; f; + o f), the maxima representation
of a linear combination of two signals. Neither the values
at local extrema nor their arguments satisfy linear prop-
erties. Thus the multiscale maxima representation is a
nonlinear signal transformation. However, for a fixed If,
V can be considered as a linear operator. For all 4 € £,

let us define Vh as a sequence of samples of Wih(j=1,.

2, - -+, J,J + 1) at points specified by If. The detailed
definition is

Vi & (WhOeer,m )= 10 Wis1h).

The notation R, f = (If, V), due to its explicit linear
part, is especially beneficial for the analysis of the recon-
struction set. The reconstruction set is defined for a gen-
eral signal representation.

For a given representation Rf, the reconstruction set
I'(Rf) consists all sequences satisfying this representa-
tion, i.e.,

T'(Rf) & {h e £: Rh = Rf}. 3)

In other words, if the representation is described by an
operator acting on sequences, then the reconstruction set
is the inverse image of this operator at a given sequence.

Returning to our example, the reconstruction set of the
given one-level maxima representation consists of all se-
quences k(0), ~(1), - - - , h(7) such that

h@©) = 3.0 h(4) = -3.2
and
h©) > h(1) > h2) > h(3) > h(4)
h(4) < h(5) < h(6) < h(7) < h(0).

The fact, that the reconstruction set of the multiscale
maxima representation can be described as a solution of
a set of linear equalities and inequalities has a major role
in this work. Moreover, there is a common structure which
fits both the multiscale maxima and Zero-crossings rep-
resentations,

Definition 1: Let Rf = {If, Vf} be a signal represen-

tation, such that for a fixed If, V is a linear operator de-
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* fined for all € £. This representation is called an AQLR

if for a fixed If, there exists a linear operator C and a
sequence ¢ such that

heT(Rf) & Vh = Vf and Ch > . “)

The reasoning behind the name ‘‘adaptive quasi linear
representation’’ (AQLR) is the following: This represen-
tation is adaptive since ¥, C, ¢ depend on the sequence f
(via the set If). It is quasi linear because its reconstruction
set is a solution of a set of linear equalities and inequali-
ties.

In the sequel, instead of a ‘‘sequence’’ notation e.g., h
€ £, sometimes we will use a ‘‘vector notation,’’ then h
will be a column vector, h € R" and linear operators, like
C, will appear as corresponding matrices. The interpre-
tation of (4) in matrix and vector context is obvious.

Proposition 1: Any multiscale maxima representation
is an AQLR.

The proof requires additional notations and is given in
Appendix A.

The origin of the next definition is a certain bounded-
ness characteristic of the wavelet maxima representation.
The property that the reconstruction set can be bounded
by the linear part of the representation is implemented in
the stability part of this work.

Note that fand Vf belong to linear spaces with different
dimensions. Let || || denote the Euclidean norm in an ap-

~ propriate, finite dimensional linear space.

Definition 2: An AQLR is called inherently bounded if
there exists a real X > O such that

heTRf) = |nl < k|vrl. ®

The coefficient K can depend on the parameters of the
representation e.g., N, J, W,, - - - , W,, W, but it must
be independent of If and V¥.

Inequality (5) is very similar to a well known condi-
tion for stability in regular or irregular sampling theory.
See, for example, a comprehensive paper by Benedetto
[1]. Our situation is slightly dissimilar because for differ-
ent signals, different linear operators are obtained. Never-
theless, as will be shown in Section IV, condition (5) im-
plies stability.

" Theorem 1: Any multiscale maxima representation is
an inherently bounded AQLR.

Proof: Since {W, W,, - - - | W;, W, .} provide a
unique signal representation there exists K; > 0 such that
forallhe £

J+1
W <, (5 1wal?). ©
i=
Therefore it suffices to find X, > 0 such that for all & €
I'(Rf)yandforj=1,2,--- ,J,J+1
Iw;all < K, |lvrll. o)

LetheT'(Rf). W, his included in V&, hence
”WJ+1h” = |vrl. ®)
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Consider,
IW;h(n)| < max |W;h(n)| = max |W;f(n)| < lVfl.

®

The middle equality holds because W;h has the same local
extrema as W, f, in particular it has the same global ex-
trema as W;f. The right inequality is valid since max,
|W;h(n)| appears (with its original sign) as a component
of Vf. Therefore, we conclude

Iwhl < JNIVFl. O (10)

The next section describes a very similar treatment for
the multiscale zero-crossings representation. The main
observation is that also this representation satisfies the
structure of the inherently bounded AQLR.

B. The Multiscale Zero-Crossings Representation

One-level zero-crossings representation, Z,(f), of a
signal f € £, consists of indices at which the sequence f
changes sign (zero-crossings) and sums of elements of f,
calculated between two consecutive sign change points.
The latter part has been proposed by Mallat in [14] to
stabilize the zero-crossings representation. The multiscale
zero-crossings representation is composed of one-level
zero-crossings representations of the signals (W, f )f —1- As
in the multiscale maxima representation case, one entire
signal, W, . f, is allowed to a part of the representation.

To make the above idea rigorous, several notations are
introduced. For any f € £, let I,(f) be the set of zero-
crossings of f

LHE{efk-1-fl) <O
k=0,1,--+-,N—1}. an
For all k € I,( f), the segment of k with respect to zero-
crossings of f, ® (f, k) is defined as follows:

P ek k+1,- k+7} (12)

suchthat r =2 0, k + r+ 1€ L (f),andk + 1,k + 2,
-+ ,k+ re¢L(f). Notice, that for fixed fand k, for all
k' € ® (f, k), f (k') has a constant sign. Since the segment
® ( f, k) consists of points between two consecutive zero-
crossings of f, it is used to define U, ( f), the sequence of
sums of f calculated between two consecutive zero-cross-
ings.

