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THE PARTIALLY OBSERVED STOCHASTIC MINIMUM PRINCIPLE*

JOHN S. BARAST, ROBERT J. ELLIOTT#, AND MICHAEL KOHLMANNS$

Abstract. Using stochastic flows and the generalized differentiation formula of Bismut and Kunita, the
change in cost due to a strong variation of an optimal control is explicitly calculated. Differentiating this
expression gives a minimum principle in both the partially observed and stochastic open loop situations.
In the latter case the equation satisfied by the adjoint process is obtained by applying a martingale
representation result.
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1. Introduction. Various proofs have been given of the minimum principie satisfied
by an optimal control in a partially observed stochastic control problem. See, for
example, the papers by Bensoussan [1], Elliott [8], Haussmann [11], and the recent
paper [14] by Haussmann in which the adjoint process is identified. The simple case
of a partially observed Markov chain is discussed in the University of Maryland lecture
notes [9] of Elliott.

In this article we show that the minimum principle for a partially observed diffusion
can be obtained by differentiating the statement that a control u* is optimal. The results
of Bismut [5], [6] and Kunita [16] on stochastic flows enable us to compute in an easy
and explicit way the change in the cost due to a ‘“‘strong variation” of an optimal
control. The only technical difficulty is the justification of the differentiation. As we
wished to exhibit the simplification obtained by using the ideas of stochastic flows,
the result is not proved under the weakest possible hypotheses. In § 6, stochastic open
loop controls are considered and a similar minimum principle with an explicit adjoint
process is derived in § 7. If the optimal control is Markov, the equation satisfied by
the adjoint process is obtained in § 8 using the martingale representation result of [10].
This simplifies the proof of Haussmann [12]. Finally in § 9 it is pointed out how
Bensoussan’s minimum principle [2] follows from our result if the drift coefficient is
differentiable in the control variable.

2. Dynamics. Suppose the state of the system is described by a stochastic differen-
tial equation

df! =f(t, gl; u) dt+g(t, §!) dwty
grERd, Eo=x9, 0=t=T

The control parameter u will take values in a compact subset U of some Euclidean
space R*. We shall make the following assumptions:
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(A) X, is given; if x, is a random variable and P, its distribution, the situation
when {|x|?P,(dx) <o for some g > n+1 can be treated, as in [14], by including
an extra integration with respect to P,.

(As) f:0, TIxR*x U~ R? is Borel measurable, continuous in u for each
(t,x), continuously differentiable in x and for some constant K,
A +]xD) A X W+ (1, x, w)| = K.

(A;) g:[0, T1x R* > R*®R" is a matrix-valued function, Borel measurable, con-
tinuously differentiable in x, and for some constant K, |g(#, x)|+]g.(¢, x)|=
K,.

The observation process is given by
(2.2) dy, = h(¢) dt+dv,, y.€R™, y,=0, 0st=T.

In the above equations w=(w', ---,w") and v=(v',---,v?) are independent
Brownian motions. We also assume the following:

(Ay) h:R?> R™ is Borel measurable, continuously differentiable in x, and for
some constant K, [h(t, x)|+]h. (¢, x)| = K.

Remark 2.1. These hypotheses can be weakened. For example, in (A,), h can be
allowed linear growth in x. Because g is bounded, a delicate argument then implies
the exponential Z of (2.3) is in some L? space, 1 < p <. (See, for example, Theorem
2.2 of [13].) However, when h is bounded, Z is in all the L” spaces (see Lemma 2.3).
Also, if we require f to have linear growth in u, then the set of control values U can
be unbounded as in [14]. Our objective, however, is not the greatest generality but is
to demonstrate the simplicity of the techniques of stochastic flows.

Let P denote Wiener measure on C([0, T], R") and p denote Wiener measure
on C([0, T], R™). Consider the space Q= C([0, T], R")x C([0, T], R™) with coordi-
nate functions (w,, y,) and define Wiener measure P on () by

P(dw, dy) = P(dw)u(dy).

