REPRINTED FROM: A3-03

SYSTEMS
& CONTROL
LETTERS

Volume 6, No. 3, August 1985

K competing queues with geometric service
requirements and linear costs: The pc-rule is
always optimal *

J.S. BARAS, D.-J. MA and A.M. MAKOWSKI
Electrical Engineering Department, University of Maryland, College Park, MD 20742, USA

pp. 173-180

NORTH-HOLLAND PUBLISHING COMPANY — AMSTERDAM

Systems & Control Letters 6 (1985) 173-180 August 1985
North-Holland

K competing queues with geometric service
requirements and linear costs: The pc-rule is
always optimal *

J.S. BARAS, D.-J. MA and A.M. MAKOWSKI
Electrical Engineering Department, University of Maryland, College Park, MD 20742, USA

Received 15 June 1984

Abstract: In this note, a discrete-time system of K competing queues with geometric service requirements and arbitrary arrival
patterns is studied. When the cost per slot is linear in the queue sizes, it is shown that the pc-rule minimizes the expected discounted
cost over the infinite horizon.

Keywords: Queues, pc-rule, Competing queues.

1. Introduction

In the context of resource sharing environments, a great many situations can be modelled by the
following scenario: A natural time unit exists and is used to divide the time horizon into consecutive slots
of unit length. The system is composed of a single server with the capability of providing several grades of
service, each such grade of service being characteristic of a customer class (or equivalently of a queue). New
customers arrive on a slot-per-slot basis and await service in an infinite capacity waiting room. At the
beginning of a time slot, a customer class (or equivalently its queue) is selected to receive service attention
during that time slot. The service requirements are distributed as geometric random variables with class
dependent parameters, and are statistically independent from customer to customer. Note that this
assignment of service attention may be pre-emptive as a customer is denied service attention before
completion of its service requirement. Moreover the allocation of effort may fail to be work-conserving for
the server may give service attention to a customer class with an empty queue.

Service attention to be given in a time slot is decided on the basis of past decisions and service
completions, as well as of past and present arrival data.

A cost, linear in the queue sizes, is incurred for operating the system over one time slot and one seeks to
select the service discipline so as to minimize the total expected discounted cost over an infinite horizon.
The policy that allocates service attention to the non-empty queue with the largest expected cost decrease
per slot is called the pc-rule. It is shown here that the pc-rule is optimal among all admissible allocation
policies when the arrival streams have arbitrary statistics but are statistically independent of the service
requirements. This work generalizes and extends the one presented by Baras, Dorsey and Makowski in [1]
for the case of two competing queues under the more restrictive assumption that the arrivals are
independent and identically distributed over time slots; there the problem was solved by Dynamic
Programming as only feedback policies based on past queue sizes and control decisions were considered.

In this paper, the cost transformation of [1] is used to recast the problem as an arm-acquiring bandit
problem [5]. Taking advantage of the very special structure of this auxiliary problem, one provides a direct
argument for establishing the optimality of the pc-rule. This simple argument is a very natural extension of
the one given in [5] to prove the optimality of the index rule for the simplest bandit problem.

* This work was supported in part by the Department of Energy under Grant DOE-ACO01-78ET29244, A5 and the National Science
Foundation under Grant ECS-82-04451.

0167-6911 /85 /$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland) 173

Volume 6, Number 3 SYSTEMS & CONTROL LETTERS August 1985

A similar optimality result was established by Buyukkoc, Varaiya and Walrand in [2] and obtained via
yet another line of argumentation.

2. The model

In this section a simple model is formulated that captures the evolution of the multi-queue system
loosely described in the introduction. Throughout this paper, the number of competing queues is denoted
by a fixed positive integer K.

To describe the model, one starts with a probability triple (£2, %, P) that simultaneously carries an
N*-valued random variable (RV) £, a sequence { A(1)}? of N*-valued RV’s and a sequence { B(n)}? of
{0,1}*-valued RV’s. As a rule, the k-th component of a K-dimensional RV is always denoted by the same
symbol subscripted by k. '

The initial size (at time ¢ = 1) of the k-th queue is represented by £, , the RV 4, (1) quantifies the arrivals
to the queue during the time slot [¢, # + 1) whereas B, (n) records service completion in the slot during
which the k-th queue is non-empty and is given service attention for the n-th time.