Uz(f>é< % f(k’)> : (13)
kel f)

Ke®(f,k)

The one-level zero-crossings representation Z,(f) in-
cludes the set of zero-crossings I,( f) and the sequence of
sums U, (f)

Z,f = (L), U.(f). (14)
Example 2: Consider Fig. 2. It describes sequence f (N
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Fig. 2. The signal fin the zero-crossings representation example.

= B) defined as follows:

fO=03 fH=12 f=07 f(3) =02
f@)=-02 f(5) = —-04 f(6)=-0.6
f( = -0.1

The one-level zero-crossings representation consists of the
index set I,(f) = {0, 4} and of the values U,(f) =
Ci-of (0, Zi-o f(K) = (2.4, —1.3).

The multiscale zero-crossings representation, R, f, can
be written as

R.f £ (@ W f))=1, Wis)- (15)
This representation can also be cast into the form
R.f=f, Vf) (16)

where
If = d,(W, )=
Vf = (U, (ij))}=1, Wy f)-

Now, let us explain how V can be interpreted as a linear
operator. The idea is to decompose U, (W, f) to linear and
nonlinear components. To simplify the notation, we as-
sume (Wj)f= 1 fixed. Forall h € £, and for any k € I, (W, f)
we define (U Jf-h) (k), the sum of values of W;h between
two consecutive zero-crossings of W, f.

Imky = 2 WhE).
W =, & WhE)
Let U Jf-h denote the sequence of sums of W,k between all
consecutive zero-crossings of W f

Ulh = (UID) WOeeromsy a7

U ,f is a linear operator associated with U,(W;). For all
h e £, Vhis defined as follows:

Vh = (Ulh) -1,

and indeed V¥ can be interpreted as a linear operator.
Regarding the representation set, first observe that an

Wb

- arbitrary signal s has the same one-level zero-crossings

representation as the signal f described in the example, if
and only if,

3 3

2 h()= 2 fk) =24
k=0 k=0

7 7

2 ht)= X fk) = —1.3
k=4 k=4
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and
h(0) >0 A(1)>0 h(2)>0 RB) >0
h4) <0 h(5)>0 h) <0 R() <O

Likewise, the reconstruction set of the multiscale zero-
crossings representation fits the structure of AQLR’s.
Moreover, the boundedness property is satisfied as well.

Theorem 2: Any multiscale zero-crossings representa-
tion is an inherently bounded AQLR.

Proof: See Appendix B.

III. UNIQUENESS .

This section deals with a special case of the multiscale
signal representation, the discrete wavelet transform. The
main result established here states that, in general, the
wavelet maxima (zero-crossings) representation is not
unique. In addition, a uniqueness test for a representa-
tions based on a certain wavelet transform is discussed.
This section concludes with an analysis of a particular
nonunique signal representation.

A. Uniqueness Characterization

A representation Rf = {If, Vf} is said to be unique, if
the reconstruction set I' (Rf) consists of exactly one ele-
ment. We have the following uniqueness characterization
for AQLR’s.

Lemma 1: Let Rf = {If, Vf} be an AQLR. Then Rfis
unique, if and only if, the kernel of the operator V is triv-
ial, i.e., UV = {0}.

Proof: The lemma becomes obvious by topological
arguments. Nevertheless, an elementary but constructive
proof will be given. Initially, let us assume that the rep-
resentation is not unique. Then there exists 2 # f such
that Rh = Rf. In particular, Vh = Vf, but then O # h —
feNV.

Next, consider the case where the kernel of V, NV is
not trivial. Let & # 0 be such that VA = 0. Suppose o >
0 and consider f, £ ah + f, as a candidate to belong to
T'(Rf). Of course Vf, = Vf, therefore f, € T'(Rf) is and
only if Cf, > ¢ (see Definition 1). The latter is equivalent
to

a-Ch>c-Cf (18)

Let (¢ — Cf); be the ith component on the vector ¢ — Cf.
Since fe I'(Rf), (¢ — Cf); is negative for all i. Define
(c - Cf )i,

o & min{ . (Ch); < 0}. (19)
Note that oy > 0. It is easy to show that for all o such
that 0 < o < o

cf, > c. (20)

Consequently, the representation Rf is not unique. O

This claim has some significant consequences. Using
the above lemma, an algorithm which tests for uniqueness
can be developed. One option is to derive it from a rank
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test of the operator V. Another, more ambitious, approach
is to characterize, for a particular application, all sets If
giving rise to a unique representation.

Perhaps the most important consequence of Lemma 1
is the fact that uniqueness of the représentation Rf is
equivalent to uniqueness of the underlying irregular sam-
pling Vf. In other words, in the unique case, all the infor-
mation about the signal is already contained in Vf. Ne-
glecting for a moment stability issues, we can say that, in
the unique case, since V is a nonsingular operator, addi-
tional constraints Cf > ¢ are redundant. On the other
hand, from the signal compression, understanding and
interpretation point of view, it seems to be desirable that
little information would be specified explicitly by Vf and
as much as possible information about a signal should be
described implicitly by Cf > c¢. But the latter situation
can arise only for nonunique cases. Therefore, in our
opinion, the most important and interesting features of
AQLR’s appear in the nonunique case.

B. The Nonuniqueness Theorem

This subsection aims to show that, in general, the dis-
crete dyadic wavelet maxima (zero-crossings) represen-
tation is not unique. The precise statement of the non-
uniqueness theorem is as follows.