DEFINITION 2.2. Write Y ={Y,} for the right continuous complete filtration on
C([0, T], R™) generated by Y. =o{y,: s = t}. The set of admissible control functions
U will be the Y-predictable functions on [0, T]x C([0, T], R™) with values in U.

For uc U and xe R? write ¢¥,(x) for the strong solution of (2.1) corresponding
to control u, and with &5 (x)=x. Write

(23) z20=exp (| miez 0oy an - [ nes,cor ar)

and define a new probability measure P* on Q by dP*/dP = Z§ r(x,). Then under P*,
(&5..(x0), y:) is a solution of (2.1) and (2.2), that is, £5,(xo) remains a strong solution
of (2.1) and there is an independent Brownian motion v such that y, satisfies (2.2). A
version of Z defined for every trajectory y of the observation process is obtained by
integrating by parts the stochastic integral in (2.3).

LeMmma 2.3. Under hypothesis (A,;) for t=T,

E[(Z5,(x0))?1<0 forallue Uandallp, 1=p<c.
Proof.

t

Z(x) =1+ J Z5,(x0)h(£5,(x0))" dy,.

0
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Therefore, for any p there is a constant C, such that

i

p/2
E[(Z5,(x))"1=C, [1 +E (J (Z5.,(x0))*h (&5 (x0))° dr) }

0
The result follows by Gronwall’s inequality.

Cost 2.4. We shall suppose the cost is purely terminal and given by some bounded,
continuously differentiable function

c(&o,7(x0)),
which has bounded derivatives. Then the expected cost, if control u € U is used, is
J(u) = E,[c(&.(x0))].
In terms of P, under which y, is always a Brownian motion, this is

(2.4) J(u)=E[Z('§,T(xo)c(§8,r(x0))].

3. Stochastic flows. For uc U write

t

(3.1) fl-‘,,(X)=X+J’ S £5,(x), u,) dr+J g(r, &.(x)) dw,

for the solution of (2.1) over the time interval [s, t] with initial condition £,(x) = x.
In the sequel we wish to discuss the behavior of (3.1) for each trajectory y of the
observation process. We have already noted that there is a version of Z defined for
every y. The results of Bismut [5] and Kunita [16] extend easily and show the map

£&,:R">R?

is, almost surely, for each ye C([0, T], R™) a diffeomorphism. Bismut [5] initially
gives proofs when the coefficients f and g are bounded, but points out that a stopping
time argument extends the results to when, for example, the coefficients have linear
growth.

Write | £“(xo)||, = suposx«=/ |£.s(xo)|. Then, as in Lemma 2.1 of [13], for any p,
1=p <o, using Gronwall’s and Jensen’s inequalities,

)

almost surely, for some constant C.

Therefore, using Burkholder’s inequality and hypothesis (A;), ||£“(xo)| + is in L”
forall p, 1=p<co.

Suppose u*e U is an optimal control; then J(u*)=J(u) for any other uc U.

Write £%,() for £¥,(-). The derivative 0&%,(x)/ax is the matrix solution C, of the
equation for s=1t,

||§"(xo)||§’.§ C(1+|xo|p+ J g(r, £5..(xo)) dw,
0

n

(3.2) dC = fu(t, €5,(x), u*)C, dt + 3, g'(1, £5,(x))C dw;  with C,=1I.
i=1

Here T is the n x n identity matrix and g is the ith column of g. From hypotheses
(A;) and (A;), f, and g, are bounded. When we write || C{|, = supo=,=, |C,|, an applica-
tion of Gronwall’s, Jensen's, and Burkholder’s inequalities again implies | C|| is in
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L? for all p, 1=p<oco. Consider the related matrix-valued stochastic differential
equation

D, = I—j D, f(r, £5.(x), uy) dr— Z J D,g{ (1, £ (x))" aw,

(3.3) )
tE I D(g{(r, ££(x))')* dr.