Some technical assumptions are required; they are motivated on one hand by the need to capture the
fact that the service requirements should be geometrically distributed and independent from customer to
customer, and on the other hand by the desire to validate a useful cost transformation forthcoming in
Section 3. Thus from now on the following assumption (A) is enforced:

(A) The sequences { B, (n)}Y are Bernoulli sequences with parameter p,, 1 < k < K, which are mutually
independent of each other as well as of the RV § and of the arrival sequence { A(1)}7.

The assignment of service attention in the slot [#, 7 + 1) will be based on knowledge of the initial queue
sizes, past and present arrival data over the horizon [1, 1+ 1), and past control values and service
completion data over the horizon [1, ¢). Here, an admissible policy m is any sequence { 7, }¥ of mappings =,
from N X N x({1,..., K} x{0,1}* x N¥)"Tinto {1,..., K}, with the convention that the domain of
definition of o, is simply N* x NX. The collection of all such policies is denoted by £ in the sequel.

For every policy 7 in & one recursively generates four sequences { X"(¢)}7, (U™(¢)}7, { N"(¢)}T and
{ B7(1)}T of RV’s taking values in N%, {1,..., K}, N¥ and {0,1}¥ respectively. The RV X7(r) represents
the number of customers present in the k-th queue at the end of the horizon [1, #), Nj(¢) counts the
number of slots over this same horizon during which the k-th queue was non-empty and received service
attention, while BJ/(7) encodes the completion of service requirement in the slot [#, r + 1). To initialize the
recursion, define X"(1):=§ and U7(1):=m[§, A(1)], and finally for 1<k <K, set N7(1):=0 and
B (1)=1[§,]8[k, U"(1)] B, (N;7(1) + 1). Here the expression 1[] is defined for all #n in N to be 1[n]= 0 for
n=20and 1[n]=1 for n# 0, and 8],] stands for the standard Kronecker symbol. For r=1,2,... set

X7(t+1)=X7(t)+ A (¢)—8[k, U™(¢)] Bf (1), 1<k<K, (2.1)

U(t+1):=m,,[£ AQ1); U”(s.), B™(s), A(s+1),1<s<1], (2.2)
and finally for 1 < k <K,

Bi(t+1)=1[X7(¢t+ 1)]8[k, U (t+)] B.(N7 (¢t +1) +1), (2.3)

N7(t+1):=N7(t) +1[x7(¢)] 8k, U™(1)]. (2.4)

An admissible policy 7 in £ (or equivalently the corresponding control sequence {U7(¢)}7) is idling at
time t if one can find k and /, 1 <k # /< K, such that for some w in £, X7(t, w)>0, X/(t, w)=0 but
U™(t, w)=1I. An admissible policy = in £ which is not idling at any time is called a non-idling or work
conserving policy; the collection of all such policies is denoted by A",

174

Volume 6, Number 3 SYSTEMS & CONTROL LETTERS August 1985
3. The optimization problems

A simple measure of performance is associated with the operation of this queueing system by imposing a
cost per slot proportional to queue lengths. To that end, a set of K non-negative constants ¢,, 1 < k < K, is

introduced and held fixed throughout the discussion. For every B in (0, 1), the B-discounted expected cost
Jg(m) over the infinite horizon associated with an admissible policy 7 in & is defined by

,B(,,)zE[iB,

)y cka”(t)”, (3.1)

k=1

with { X7(¢)}7 generated by the dynamics (2.1)-(2.4) under the action of =. This note is devoted to
studying the problems (Fy) and (Ny) of minimizing Jy(m) over the classes P and N of admissible policies,
respectively.

As in [1], it will be useful to transform the cost function (3.1) by injecting the queue size dynamics (2.1)
into it. Anticipating the result, for every 8 in (0, 1) and every policy 7 in £, one defines the quantity jﬁ(w)
as

JB (m)=E

i [Zﬂkckl[‘x:(t)]s[k’ Um(1)] } (32)

k=1

A simple relationship exists between the two cost functions:

Proposition 3.1. Under assumption (A), for every B in (0, 1) and every policy w in P, the relation

iﬁl[E e, Ay (1)

t=1 =

K

Z bk

k=1

(1= B)Jp(7)=BE +BE

}-—BJB(#) (3.3)
holds true.

A few remarks are now in order at this stage of the discussion.

It is easy to see that the problems (P;) and (Ny) are equivalent to the problems (133) and (NB) of
maximizing (3.2) over # and A4~ respectively; this cost function (3.2) together with the dynamics
(2.1)-(2.4) naturally defines (i’ﬁ) and (NB) as arm-acquiring bandit problems of the type described in [5]
and the results therein could thus be applied. However, the simple structure of the problem at hand allows
for a simpler and more direct treatment which is presented in the next two sections. The elementary
optimality argument given in [5, Theorem 2.1] for the basic bandit problem is adapted to accomodate the
arrivals of new customers; the concepts of superprocesses and machine domination [5, Section 3], [6] need
not be used for this very special situation.