Theorem 3: Consider a discrete dyadic wavelet max-
ima (zero-crossings) representation based on a discrete fil-
ter H, whose transfer function is H(w). If H(x) = 0,J =
3, and N is a multiple of 27 then there exists a sequence f
which has a nonunique maxima (zero-crossings) represen-
tation. :

Let us point out that, although the hypothesis of the
theorem may seem to be demanding, it is just a technical

" condition. Usually the number of levels, J, satisfies J =

3. In order to benefit from the fast wavelet transform, N
has to be a multiple of 2”. Since H(w) is a low pass filter,
it is natural to assume that |H (w)| reaches its minimum
of «. If this minimum is nonzero, then essentially S;f !
contains all information about f and the maxima (zero-
crossings) information is redundant. Moreover H(w) = 0
is a well known condition for the regularity of the under-
lying scaling function ® (£) (for more information, see [7]
and [20]). Indeed, all filters used by Mallat, Zhong and
many others fulfill the conditions of Theorem 3.

Most of this section describes the proof of the theorem,
which will be divided to proofs of several propositions.
The result is a consequence of Lemma 1, which relates
uniqueness of the representation to the set 9V, the kernel
of the sampling information. The main idea is to construct
a sequence f such that the set 91V corresponding to the
representation Rf cannot be {0}. The construction of the
counter example is based on the family of sequences ®,

defined as follows:
® = { yp};’;l‘ 2n

'In the wavelet transform context, we prefer to use the notation S, instead
of W,, .
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where
Yop—1(k) = cos <21r[;k> p=1,02, 27!
22)
Y (k) = sin <212r€k> p=1,2,---,2"1-1
23)

Proposition 2: The set ® is mcluded in 91§, the ker-
nel of the operator §;.

Proof: See Appendix C.

Notice, that y,s does not appear in the set 8. The reason
is that y» = 0 and we claim that the set 8 does not con-
tain zero. It is easy to show that the set ® is orthogonal.
Therefore the set ® is linearly independent.

As a generic example of nonuniqueness the following
sequence is proposed.

O’ 1’ o e

fk) = cos <21r 5’%) k= (24)

, N—1.
Observe that the same sequerice is proposed for all dyadic
wavelet transforms and for both the maxima representa-
tion and the zero-crossings representation.

The representation Rf = {If, Vf} is unique if and only
if 9LV = {0}. Consequently, the nonuniqueness of Rf is
easily deduced from the following proposition. Let
span(®) be a collection of all linear combinations of se-
quences from ®.

Proposition 3: The equation

Vh =0 hespan(®) 25)
has a nontrivial solution.
Proof: Consider an arbitrary & € span(®).
2-1
>y, (26)

The dimension of span (®) is 27 — 1. The idea is to show
that the set of equations Vi = 0 yields less than 27 -1
independent equations with unknowns {«,}. Recall that
Vh consists of S;h and of J components such that every
component corresponds to W;h(j = 1,2, - - -, J). For
the maxima representation those component are values of
W;h at local extrema of W;f. For the zero-crossings rep-
resentation those components are the sums of elements of
W;h calculated between any two consecutive zero-cross-
ings of W, f.

From Proposition 2 we see that S;h = 0 for all {a,}.
Let j be fixed. Let us count mdependent equations related
to W;h. Recogmze that £ is a 2”-periodic sinusoid, there-
fore W ;fis a2 -penodrc smusmd as well. Moreover, y,
and W, Ly, forp = 1,2, ,27 — 1 are also 2”-periodic.
Therefore it suffices to consxder only one 27 period. But
W, ;f has only two local extrema (zero-crossings) in a 27
penod Consequently W;h implies only 2 independent
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equations with {a,} as unknowns! There are J levels (j
= 1,2, ---,J)so the set of equations V& = O contains,
at most, 2J independent equations with {a;,} as un-
knowns. But,

27— 1327 wvJ=3. 27

Accordingly, (25) has a nontrivial solution and the rep-
resentation is not unique. a
Some remarks need to be made at this point. From the
proof, it turns out, that it is relatively easy to produce
more examples of nonunique dyadic wavelet maxima
(zero-crossings) representations using 2 P-periodic sig-
nals, where p is an integer. For example, consider J = 5
and let f be a 2°-periodic signal. When W, f=1,2,
, 5) are 2°-periodic as well. In this case, if 27 — 1
= 31 is greater than the total number of local extrema
(zero-crossings) of W, f, W, f, - , Ws f per one 27 pe-
riod, then the representatlon is not unique. In other words,
if W, f’s have, in the mean, less than 31/5 = 6.2 local
extrema (zero-crossings) in one period, than Rf cannot be
unique.

Hummel with Moniot [10], Mallat [14], and Mallat with
Zhong [15] have reported that high frequency errors may
occur in the discrete maxima (zero-crossings) represen-
tation. For these 2 J-periodic signals, components of the
reconstruction error can appear as 2 ?-periodic signals for

=1,2, ; J. Most of them cannot be related as high
frequency €ITOorS.

From our simulations and from Mallat’s results it turns
out that for the vast majority of signals, the representation

. is unique. We even conjecture (without a proof) that the

wavelet maxima (zero-crossmgs) representation is unique
for a generic family of signals, i.e., if one chooses at ran-
dom a sequence, he will get, with probability one, a
unique wavelet maxima (zero-crossings) representation.

C. Test for Uniqueness

From the previous section we have learned that unique-
ness is signal dependent. The next natural question to ask
is what are the characteristics of a family of signals hav-
ing a unique representation? This problem appears to be
difficult and, unfortunately, we are not yet able to answer
this question. Nevertheless, a given representation can be
tested, quite efficiently, whether it is unique or it is not.

From Lemma 1, we already know that uniqueness de-
pends only on the linear operator V which, in general, is
signal dependent The operator ¥ can be divided into two
parts, the first is the operator S;, which is signal inde-
pendent, and the second, remaining part, will be denoted
by V*. Since our approach is based on Lemma 1, the null
space of V is investigated. The definition of V* implies

NV = NS; N AV” (28)
where 9LV, ILS;, V" are the null spaces of operators V,
S;, V¥, respectively. Let { yl,}lp 1 be a basis of ILS;. As
a consequence of the fact that NV & NS, every h e NV
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can be written as

P
h = Zl @Y, 29)
p=
Using this representation, we can say that
P

hedlV e V"’(Zlapyp> =0

o .