Then it can be checked that D,C, = I for t = s, so that D, is the inverse of the Jacobian,
that is, D, = (3¢%,(x)/3x)”". Again, because f, and g, are bounded we have that D},
is in every L?, 1= p <co.

For a d-dimensional semimartingale z, Bismut {5] shows that £¥(z,) is well-defined
and gives the semimartingale representation of this process. In fact if z =
z,+A,+Y ., |\ H dw! is a d-dimensional semimartingale, Bismut’s formula states that

8§

§i,(2,)=zs+J (f(r,f Az,), uf)+ Z g (r, €5(2,), u¥) — = (z)H,

(3.4) +1 Z 7E ’(Z)( H,-)) dr

N J (z)dA 4y J (g“’<r, gz,(z,>>+"’f§'(z,>H,-) dw

i=1

DEeFINITION 3.1. We shall consider perturbations of the optimal control u* of the
following kind. For s € [0, T), h >0 such that 0= s < s+ h = T, for any other admissible
control #e U and Ae Y, define a strong variation of u™ by
u*(t,w) if (t,w)g[s,s+h]xA,
u(t,wy if(y,w)els,s+h]xA.

Applying (3.4) as in Theorem 5.1 of [7], we have the following result.
THEOREM 3.2. For the perturbation u of the optimal control u™ consider the process

u(e, w)={

‘(aE5(z)\7!
(3.5) Z=x+ J (T (f(r, €5.(2,), u,) = f(r, £5.(2,), u})) dr.
Then the process £¥(z,) is indistinguishable from £ ,(x).

Proof. Note that the equation defining z, involves only an integral in time; there
is no martingale term, so to apply (3.4) we have H, =0 for all i. Therefore, from (3.4)
(!

g;’f,(z,)=x+ f, f?,r(zr)’ uk) dr

vs

+ | (PELD) (22D 0, 8,20, ) =05 200, )

J 0x X

(¢

+ g(r’ fzjr(zr)) dW,.

Vs

However, the solution of (3.1) is unique so

gir(zl) = fls‘,r(x)

Remark 3.3. Note that the perturbation u(r) equals u*(t) if t>s+h so z, = z,4,,
if t>s+h and

:’ft(zt)_ l(zs+h)_§s+ht(§‘xl,s+h(x))'
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4. Augmented flows. Consider the augmented flow that includes as an extra coor-
dinate the stochastic exponential Z¥, with a “‘variable” initial condition ze R for
Z¥(-). That is, consider the (d +1)-dimensional system given by

£ (x)=x+ J”f(r, £, (x), u¥) dr + f o(r, £5(x)) dw,

1

Zi(x,z)=z +J Z3%(x, 2)h(£5(x)) dy,.

5

Therefore, from the first equation in the proof of Lemma 2.3 we have

Z:I(xs Z) = zZ;'f,(x)

=zexp (J’t h(£3.(x)) dy, —% JI h(££(x))? dr)

and we see there is a version of the enlarged system defined for each trajectory y by
integrating by parts the stochastic integral. The augmented map (x,z)-
(€¥(x), Z¥(x,z)) is then almost surely a diffeomorphism of R“*'. Note that
a£¥(x)/9z=0, 8f/9z=0 and 8g/3z=0. The Jacobian of this augmented map is,
therefore, represented by the matrix

" \ozZE(x,2)/9x 9Z*(x,2)/dz)°

and for 1=i=d as in (3.2)

9Z¥(x,2) _ }m: I (Zf, )ah"(fif,(x))_afts,,(x)
ax; = 8§k 9X;

(4.1) dZ%( )
i s, r x z i
+hI(E5(x ))—“-—“—) dy;.
(Here the double index k is summed from 1 to n.)
We shall be interested in the solution of this differential system (4.1) only in the
situation when z=1, so we shall write Z¥,(x) for Z¥,(x, 1). The following result is

motivated by formally differentiating the exponential formula for Z¥,(x).