In addition to providing insight into the structure of the problem [1], the cost transformation stated in
Proposition 3.1 naturally singles out the very simple pc-rule as a candidate for optimality. The pc-rule is
the policy #* that gives service attention to the non-empty queue with the largest value for the products
piCrr 1 <k < K, or equivalently, with the largest expected cost decrease per slot. For ease of presentation,
one can assume without loss of generality that the queues are labelled so that

PkCx S Pg-1Ck—1 S 77 S MpCy S0y (3.4)

In that event, the pc-rule is the policy #* that selects the queue with the smallest index among all
non-empty queues.

The special and simpler case K = 2 is discussed separately in the next section. This is done so as to better
illustrate the basic ideas which in the general case may be masked by notational and technical difficulties.
At any rate, the key idea in both cases can be loosely discribed as follows: Start with a non-idling policy =
and a possibly random time o. As in [5, Theorem 2.1], one seeks to construct a non-idling policy #(o) and

175

Volume 6, Number 3 SYSTEMS & CONTROL LETTERS August 1985

another random time 77(¢) with the property that the policy 7#(o): (i) agrees with the policy 7 on [1, o),
(i1) behaves like the pc-rule 7* on [0, 77(¢)) with o + 1 < 77(¢) and (iii) improves upon the policy 7 in the
sense that fﬁ(fr) < fﬁ('ﬁ(a)).

For future reference one now introduces the sequence {77(n)}¥ of NX-valued RV’s associated with a
policy 7 in 2: for 1 <k < K, the RV T(n) represents the left boundary of the slot during which the k-th
queue is non-empty and is given service attention for the n-th time under the action of 7. It is worth
noticing that for any non-idling policy = in A", the cost (3.1) can now be expressed in the form

)y l“kck[i BT[(H)}]' (3.5)

k=1 n=1

jﬁ('n) =F

In the sequel, the time sequences that correspond to the policies = and #(o) will be denoted simply by
{T(n)}7T and {T(n)}7, respectively, for ease of notation.

4. The case K =2

The flow of information that corresponds to an admissible policy 7 in £ is described by the filtration
(#7, t=1,2,...) which is recursively defined by

F=F"Ve{U™(t), B (1), A(t+1)}, t=12,..., (4.1)

with #":=a{§, A(1)}. The admissibility of = is easily seen to be equivalent to the %, "-measurability of
the RV U"(¢) forall t=1,2,... .

To study the case K = 2, start with a non-idling policy 7 in A" and an %,"-stopping time o, and define
the % "-measurable set 47(a) to be A"(o):=[X](o)> 0]. An auxiliary policy 7*(o) is obtained by first
following 7 on the horizon [1, 6) and then switching to the pc-rule from time ¢ onward. The N-valued
RV’s £"(0) and y"(o) are defined now as

on A7(a),

on 2\ A4"(a), (4.2)

e”(o):=inf{t>O: Xl”*“’)(o+t)=0}, y"(o)=={§ (o)
and obviously 1 < y"(o). Finally, define the RV »"(a) to be the total number of slots it will take under the
action of 7 for the first queue to be given service attention exactly y"(¢) times on the horizon [6, + o0).

To define #(o), generate the following actions: First use the policy # on the horizon [1, ¢) and then

(i) on the set 2\ A"(o), keep on using = from time o onward; observe that #(o) is non-idling and
behaves like the pc-rule on [0, 6 + y7(0)), owing to (4.2) and to the fact that 7 itself is non-idling,

(11) on the set A7(o0),

(a) use the pe-rule on [6, 0 + ¥7(0)) to give service attention to the first queue,
(b) give service attention to the second queue on [6 + y7(0), 0 + »7(0)),
(c) generate the same actions as the policy 7 from time o + »"(¢) onward.

Owing to the special structure of the dynamics (2.1)-(2.4), it follows that #(¢) is an admissible policy
and thus in 4" since non-idling. Moreover, under both policies # and #(o), each queue is given service
attention during the exact same number of slots over the horizon [0, 6 + »"(0)). Using the convention
adopted in Section 3, one first observes that

>Ty(n)=[o—1]+[n—N7(o)] on A7(e)if N](c) <n<N7(c)+7"(o),
Tl(n) _T . (43)
=T,(n) otherwise,
while upon setting 77(o):= 06 + y"(0), one concludes that
Tz(n){ < 7:“2(n):= [T"(o) -1] +[n—N2”(o)] on A”(Ao) if NJ(e)<n< Ny (o+v"(a)), (4.4)
=T,(n) otherwise.