P .
& 21 o, V"y, = 0. (30)

p=

4
In other words, 91V = {0}, if and only if, zero is the only
vector @ = (&, o, * * * , ap)’ solving E,f:l o, V'y, =
0.

In essence, the remaining steps describe a basis of 915,
and to give a matrix interpretation to (30).

First, let us consider closely a particular wavelet trans-
form on which the maxima representation is based. In or-
der to be able to compare results, we use the same wave-
lets as [16]. Two cases were described in [16]. One cor-
responds to the cubic spline wavelet with

o = (eos (2))

and the second corresponds to a Haar wavelet with

LW w
H(w) = exp {—z 5} cos <5>

Recall that the set B, used in the proof of Theorem 3,
is an independent set which is included in 91S;. This set
was constructed based on the fact that H(7) = 0. It turns
out, that if w = = is the only zero of H(w) then the set ®
is a basis for the space 91S,. Since for both the cubic spline
wavelet and the Haar wavelet, the only zeros of H(w) ap-
pear at @ = , the set ® is a basis for 9US; in both cases.

A sequence h, which belongs to the null space of S, can
be written as

Y-
) = 2 apy, ().

By the linearity properties we can write
271

Wik = 2 Wy, ®).

Let us define the column vector of free coefficients

a = (oq, A, * ", az.l_])’.
Foreveryj=1,2,--- Jandeveryk=0,1, - - -,
N — 1, let W; (k) denote the following row vector:

Wik) = Fyyi(k), Wiy (k), + -+, W, yor_ 1 (k).

The matrix ‘W is defined as consisting of rows W; (k) for
all k which is a local extrema of W, f. According to Lemma
1, fhas a unique maxima representation, if and only if the
only solution for

W a=0 31
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is the vector @ = 0. The latter condition is equivalent to
rank (W) =2/ — 1.

Theorem 4: The wavelet maxima representation Rf
isj unique, if and only if the rank of the matrix W is
27— 1.

Conclusion 1: If the number of the extrema points is
less than 27 ~'1, the representation has to be nonunique.
On the other hand, if the number of extrema points is equal
or greater than 27 — 1 then uniqueness of the represen-
tation can be deduced from the rank ("W). In the latter
case, there may be situations in which analysis of the
rank (W) can allow to eliminate some extrema from the
representation.

D. An Example of a Nonunique Maxima Representation

In this section a sequence which has a nonunique max-
ima representation is described. As in the previous sec-
tion, we assume N = 256, J = 3, and the cubic spline
wavelet.

Consider,

S (k) = cos <% +—76£>

This sequence is from the null space of S;. Here at every
level we have 64 extrema points; they appear at regular
distances. The basis for the null space of S; is

27k k
1 (k) = cos <%> ¥, (k) = sin <2—;—>

(&) = cos <48ik> Y% (® = sin <4‘?>

ys(®) = cos <%r5> Yo®) = sin (68l">
y7(k) = cos <8%k>

All the sequences Y, are 8-periodic. Linear operators pre-
serve this periodicity. Therefore the rows “W; (k) are also
8-periodic in the sense

k=0,1,--- ,N-1 =1, 2, 3.

Thus every level contributes only two different rows to
the matrix ‘W, and then there can be only six different
rows in W ! The ultimate conclusion is that, in this case,
the maxima representation is not unique. In essence, till
now, we have just restored, for this particular case, the
proof of Theorem 3. We continue to study this case in
order to calculate exactly the reconstruction set of this
representation.

It turns out that the rank of the matrix “W is only 5.
Consider '

W, = W(1:5, [2, 3,5, 6, 7).
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W, is the submatrix of ‘W consisting of the elements from

the rows 1, 2, 3, 4, 5 and the columns 2, 3, 5, 6, 7. It is

a regular matrix, with an inverse matrix not having large

entries. Therefore we will use it for the representation of

a general sequence satisfying S;f = 0 and giving zero

samples at extreme points (i.e., from the space V).
Let, o § and o 4 be defined as

af = —w; - w
af = -w . w

where “W'-and W are the first and the fourth columns
of the first five rows of W. The space IV is spanned by
the two following sequences

yi=yn+al(l) -y, + {2 - y; + &4 (3)
“¥s + af@) - ys + 24(5) -y
Y2 =y + a5(1) -y, + &8(2) - 33 + 25(3)
" s + aB@) - ys + o5(5) -y
Therefore, the general solution of Vh = Vfis
h=f+a +yl +a-yy.

Conditions for W;h to be monotonic between extrema
of W, f introduce 24 linear inequalities in a; and a,. Ele-
mentary analysis of this system leads to the following
seven dominant inequalities:

1.0000a, + 1.3059a, > —0.4330
1.0000a, — 1.3059a, > —0.4330
0.0000a, + 1.0000a, > —0.1849
0.0000a, + 1.0000a, < 0.1849
1.0000a, + 0.3574a, < 0.1007
© 1.00002, — 0.3574a, < 0.1007
1.0000a, + 0.0000a, < 0.0991. (32)

First, we pick up three pairs (0, 0), (0, —0.4), (—0.2,
0.16) which satisfy the system of inequalities (32). In or-
der to visualize different sequences which the same wave-
let maxima representation, let us define three sequences.
The first is the original f and the next two are defined as

fo=f—04-y7
fo=f—02-yy +0.16 - y3.

Fig. 3 shows these sequences and their first-level wavelet
transforms. From the graphs one can indeed see that all
have the same discrete wavelet maxima representation.
Let us assume that f, was reconstructed from the repre-
sentation of £, in this case the noise to signal ratio is de-
fined as

If - £l
ik
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Signals f, f.(dashed), fy(dotted).