LEMMA 4.1.
—azs'(x)=Z§'f,(x)<J.,hx(§ (xy  2EX) dv,)
X s

where v=(v', - - -, v") is the Brownian motion in the observation process.
Proof. From (4.1) we see 3Z¥,(x)/ax is the solution of the stochastic differential
equation

Z*' Z;kr
@z [ g )4 2z oo 220D ay,
X s ax
Write
Lst(x)=Ztt(x)(J" hxﬁ dv’)
’ s ax
where

y, = h(£¥(x)) dt + dv,.
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Because

t

ZL(x)=1+ J Z3%(x)h'(£5,(x)) dy,

5

the product rule gives

! 9 ;kr ' ! afto' ES 1ogXk
L, (x)= Zi'fr(x)hx~a—’dvr+ h, - dv, | ZE (x)h'(£E,(x)) dy,

X 0x
‘ , IEL
+1 ZE ()R (£5(x) - hy- ——dr
s ’ ox
t o t N afir
=1 L (x)h'(&A(x))dy,+| Zi(x)hy- o - dy,.

Therefore, L,,(x) is also a solution of (4.2), so by uniqueness
dZ¥,(x)

Ls,:(X)=——a;—-

Remark 4.2. As noted at the beginning of this section we can consider the
augmented flow

(x’ Z)—)(ft,(x), Z:’fl(x’ Z)) for xERd’ZER’

and we are only interested in the situation when z =1, so we write Z¥(x).
LEMMA 4.3. Z¥(z,) = Z},(x) where z, is the semimartingale defined in (3.6).
Proof. Z7,(x) is the process uniquely defined by

t

(4.3) Z?,I(X)=1+I Z5 (x)h'(&5,(x)) dy,.

s

Consider an augmented (d + 1)-dimensional version of (3.5) defining a semimartingale
7,=(z, 1), so the additional component is always identically one. Then applying (3.4)
to the new component of the augmented process, we have

Zi(z)=1+ J Z%(z)h'(€5.(2,)) dy,

t
=1+J Z{(z)h'(£5(x)) dy,
by Theorem 3.2. However, (4.3) has a unique solution so Z¥,(z,) = Z (x).
Remark 4.4. Note that for t>s+h
Ztr(zr) = Z:‘k,l(zx+h)'

5. The minimum principle. Control u will be the perturbation of the optimal control
u* as in Definition 3.1. We shall write x = £§,(x,). Then the minimum cost is

J(u*) = E[Z§ 1(x0)c(£5 7(x0))]
= E[Z3(x0) Z31(x)c(£57(x))].
The cost corresponding to the perturbed control u is
J(u) = E[Z8(x0) Z r(x)c(£57(x))]
= E[ZF (x0)Z%1(zen) c(E¥7(2514))]
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by Theorem 3.2 and Lemma 4.3. Now Z¥ (- ) and c¢(£¥(-)) are almost surely differenti-

able with continuous derivatives and z,, given by (3.5), is absolutely continuous.
Therefore,

J(u)=J(u*) = E[Z§,(x)(Z51(z541) c(E7(2540)) — ZE7(x) e(£¥1(x)))]
=E [J' L(s, 2, )(f(r, £5,(2,), uF) = f(r, £5,(x), u¥)) dr]

where by Lemma 4.1

*
I'(s, 2)= Z&S(XO)ZtT(Zr){cf(giT(zr)) afs;;x(z’)
T " . .
+c(§tr(z,))(J hg(fjfg(zr))%f’_"(zr) dva)}(afs,, (z’)) .
y X ax

Note that this expression gives an explicit formula for the change in the cost resulting
from a variation in the optimal control. The only remaining problem is to justify
differentiating the right-hand side.