176

Volume 6, Number 3 SYSTEMS & CONTROL LETTERS August 1985

It is easy to see that y"(o) is an %,"("-stopping time and therefore that 77(o) is an %, ?)-stopping time,
while from (4.3) and (4.4) one concludes that

2 o : 2 o

I WILCED Wb W) (45)
k=1n=1 k=1n=1 .

Invoking (4.4) again, one readily obtains the inequality

fee] [e o]

Z B?z(")_ Z BTz(")= Z [Biz(")_BTZ(”)] <0 (46)

n=1 n=1 Ni(e)<n<Nj(o+v"(0))

and its immediate corrolary

o0 oo [o o] 0

[T Z BTZ(")_ Z BTz(n):l <P«2cz[Z BTz(")_ Z Brz(")], (4_7)
n=1 n=1 n=1 n=1

where the passage from (4.6) to (4.7) is justified by (3.4). Combining (4.5) and (4.7) with (3.5), one finally

gets that

2 <]
Jp(7(0)) —Jp(7) > ulclE[2 [2 BT~ BT*(")” =0, (4.8)
k=1ln=1
1.e. the policy # (o) does better than =!
The discussion that leads to (4.8) can now be summarized as follows:

Theorem 4.1. For every non-idling policy « in A" and every % "-stopping time o, there always exists a
non-idling policy (o) that agrees with the policy m on [1, o), behaves like the pc-rule m* on [0, 77(0)) where
17(0) is an F,7-stopping time with ¢ + 1 < 7"(0), and improves upon the policy .

The following result is now straightforward by a simple induction argument:

Theorem 4.2. For every B in (0,1), the uc-rule w* solves the two-competing queue problem (NB) as it
maximizes the cost (3.4) over the class A of all non-idling policies.

Leaving the details of the proof to the interested reader, one now moves on to the general case in the
next section, where the main optimality results of this work are stated and derived.

5. The general case

The argument given in the previous section for K = 2 can be adapted to the general case. However, some
care should be exercised in the forthcoming discussion as the constructed policy #(o) will turn out in
general not to be admissible in 4" and the line of argumentation thus seemingly breaks down. Fortunately,
the very special structure of the problem will help remedy to this difficulty by introducing an enlarged
collection of ‘policies’: an assignment « is any sequence {=,}7 of mappings =, from N* x N¥Xx
{1,.., K} x {01} x N¥)y 1 x ({0,1}*)* into {1,...,K}, with the convention that the domain of
definition of =, is simply N* x NX x ({0,1}%)*. The collection of all such assignments is denoted by £,
in the sequel. The notion of idling assignment parallels the one of idling policy given in Section 2 and the
collection of all non-idling assignments is denoted by 4. For every assignment 7 in £, , one can
generate the exact same quantities that were generated in previous sections for an admissible policy in 2,
the only difference lies now in the fact that the control sequence {U"(¢)}7 is given by

U(t+1)=m_,[& 4(1); U™(s), B™(s), A(s+1),1<s<1t; B(r),1<r] (5.1)

177

Volume 6, Number 3 SYSTEMS & CONTROL LETTERS August 1985

for r=12,... with U"(1):=m[& A(1); B(r),1<r]. In other words, at each moment, the server has
knowledge of all possible past, present and future service completion data! Obviously, the inclusions
PcC P, and A'C A, must hold true.

The discussion can now proceed. Consider a non-idling assignment 7 in A,

¢ and an arbitrary
N-valued RV o, and define the {0,1,..., K }-valued RV k"(0) as

k(o) =

{mm{k 1<k<Kand X;(0)>0} if this set is non-empty, (5.2)

otherwise.