-15 -10 -5 .0 5 10 15

Signals W, f, W, f.(dashed), W, f,(dotted).
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0.5

10 13

15 0 -8 0 5

Fig. 3. The signals and their first level wavelet transforms.

and is equal to 0.345. In spite of the high N/ S ratio, these
signals have a very similar shape. )

‘Set of inequalities (32) can be solved precisely. Figure
4 describes this solution by showing the boundary of set
@, the set of all pairs (a,, a,) satisfying set of inequalities
(32).

Now, the reconstruction set of this representation is
given as

TRf)={hh=f+a +yl +a - y7

(a1, @) € @} (33)
Fig. 5 was obtained by plotting all sequences from
I'(Rf) on the same graph. '

As was already mentioned, only a nonunique case may
exhibit distinctive properties of the multiscale maxima
representation. Therefore, it is worthwhile to examine
carefully the reconstruction set'T'(Rf). Since the cubic
spline wavelet transform is based on wavelet ¥ (£) which
is a derivative of a smoothing function, all sequences in
I'(Rf) have the same multiscale sharper variation points.
Moreover, they all appear to have a very similar shape.
This ‘‘shape’’ preserving property, perhaps expected, but

_ not easily formulated and proven, is apparently the most

interesting and promising feature of the multiscale max-
ima representation. _

A nonunique representation can be viewed as an ap-
proximation, in this case we can, at least for the above
example, make the following observation. The recon-
struction set of the multiscale maxima representation, as
a subset of R", appears to be much less directionally ho-
mogeneous than reconstruction sets based on.other stan-
dard approximations techniques like quantization or trun-

cation. _
The reconstruction set T'(Rf) was calculated for J = 3.

It turns out that, in this particular case, T(Rf) € ms,.v
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04

03

0.2r

0.l

oF

0.1k

02t

0.3+

04 — .
06 05 04 ©3 02 01 0 01 02

Fig. 4. The boundary of the set @ on the plane (a;, a;).

2 4 6 8 10 12 14 16
Fig. 5. All sequences belonging to T'(Rf).

But then, for all h € T'(Rf) and for j > 3 the following is
true:

Wih = 0. (34)

Therefore all sequences from this reconstruction set have
the same wavelet maxima representation, even if different
number of level is used, as long as J satisfies J > 3.

IV. StaBILITY

In the signal processing community, the term stability
is used for a variety of meanings. Often, poor reconstruc-
tion results are regarded as evidences of instability. The
differences between stability, sensitivity, uniqueness, and
accuracy are not always entirely evident. To explain the
interpretation of stability used in this work, let us start
with the citation from [14] ‘‘a representation is said to be
unstable if a small perturbation of the representation may
correspond to an arbitrary large perturbation of the orig-
inal function.’” This definition refers to BIBO stability,
shown by Proposition 4. Other citation from Hummel and
Moniot [10] says stability of the representation concerns
continuity of the inverse map.”’ Theorem 5 is exactly of
this type.
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In this section, we return to the general case of inher-
ently bounded AQLR’s and consider the problem of
bounding possible variations in the reconstruction set due
to perturbations in the representation.

A. BIBO Stability

To address the stability issue, the standard approach is
to introduce the notion of perturbation of the representa-
tion, and of the reconstruction set. In addition, a distance
measure for distinct representations and for different re-
construction sets should be defined. In general, it is not
an easy task. Observe that If, Vf may have different sizes
for different representations. Fortunately, for inherently
bounded representations, the following characterization
of BIBO (bounded input, bounded output) stability is eas-
ily verified.

Proposition 4: Let Rf; = {If;,, V;f.},i = 1, 2 be in-
herently bounded AQLR’s. Then for all X; > 0 there ex-
ists K, such that

Wil <K G=1,2)~ llh — byl
: Ko Vh; € T'(Rf).

Proof: This claim is an immediate consequence of
the definition of an inherently bounded AQLR. Indeed,
using the definition of an inherently bounded AQLR and
the hypothesis =

h e TRE) = bl < k- Vifil <k - K,
but then, :
By = Boll < Il + llkoll < 2K - K,. 0

The above result is strong in the sense that it is valid
regardless of the sets If;, If,. It is weak in view of the fact
that the bound on ||h; — h,|| is achieved by the bounds on
absolute values of hy, h,. In this case, a small perturbation
in the representation does not necessary yield a small
bound of [|h; ~ h,||. The next result is complimentary in
the sense that a certain structure of the perturbation is as-
sumed, but a bound, proportional to the size of the per-
turbation, is given. '

IA

B. A Lipschitz Condition

In many applications, the reasons for perturbations in a
representation are arithmetic or quantization errors in a
reconstruction algorithm. This kind of perturbations may
change the continuous values of Vf but it preserves the
discrete values of If. Therefore the perturbed representa-
tion, (Rf),, can be written as

Rf), = {If, Vf + A(VNH}. (35)

Let T', be the corresponding reconstruction set. Our re-
sults are related to the following measure defined on
(T, T)p):

d(T,Tp) & sup {lh — hll: heT, b, eT,}.
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Observe, that for inherently bounded AQLR’s d(T', I')) is
always finite. The measure of the perturbation in the re-
construction set is the difference between d (T, ') and the
size of I' which is defined as follows:

s@ 24T, T) = sup {l|h; — hyll: by, L €T} (36)

s(T) and d(T', T',) describe the largest possible Euclidean
norm of a reconstruction error, from the original repre-
sentation and from a perturbed one, respectively.

One remark is in order. In general, for an arbitrary
A(Rf), the associated reconstruction set may be empty
and then d(T', T',) would not be defined. In the sequel, it
is assumed that this problem is treated by % reconstruction
algorithm and hence A (Vf) yields a nonempty I',. In this
case, the following Lipschitz condition is satisfied.