From Lemma 2.3, Z is in every L” space, 1 = p <o0, and from the remarks at the
beginning of § 3, Cr =8&¥+/ax and Dr = (3£¥/3x)™" are in every L” space, 1= p <oo.
Consequently, I' is in every L” space, 1 =p <0,

Therefore,
s+h
](u) _](u*) = J’ E[(F(S, Zr) —F(S, x))(f(r9 f;‘:r(zr), ur) _f(ra fir(zr)a uﬂc))] dr
("s+h
+ E[(T'(s, x) =T(r, x))(f(r, £¥(2,), w,) = f(r, £5(2,), u¥)) dr
fs+h

+ E[T(r, x)(f(r, £5.(2,), u,) = f(r, £5,(2,), u¥)
—f(r, €5,(x), u) + f(r, £5(x), u¥))] dr
s+h

+ E[T(r, x)(f(r, £5.,(x0), u,) = f(r, £§.(x0), u¥))] dr

Js

=L(h)+ L,(h)+ I;(h)+ I,(h), say.

Now,

s+h

L= K, j EQIT(s, 2,) (s, x)|(1+ | € (xo)o1)] dr

SKih sup E[Il(s2)=T(s I+ 1€ )llen)],
s+h )

|L(h)| = sz E[|l(s, x) =I'(r, s)|(1+ | £*(x0) || s+n)] dr

=K:h sup E[l(s, %)=L 0|1+ € o)lsrn)]

s+h

(W= K, j ELIT(r, %)l €5(2) — £, 00)|] dr

5

=K;h sup . E[IT(r, x)| |1 £5,.(x) = £5.(0) [l s+a].

SErss+
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The differences |['(s, z,) —T'(s, x)|, |T'(s, x}) —T(r, x)| and Hgs (x) = £¥.(x) || s+n are all
uniformly bounded in some L?, p=1, and

lim [['(s, z,) =T'(s, x)| =0 as.,
lim |['(s, x) —(r, x)]=0 a.s.,
lim [|£7.(x) = £5.(x) |0 = 0.

Therefore,

lim ||I'(s, z,) = T'(s, x)|, =0,
lim ||I'(s, x) =T(r, x)||, =0, and
tim (1£.() = ££.05)cen)ll, =0 _for some p.

Consequently, lim,_o h "I, (h) =0, for k=1,2,3.
The only remaining problem concerns the differentiability of

s+h
I(h)= J E[T(r, x)(f(r, £§.(xo), u,) — f(r, £.(x0), u¥))] dr.
The integrand is almost surely in L'([0, T]) so lim,_, h™'I,(h) exists for almost every
s €[0, T). However, the set of times {s} where the limit may not exist might depend
on the control u. Consequently we must restrict the perturbations u of the optimal
control u* to perturbations from a countable dense set of controls. In fact:

(1) Because the trajectories are, almost surely, continuous, Y, is countably gener-
ated by sets {A;,}, i=1,2, - - - for any rational number p € [0, T]. Consequently, Y, is
countably generated by the sets {A,.}, p=1t.

(2) Let G, denote the set of measurable functions from (€, Y;) to U< R* (If
ue U then u(t, w) € G,.) Using the L'-norm, as in [8], there is a countable dense subset
H,={u;,} of G,, for rational pe[0, T]. If H,=U ,<, H, then H, is a countable dense
subset of G,. If u;, € H, then, as a function constant in time, u;,, can be considered as
an admissible control over the time interval [¢, T] for t = p.

(3) The countable family of perturbations is obtained by considering sets A,, € Y,,
functions u,, € H,, where p =1, and defining as in (3.1) the following:

* (s w)= {u*(s, w) if (s,w)e[r, TIxA,,
ot S W= u,(s,w) if (s,w)e[r, T]xA,.