Now, denote by 7*(o) the auxiliary assignment in .4, obtained by first following the assignment = on
the horizon [1, o) and then switching to the pc-rule #* from time o onward. The N-valued RV’s £"(o),
a,(0),1 <k <K, and a"(o) are then defined as follows:

(5.3)

o, (0)=inf{r>0: 4,(c+1)>0}, a(o)==l+min{ak(o),1<k<k"(o)}. (5.4)

(o) = {inf{t;O: Xz (a+1)=0) if0<k™(o),

otherwise,

In all cases one adopts the usual convention that the RV takes on the value oo when the defining set is
empty. The RV y7(¢) is now introduced as y"(o):= min{e"(o), a”(0)}. Obviously y"(6)>1 and a
moment of reflection should convince the reader that when the pc-rule operates over the horizon
fo, o + y"(0)), service attention is constantly given out to the k"(o)-th queue, provided k" (o) > 0. On the
set [k™(o) > 0], one concludes that under both policies 7= and 7*(0),

X (o+t)=X7"(o+1)=0 (5.5)

for 1 <k <k"(o) and 0 <t <vy"(0); since 7 is a non-idling assignment, it follows from the definition of
Y"(o) that on the horizon [g, o + Y7(0)), the k"(0)-th queue is never empty and therefore k"(o) < U™(o + 1)
for 0 <t <vy7(o) by virtue of (5.5).

Define the RV »7(¢) to be the rotal number of slots it will take under assignment « for the k”(o)-th
queue to be given service attention exactly y”(o) times on the horizon [0, +), provided k"(o)> 0;
otherwise set »"(0)= 1. To define #(o) generate the following actions: First use the assignment « on the
horizon [1, o) and then

(i) if k"(a)= 0, keep on using the assignment # from time o onward,

(i) if £k"(a)> 0,

(a) on the horizon [0, 6 + Y"(0)), use the pc-rule to give service attention to the k"(o)-th queue,

(b) on the horizon [0 + Y7(6), 0 + »7(6)), give service attention to the queues with label 1 < k < k(o)
in the same slots as if the assignment « were used from time ¢ onward and give service attention to the
queues with label k"(o) <k < K in the remaining slots of the horizon [o + Y"(5), ¢ + »"(5)) but in the
same order as if the assignment 7 were used from time o onward,

(c) on the horizon [o + »"(6), + 0), generate the same actions as the assignment 7.

Owing to the special structure of the system dynamics and to the definition (5.1) of assignment, it
follows that 7 (o) is a non-idling assignment in A4, for = is an assignment in 4 ,. It should be pointed
out that even if 7 were an admissible policy in 4", the assignment #(a) would not be in A" in general,;
this follows from the fact that on the horizon [6 + Y"(o), 6 + »"(0)), the assignment #(o) gives service
attention to the queues with label 1 < k < k(o) in the same slots as if the assignment 7 were used from
time o onward.

Under both assignments 7 and (o), each queue is given service attention during the exact same
number of slots over the horizon [6, 0 + »"(0)). Using the convention adopted in Section 3, one observes
the following facts:

For1<k<k™o),

T.(n)=T.(n), n=12,.... (5.6)

178

Volume 6, Number 3 SYSTEMS & CONTROL LETTERS August 1985
For k=k"(o),

<T,(n) ontheset[k™(0)>0]if N7(o)<n<N/(o)+y"(0),
=T,(n) otherwise.

7;(n>{ (5.7)

For k"(6)<k <K

~k("){ >T,(n) ontheset [k™(0)>0]if N7(o)<n<N7(o+r"(0)), (58)

=T,(n) otherwise.

Combining (3.5) and (5.6), one readily sees that

Z 8k, k(o)) }:u,c,z [g7 — gTum] | (5.9)

k=1 n=1

Jg(7(0)) - JB 7)=E

Upon inspection, it follows from (5.8) that for 1 <k </< K,
o0
8[k, k()] X [T~ pT] <0, (5.10)
n=1
and subsequently by making use of (3.4) one concludes that

8[k, k™(o)] Z u,c,z [87w — BTm] > 8k, k™(0)] picy Z Z [BTm — gTim]. (5.11)

I=k+1 n=1 I=k+1 n=1

Substituting (5.11) into (5.9) one immediately concludes that

Jo(#(0)) —Jp(m) > Z 8k, k(o)ukckz 5 [g7 - gren] | (5.12)

I=k n=1

But one verifies by the very definition of #(o) that for 1 <k < K,

Sk k()] T Y [T - pTim] =0 (5.13)

I=k n=1

and the conclusion than jB(w) < fB('fr(o)) follows from (5.12).
The discussion is summarized by the following proposition, where 77(o) is to be identified with
o+ vy (o)

Proposition 5.1. For every non-idling assignment © in N, and every N-valued RV o, there always exlsts a
non-idling assignment (o) in A, that agrees with the assignment « on [1, 6), behaves like the p.c-rule «

ext

on [0, T7(0)), where 17(0) is an N-valued RV with o +1 < 77(6), and improves upon the assignment .