Theorem 5: For all inherently bounded AQLR, there
exists X > O such that

d0,T,) = K- AN + s@).

Proof: See Appendix D.

Observe that the above result is global in the sense that
as long as A (Vf) gives rise to a nonempty reconstruction
set, the theorem holds regardless of the size of A (Vf).

Let us conclude this section with a remark concerning
further research. The reconstruction accuracy from an
AQLR is not easily evaluated from the stability results.
However, quantitative analysis of the structure and the
size of the reconstruction set, by applying the framework
of AQLR’s to a specific case, can provide important re-
sults related to reconstruction accuracy and sensitivity.

€0

V. CONCLUSIONS

New theoretical results, regarding uniqueness and sta-
bility of the multiscale (wavelet) maxima and zero-cross-
ings representations, have been presented. The conclud-
ing result, which states that the wavelet maxima (zero-
crossings) representation is stable but nonunique, pro-
vides a new consideration of these signal descriptions. The
standard multiscale zero-crossings (without any addi-
tional information) representation was assumed, at least
for some family of signals, unique but unstable. Perhaps,
this instability was the main obstacle to achieve, in spite
‘of the first enthusiasm for zero-crossings in multiresolu-

tion representations (in the early 1980°s), many engineer- -

ing applications of this technique.

In our opinion, in addition to the actual results, there
are three important consequences of this work.

The first is to show feasibility and capability of discrete
analysis. In general, the discrete approach described here
may be applied for a variety of representations and recon-
struction algorithms, providing new insights into their
properties. We believe that, even for complex algorithms,
testing for uniqueness and computing a precise recon-
struction set, even for a few examples, is worth the effort.

The second is the conclusion that, in order to benefit
from novel characteristics, beyond properties of an adap-
tive irregular sampling, the multiscale maxima (zero-
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crossings) representation should be considered in the non-
unique context. Signal processing based on a unique rep-
resentation has the advantage of possible separation be-
tween different processing units. This separation
facilitates significantly analysis and design, but is does
not improve system performance. Therefore, since the use
of the multiscale maxima (zero-crossing) representation
will require joint analysis and design of a whole system,
one might expect involved analysis and difficult design
with possible, as usual when local optimization is re-
placed by a global one, improvement in performance.
However, in the signal processing community, the core
of theoretical studies has been developed in the frame-
work of unique representations. In our opinion, the need
to develop more analytical tools and applications for non-
unique representations is apparent.

The third is the framework of inherently bounded
AQLR’s. This structure makes possible to define, ana-
lyze, and reconstruct a wide family of signal representa-
tions. It should not be a surprise that this structure has
already yielded additional results. One example is a new
reconstruction algorithm based on an appropriate poten-
tial function. Modifications of the basic maxima represen-
tation are additional examples. For a reference see [2],
[4].

Let us conclude with a citation from [10]. ‘‘The general
methodology of studying a representation in terms of its
mathematical properties, and developing reconstruction
methods to evaluate the stability and variations in the fi-
bers, in analogy with the study undertaken here, is highly
recommended.’’

Using the word ‘‘here,”” Hummel and Moniot meant
their work, but we hope that they would agree to use it in
the context of our research as well.

APPENDIX A
ProoF orF ProrosiTION 1

Let us assume that R,, f, a multiscale maxima represen-
tation of an arbitrary sequence f € £ is given. Proposition
1 will be proven in a constructive way, the exact condi-
tions that an arbitrary sequence h € £ has to satisfy in
order to belong to the reconstruction set of R, f will be
specified. It is clear that & € T'(R,, f), if and only if VA =
Vfand W;h(j = 1,2, -+ -, J) has local extrema at the
same points as W, fdoes. Let us dwell upon the latter con-
dition. In simple words, we have to assure that W;h is
increasing in every segment starting at a local minimum
of W, f and ending at a local maximum of W, f and it is
decreasing otherwise.

The desired monotonic property can be achieved by en-
forcing an appropriate constraint on W, f (k + 1) — W, f(k)
(>0, =0, <0, <0). If one of the points k£ + 1, k is not
an extremum, such a constraint is a function of k£ and will

- be defined by the type of &, #;(f, k). If both k and k + 1

are extreme points, the specific constraint cannot be de-
fined solely either by k or by k + 1. However, in the latter
case, the sampling information assures the right relation-
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ship between W, f(k + 1) and W; f(k). Consequently, the
regular subset of 1,(W, f) is defined by

LW & tke LW f):k+ 1¢LMWf))}.

For all k € (I,(W, f))’, the type of k with respect to ex-
trema of f at level j, ¢;(f, k) is defined by

O 2 {—1 if ke X(W,f)
i s =

1 otherwise.

In words, for k a régular extremum, its type is —1 if k is
a local maximum of W, f and it is 1 if k is a local mini-
mum. To define a type of points which are not local ex-
trema, the extremum segment is introduced. For any & €
I, (W;f), the extremum segment of k with respect to f at
level j, P;(f, k) is defined as

Pi(f, k) & {k, k + 1, ,k + 1} (39)

suchthatr = 1,k + re I,(W;f), and k + 1, » k +
r— 1 ¢ I,(W,;f). Note, that due to the N-periodic exten-
sion employed, k + i is defined modulo N.

P;(f, k) is a segment which starts and ends with local
extrema, but does not have any extremum as an interior
point. Observe that for fixed j and f, for any k' ¢ I, (W, f)
there exists exactly one k € I, (W, f) such that k' € P; ( f
k).