Then for each i, j, p

s+h
(5.1) lim h‘lj E[T(r, x)(f(r, £5.(x0), u) = f(r, £&,(xo), u*))] dr

exists and equals
E[F(S, x)(f(s’ f(’is(xo), ujp) _f(sa §g<,s(x0)’ u*))IA,-p]
for almost all s € [0, T]. Therefore, considering this perturbation we have

lim h™(J (u}}) = J (u*)) = E[T(s, x)(f(s, £§s(x0), w,) = f(s, £8.:(x0), u¥)) L, ]

z0 for almost all s€[0, T].
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Consequently there is a set S< [0, T] of zero Lebesgue measure such that, if s S, the
limit in (5.1) exists for all i, j, p, and gives

E[F(S x)(f(s §0 s(xO)’ jp) f(S, gg‘,s(XO)’ u*))IA,ﬂ]éo'

Using the monotone class theorem, and approximating an arbitrary admissible control
u e U, we can deduce that if s S, then

(5.2)  E[T(s, x)(f(s, £§(x0), u) — f(s, £5.5(x0), u*))[a]Z0 for any A€ Y,.
Write

ps<x)—E*[c§<§o r(xa) T(")+c<§;&r<xo>>(J he(eo (oo 26525y, ) nv{x}]
where, as before, x = £%,(x,) and E* denotes expectation under P* = P*". Then ps(x)
is the co-state variable and we have in (5.2) proved the following ‘‘conditional”
minimum principle.

TueoreM 5.1. If u*e U is an optimal control there is a set S<[0, T] of zero
Lebesgue measure such that if s¢ S

E*[p,(x)f(s, x, u*)| Y,12 E*[ p(x)f(s, x, u)| Y,] a.s.

That is, the optimal control u* almost surely minimizes the conditional Hamiltonian and
the adjoint variable is p,(x).

6. Stochastic open loop controls. We shall again suppose the state of the system
is described by a stochastic differential equation

(61) d§,=f(t, flv u) dt+g(t9 §t) dW,, §l€Rd’ é:O:xO’ OétéT

where x,, f, and g satisfy the same assumptions A,, A,, and A; as in § 2.

Suppose w=(w', - - -, w") is an n-dimensional Brownian motion on a probability
space (Q, F, P), with a right continuous complete filtration {F,}, 0= r= T. Rather than
controls depending on some observation process y we now consider controls that
depend on the “noise process” w. These are sometimes called ‘‘stochastic open loop™
controls [4].

DEeFINITION 6.1. The set of admissible controls V will be the F,-predictable
functions on [0, T]x Q with values in a compact subset V of some Euclidean space R*.

Remark 6.2. For each u e V there is, therefore, a strong solution of (6.1) and we

shall write £¢,(x) for the solution trajectory given by

(6.2) Eoi(x) = X+J Sf(r, &5,(x), u,) dr+J g(r, £.(x)) dw,.

Again, because u is a (predictable) parameter the results of [2], [5], or [16] extend to
this situation, so the derivative 9¢¢,/dx(x) = C¢{, exists and is the solution of

t n '

(6.3) c;‘,,=I+J fer, €2,(x), u)C5, dr+ ¥ J g (r, £5,(x))Cs,
s k=1

Suppose Dy, is the matrix-valued process defined by

Di,=1- J' D?;(fg(r §or(x), u) = Z ge(r, §2r(x))2) dr
(6.4)

t
I D, gdo(r, £4,(x)) dwy.
1 Js

S
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Using the Itd rule as in § 3 we see that d(D},C%,)=0and D{.Ci.=1, so
Dg,=(Ci)™
As before, if
1€* (xo)l|. = sup £5.(xo)l,

=s=t

IC*llz= sup |Cid,  [D*[lr= sup |Dgl,
0sssT T

O=s=
then applications of Gronwall’s, Jensen’s, and Burkholder’s inequalities imply that
l€“x)le, IIC*|l7, and [ D*[|7

are in L? for all p, 1=p <.
Cost 6.3. As in § 2, we shall suppose the cost is purely terminal and given by a
bounded C? function

C(f&'r(xo))-
Furthermore, we shall assume
[e(x)]+|ex(x)] +exe (x)] = K3(1+]x|?)

for some g <o,
The expected cost if a control u € V is used, therefore, is

J(u)= E[c(£é57(x0))].
Suppose there is an optimal control u* € V so that
J(u*)=J(u) forall ueV.