Proposition 5.1 constitutes the key step for showing the optimality of the pc-rule. Indeed, start with an
arbitrary policy # in A" and recursively generate via Proposition 5.1 a sequence {0, }7 of N-valued RV’s
and a sequence { 7" }7 of assignments in #,, as follows: Set 0, =1 and 7V =7 and forall n=1,2,...,

7" D=7 (g), 0,1 =7"""0,). (5.14)
Now, Jy(7)<Jy(7"*V) and 7™ behaves like the pc-rule 7* on the horizon [1, ¢,) with lim 0, = co.
The following result is now straightforward:

Theorem 5.2. For every B in (0, 1) the pc-rule w* solves the problem (N}g) as it maximizes the cost (3.4) over
the class A" of all non-idling policies.

179

Volume 6, Number 3 SYSTEMS & CONTROL LETTERS August 1985

It is worth observing here that although for most 7, the assignment 7" is not in 4", the ‘limit’ of the
7(")’s is the pc-rule 7* which of course is in A" and the conclusion of Theorem 5.2 follows. Finally, one
can now show that idling does not pay:

Theorem 5.3. For every B in (0, 1), the pc-rule m* solves problem (Py) as it maximizes the cost (3.1) over the
class P of all admissible policies.

Proof. The basic idea of the proof is to embed the problem of K competing queues into one for K + 1
competing queues with the following special structure:

(i) The costs for the K first queues are still ¢,, 1 <k <K, but now ¢y, ; =0.

(i) The (K + 1)-st queue is initially non-empty and at least one new customer arrives to it in each time
slot; for sake of concreteness take £, ,; =1 and A, ,(t)=1 for all t=1,... . As a consequence, the
(K + 1)-st queue never becomes empty under the action of any policy.

To complete the embedding, any admissible policy # for the original problem is put in correspondence
with an admissible policy 7(K + 1) for the K + 1 competing queue problem as follows: #(K + 1) takes the
same actions as = when « does not idle but gives service attention to the (K + 1)-st queue when 7 idles or
when all X first queues are empty. Since idling incurs no reward and ¢, , =0, it is easy to see that the
costs for operating under 7 (in the K competing queue system) and under #(K+1) (in the K+1
competing queue system) are the same. Note that if #* is the pc-rule for the original problem, then
7*(K + 1) is exactly the pc-rule for the K + 1 competing queue system by virtue of (i) and (ii). Hence,
invoking Theorem 5.2, which is valid for systems with an arbitrary number of competing queues, one
concludes that the pc-rule maximizes the cost (3.2) over the class of a// admissible policies!

Combining Proposition 3.1 and Theorems 5.2 and 5.3, one obtains the main result of this note:
Theorem 5.4. Under assumption (A), the pc-rule m* solves problems (Fg) and (Ng) for every B in (0, 1).

The simplicity, and yet generality, of these results is quite remarkable and somewhat surprising in the
light of works by of Harrison [3] and others for the continuous-time dynamic scheduling problem. This
may probably be traced back to the discrete nature of time, the geometric assumption on the service times
and to the fact that the service discipline is pre-emptive resume. The reader is also referred to the paper of
Meilijson and Yechiali [4] for a discussion of the optimality of the pc-rule in the context of G|G|1
queueing systems with arbitrary arrival streams.

Extensions of Theorems 5.2 and 5.3 can be given for general discrete-time Jacksonian networks without
feedback where at each node service requirements are geometric and independent from customer to
customer.

References

[1] J.S. Baras, A.J. Dorsey and A.M. Makowski, Two competing queues with linear costs: the pe-rule is often optimal, J. Appl.
Probab., submitted (1983)

[2] C. Buyukkoc, P. Varaiya and J. Walrand, the cp rule revisited, J. Appl. Probab., submitted (1983).

[3] J.M. Harrison, Dynamic scheduling of a multiclass queue: discount optimality, Oper. Res. 23 (1975) 270-282.

{4] 1. Meilijson and U. Yechiali, On optimal right-of-way policies at a single-server station when insertion of idle times is permitted,
Stochast. Proc. Appl. 6(1) (1977) 25-32.

[5] P. Varaiya, J. Walrand and C. Buyukkoc, Extensions of the multi-armed bandit problem, IEEE Trans. Automat. Control.,
submitted (1983).

[6] P. Whittle, Multi-armed bandits and the Gittins index, J. Roy. Statist. Soc. 42 (1980) 143-149.

180

S