Forall k' ¢ 1,(W, f), the type of k’ with respect to f at
level j, t;(f, k') is introduced by

l}-(j’;k’)é =1 if k' e Pi(f, k) and k € X(W, f)
1  otherwise

In words, the type of k is 1 if either k is a local minimum
or it belongs to a segment on which W, /;f s increasing.
Since W;h preserves monotonic propertles of W, f, the
following theorem is easily verified.
Theorem 6: Let R, f be a given multiscale maxima
representation. Then for an arbltrary he £, hel'(Rf),
if and only if

Vh = VF
5(f ) - Wik + 1) = Wik(k) > 0.

The last inequality should be satisfied forj = 1, 2,
J and for all k € (I,(W; f))" and for all k ¢ [ (Wf)

We see that the theorem describes a particular case of
the AQLR structure.

(40)
(41)

APPENDIX B
PrROOF OF THEOREM 2

The proof is organized as follows: The first step is to
show that the multiscale zero-crossings representation fits
into the AQLR structure. Then, the required boundness
property is shown.

Let R, fbe a given multiscale zero-crossings represen-
tation. For an arbitrary 4 € £, the conditions on 4 to be-
long to I'(R, f) are studied. Of course h needs to satisfy

= Vf, in addition W;h(j = 1, 2, , J) has to sat-

38)
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isfy sign constraints yielding zero-crossings of Wih at
L, (W, f) points.

Let us study the latter condition. If, for some k €
LW, f), W;f(k) = Othenk + 1 € I,(W,f) and (U{f) (k)
=0.In th1s case, the zero-crossing point is preserved by
satisfying the condition VA = Vf. To take care for all other
cases, the regular set of zero-crossings is defined

LW, f) & (ke LW f):k+ 1¢LW[)}.

For all k € (I (W, f),
level j is defined as

5(f, k) = sgn (ULf)(k).2

Now careful, but straightforward, applications of the
above definitions the following theorem can be proven.

Theorem 7: Let R, f be a given multiscale zero-cross-
ings representation. For any h € £, h € T'(R,f), if and
only if

42)

the type of k with respect to f at

Vh = Vf (43)

5(f k) -

such that k' € ® (W, f, k). The last inequality should be
satisfied forj = 1, 2, , J and for all k&’ € (I,(W, f))"
and forall k' ¢ I, (Wf)

The above theorem has shown that R,fis an AQLR.
Now we need to prove the boundness property. Consider
an arbrtrary heT'(R,f), afixedjand k € I, (W, f). Using

= Vf

2 Whk) =
k'e®Wif,k)

Wik(k') > 0. (44)

% Wk =

ke ®(W;f, k)

UinNn®.
(45)
Since W;h has the same zero-crossings as W, . f, for all k'

€ P (W, f k) the values of W;h (k') have the same, fixed
sign. Therefore

W;h (k' ULf) k). 46
vecin RO = (W) (46)
Applying,
2
Zx,2 < Ex,z +2- Exixj = <Zx,»>
for nonnegative x;’s, we obtain
Wh(k")|? I 2, 47
veimy TREOL = 1WIH®) @7)
Now, using the fact that {W,, W,, - -+ , W;,, W, } isa

compliete (unique) linear transformation and applying the

%For scrupulous definitions we need to assume that the information about
these signs is included in the index set LW, f).
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definition of the Euclidian norm

J
I < 3 (I9blF + 5 1wl )

TN

§ Wy 1h @)

||
M\/‘\

+
J

|Wh(k)|’)

1 ke LW f) k' e@(W,f )
N-1

T2 Wrh @)

IA
/‘\

»

&3 vrll>.

IIM&.

+
j

I(Uff)(k)l2>

el W:f
Thus, finally

Il = &, 1vrl. O @3

APPENDIX C
PROOF OF PROPOSITION 2

The discrete dyadic wavelet decomposition is based on
two discrete filters, whose transfer functions are denoted
H(w) and G(w) (for definitions and details see [15]).

As a straightforward consequence of the definition of
the discrete dyadic wavelet transform, one can show that
the discrete transfer function, corresponding to the oper-
ator S;, is given by

J-1
SHty = 11 @) (49)
where
— k )
hy(k) = H <2P+‘ 1’—) (50)
N
fork =0, 1, N-1.
Now, let us consider
N _
mp) =57 p=x142,--,2770 6D

Since N is a multiple of 27, m(p) is an integer. Notice

that p can be written as p = 2'p, where 0 < I < J — 1
and p, is an odd number. Observe that

" 2’pN
J-1-1 1
hj_i-i(m(p)) = » <2 27 N21>
= H(zpy) = 0. (52)
Therefore, using (49), we obtain
Sym(p)) = 0. (53)

The integers m(p)’s, as zeros of the transfer function Sj,
- will be used to define sequences belonging to the null
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space of §;. Let e, be the following exponential sequence

e, (k) = exp <27ri%c>

k=01, ,N— 1. (54)
Its Discrete Fourier Transform, e, is given by
(k) = No,(b) (55)
where
1 ifk=p
6, (k) =
? {0 otherwise.

Cogt&ling together (53) and (55), one can conclude that
(Sjem(p)) = 0, thus

(56)

The sequences y, are expressed by e,,’s in the subse-
quent way

S,em(p) = 0.

27pk

1
Yap—1(k) = cos <7> = E(em(p) + em-p)

. {2wpk
Y2p (k) = sin < 21;

Therefore S;y, = 0 forp =1,2, - - -

1
> =5 (Empy = Em(—p))-

,27 = 1. O

APPENDIX D
Proor oF THEOREM 5

The proof is based on convex analysis and parametric
linear programming. There are many relevant sources for
the subject; we have mostly used [9], [22]. Due to the
length of the proof it will be divided to several subsec-
tions.