Notation 6.4. If u* is an optimal control, write £&* for £**, C* for C*", etc.
DEFINITION 6.5. Consider perturbations of u* of the following kind. For s € [0, T],
h>0suchthat 0= s<s+h=T and A€ F, define, for any other # € V, a strong variation
of u* by
u*(t,w) if (r, w)g[s, s+h]xA,
u(t,w) if (t,w)e[s, s+h]xA.
The following result is established exactly as Theorem 3.2.
THEOREM 6.6. For any perturbation u of u* consider the process

u(t, w)={

t -1
(6.5) z, =X+L (a_a% (zr)) (f(r, €5(2.), w) = f(r, ££.(2,), u})) dr.
Then the process £%,(z,) is indistinguishable from £ (x).
Note if t>s+h, £5(2,) = E5(2en) = E5eni(E5can(X)).
7. An open loop minimum principle. Now
J(u*) = E[c(&31(%0))]
= E[c(¢%1(x))]

where x = £ (xo).
Similarly,

J(u) = E[c(£5,r(x0))]
= E[c(&é57(x))]
= E[c(gjjT(Zs+h))]'
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Therefore,
J(u) = J(u*)= E[c(£5r(z,4n)) — c(£E1(x))].

Because £¥,(-) is differentiable this is

s+h * * -1
=EU Q(fzfr(z,))aﬁ“(z,)-(%(m) (f(r, €5.(2,), u)

s X

(7.1)
f(r, £4(2), ub)) dr].

As in § 5, this gives an explicit formula for the change in the cost resulting from
a ‘“‘strong variation” in the optimal stochastic open loop control. It involves a time
integration over [s, s+h] and, again, the only remaining problem is to justify the
differentiation of the right-hand side of (7.1).

Write
T(s, 1, 2,) = c(£¥2(2,)) %x— (z,)(% (z,))_
and
: 3
p(x)=E [c.f(féiT(xo)) "ﬁ )| FS}
X
(7.2)

=E[I'(s, s, x)| F;],

where, as above, x = £¥ (x,).

Then arguments similar to those of § 5—but in fact simpler because Z is not
involved—enable us to show that there is a set S<[0, T] of zero Lebesque measure
such that if s¢ S,

E[T(s, 5, x)(f(s, £3.(x0), u) = f(s, £5.(Xo), u*))[,]Z 0

forany ue Vand A€ F,.

That is, in terms of the adjoint variable p,(x) we have the following minimum
principle for stochastic open loop controls.

THEOREM 7.1. If u*€ V is an optimal stochastic open loop control there is a set
Sc [0, T] of zero Lebesgue measure such that if s S

p(x)f(s, x, u*) = p(x)f(s, x, u) as.

for all ue V. That is, the optimal control u* almost surely minimizes the Hamiltonian
with adjoint variable p(x).

Remark 7.2. Under certain conditions the minimum cost attainable under the
stochastic open loop controls is equal to the minimum cost attainable under the Markov
feedback controls of the form u(s, &5 .(x,)). See for example [3], [12]. If u,, is a
Markov control, with a corresponding, possibly weak, solution trajectory £“~, then uy,
can be considered as a stochastic open loop control u,,(w) by putting

up (W) = un (s, €024 (X, W)).

This means the control in effect “‘follows™ its original trajectory £“¥ rather than any
new trajectory. That is, the control is similar to the adjoint strategies considered by
Krylov [15]. The significance of this is that when we consider variations in the state
trajectory £, and derivatives of the map x - £ ,(x), the control does not react, and so
we do not introduce derivatives in the u variable.
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If the optimal control u* is the Markov, then the process £* is Markov and
p(x)=E[I(s, 5, x)| F,]
(7.3)
= E[I'(s, s, x)| x].

8. The adjoint process. Suppose the optimal stochastic open loop control u* is
Markov. The Jacobian 9¢£¥,/ax exists, as does (9€¥+/ ax)~" and higher derivatives.
THEOREM 8.1. Suppose the optimal control u* is Markov. Then

Ps(x) = E[Cg(fgt,r(xo))co,x] _J Pr(fgt,r(xo))fg(r, fgir(xo), uik) dr
+ j px(r, f(){r(xo))g(ra f(){r(xo)) dwr

_'[ px(r9 §3‘,r(x0))g(r’ g:)k,r(xo))gf(r’ g:{r(XO)) dr.

0

Proof. Write f,(r) for fi(r, £ .(xo), u¥) and g(r) for g(r, & ,(x,)), etc. By unique-
ness of the solutions to (6.1)

(8.1) f(’{r(xo) = ir(fcts(xo))
so, differentiating,
(8.2) Cor=C,1Co;

where Co 7= C&, etc. (without the *).
From (7.2) and (7.3)

P:(x) = E[Cg('fg‘,T(xo))Cs,T‘ F],
so from (8.2)
(8.3) ps(x)Co = E[ce(£51(x0))Co | F,],

and this is a (P, {F,}) martingale. Write x = £5(x,), C = C,,. From the martingale
representation result {10], the integrand in the representation of p,(x)C as a stochastic
integral is obtained by the Itd rule, noting that only the stochastic integral terms will
appear. These involve the derivatives in x and C. In fact, by considering the system
£, with components ¢35, and C,, and any real C’ function ®, the martingale

M, = E[®(&, | F,1= E[®(&.7)|x, C]=V(s,x, C)

= V(09 x07 I)+J' Vx(r’ §3=,r(x0)’ CO,!)g(r) dwr

0

+ kz J’ VC(r’ fg,r(xo), CO,r)g(fk)(r) CO,r dW’:.
=1Jo
Therefore, for the vector martingale (8.3)

s

P:(x)c = E[Cg(fo,r(xo))co,r]+J ,Px(r, f(’f,r(xo))g(") dwrCO,r

0

(8.4) .
+ Z J Pr(f(tr(xo))g.(fk)(r)co,r dw’r(
k=1

0
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Recall that Do, = C ', so forming the product of (6.4) and (8.4) by using the It5 rule,
we have

ps(x) = (px(x)C)DO,s

= E[Cg(fgc,r(xo))co,r] - I Pr(fg,r(xo))fg(") dr

-3 [ e consm ate $ [ pies oo @

k=14J0 0

s

+J px(ry §(>Il:,r(x0))g(r) dwr+kz::1 J Pr(fg,r(xo))g(gk)(r) dW:.(

0 0

*ZJ pelr £ (xo)a (Mg (n dr= 3 J PAES (X)) (g (1)) dr

0 k=1

= E[Cf(fgc,T(xo))Co,T] - Jo Pr(§§,r(xo))f§(r) dr

+J px(ra f(’f,r(xo))g(") dwr_kzl J;) Px(r’ §(>¥,r(x0))g(r)g(§k)(r) dr’
0 -
thus establishing the result.

This verifies by a simple, direct method the formula of Haussmann [12] without
any requirement that the diffusion coefficient matrix gg* is nonsingular. However we
do not identify p;(x) with the gradient of the minimum cost process; this follows from
arguments as in [12].

9. Conclusion. Using the theory of stochastic flows the effect of a perturbation of
an optimal control is explicitly calculated in both the partially observed and stochastic
open loop cases. The only difficulty is to justify the differentiation. The adjoint variable
ps(x) is explicitly identified.

THEOREM 9.1. If f is differentiable in the control variable u, and if the random
variable x = £ (x,) has a conditional density q,(x) under the measure P*, then the
inequality of Theorem 5.1 implies

k af
Zdl (u;(x) —uf(s)) J s x) = (s, x, u¥)q,(x) dx = 0.

This is the result of Bensoussan’s paper [1].
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