A. The Structure of the Reconstruction Set
Let Rf = {If, Vf} be an AQLR, its reconstruction set
is given as
= {h: Vh = Vf, Ch > c}. &)

The closure of the reconstruction set, T is the following
convex polyhedron

= {h: Vh = Vf, Ch = c}. (58)

_ Since every equality of the form h; = t; can be replaced

by two inequalities h; = t;,, —h; = —t;, without loss of

generality, we can assume that
= {h: Bh = b}

for a given p X N matrix B and a p-dimensional vector b.
For an inherently bounded AQLR’s, the associated set
T is bounded. Therefore as a special case of the theorem
of Krein and Milman [12], the following holds.
Theorem 8: For an inherently bounded AQLR, the clo-
sure of the reconstruction set is the convex hull of its fi-
nitely many vertexes.



In the sequel, the following property of a polyhedron
vertex will be used. Let {#: Bh = b} be a polyhedron and
v' its vertex. Then, there exist N rows of B, which con-
stitute a regular matrix [B]; such that

v’ = ((BY)™' - &} (59

while [B]’ is a subvector of b corresponding to these N
rows. By inserting zero columns to the matrix ([B)')!,
the matrix D' is obtained, such that

v = D'b. (60)

Returning to notations of Theorem 5, observe that there
exist v € I' and 7 € T, such that '

lv - 5l = d(T,T,) = 4, rp). (61)
Moreover, it can be shown by a standard technique that v
and ¥ are vertices of T and T,

B. A Convex Representation

Let A (Vf) be fixed and arbitrary, such that T, is non-
empty. We define :

REPE{FVF+N-AWF)) O=<r=<1 (62

with the underlying reconstruction set denoted by' I‘,’,‘.
From the definition of an adaptive quasi linear represen-
tation (AQLR)

Ty={mVh=Vf+\-A(¥f) and Ch > c}.
' (63)

The above formula yields the following observation: if h
el =Tjand h; €T, = I'} then

ho+ N (hy ~ h)) €T

0=<
Therefore I‘; is nonempty for0 < A\ < 1 and d(T, I‘},‘)
is well defined.
Next, notice that the closure of I‘,),‘ is given by

@) = {h: V= Vf + \ - A(VP),
Ch = c} = {h: Bh = b + \Ab}

A=<1.

(65)

where B is a p X N matrix and b, Ab are p-dimensional
vectors (see Section III-B). Since every quality of VA =
Vf + N\ - A(Vf) appears in two rows in Bh = b + \Ab

lasl = 20l ©6)
We know that

dT,T) = |lo* - M| (67)

where v is a vertex of T and 7" is a vertex of T ,),‘. Using
(60) we can write

v* =D'b and 7* = D'(b + NAD). (68)

Both matrices D' and D° are obtained from | an inverse of
a regular submatrix of B. Note that [Db — D(b + \Ab)|
is a continuous function of \ for any two matrices D, D.

(64) .
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Therefore, if

lo* = 2M < llo, - B, (69)
for all pairs v,, T, of vertexes of T, I‘;,_ respectively,
which are different from v*, 7, then there exits a seg-
ment [N;, \;;,] such that

dT,T)) = |D'b -~ D' + \aB)|

VYA €e [N, Nyl (70)

Furthermore, there exists another pair of vertexes, with
associated matrices D'~ ' and D'~ ', such that

dT,T)) = |D'b ~ Dib + N\AD)|

=[D'"'6 = Db + NAD).  (71)

Next observe that since the number of regular subma-
trices of B is finite, the number of possible pairs D, D is
finite as well. Consider |Db — D(b + A\Ab)| and |D,b
— D,(b + MNAb)| as two functions of \. As square roots
of quadratic forms, these expressions may coincide or be
equal for at most two values of . Therefore, all possible
pairs of these functions intersect at finitely many points.
Consequently, there exist L points

0=)\0<)\]'

and L pairs of matrices (D', D')i = 0,1, -+ ,L — 1
such that D'b is a vertex of ' and D'(b + AAbD) is a
vertex of (T' },‘)‘ for all A € [N, N\;4]. Moreover,

dT,T}) = ID'b — D' + Mab)|

e < )\L—l =] (72)

VA €[N, Nyl (73)
d(T,TY) = |D'b ~ B'd + M Ab)|
= |D'"'b - DI~'(d — MAD). (79

C. Auxiliary Proposition

Proposition 5:

i-1

dT, Tp) = d@, 1) + I My = M) - [D*abl.
(75)
Proof: By introduction on i. Leti = 1
dT,T)) = |D'b — D'(b + N\ AB)|
= |[D° - D% — N\ Ab)|
= |D° ~ D° + D° -D°(b + Mab)|
< |D° - D°b| + |D°
- Db + N\ AD)
=dT,T) + X\ - |Db]|.
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Since Ay = 0, the above is exactly the claim fori = 1.
By induction, let us assume that the proposition holds for
i — 1. Consider,

dT,T)) = [D'~'b — D'~'(b + N AD)|
= |D'~'b - D'"'(d
+ N 1Ab)
+ DY + \_,Ab)
— D' + NAD)|
< [D'"'b - D7 + N\_,Ab)]
+ D' + N\_;1Ab) )
- D' (b + NAD)|
dT, T+ (N = N_pID'~'Ab| <

(using the induction assumption)
i-2

=dT, D) + I (M — WD A
+ (N = Mo ID' AR
i—1
=d@, D) + % (ver = W ID*Ab].
This concludes the proof of the proposition. (W]

D. Conclusion of the Proof

Using Proposition 6 we deduce that the distance be-
tween I' and T, satisfies

L-1

dT,T,) = d[T, 1) + 2 (\ir = WID*AbI. (76)

Let |[D'] be the induced matrix norm of D’. Then,
ID'Ab| < ID'|| - labl.

Since the number of possible matrix D' is finite, there
exists K, > 0 such that
IDll < Kp (78)

for all valid D’. Combining together (76)-(78) we show
that ‘

By taking K = 2K}, and using (66), the desired relation is
obtained

dT,T,) <d@, 1)+ K- [a@nl. O @0

7
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