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Let x(t) be a diffusion satisfying the stochastic differential equation dx(t)=f(x(t))dt + db(z),
where f'(x)+ f3(x)=ax?+bx+c, a=0. V. Bene§ gave an explicit formula for the conditional
density of x(¢) given y(s), 0<s<t, where y(s)= f,x(s)ds+ w(t), when w(-) is a Brownian process
independent of x(-). This result is extended and then applied to derive recursive filtering
equations for estimating conditional moments E{x"(1)})(s), 0<s<t}, for estimating
polynomial functionals of x(+), and for smoothing,

1. INTRODUCTION

Let f(x) be a real-valued function defined on all of R and satisfying the
Riccati equation

f'(x)+f2(x)=ax*+bx+c. (1.1)

It is assumed that f has no singularities. Note that this implies a=0, for
otherwise f explodes at some finite x. This paper considers the filtering
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problem
dx(t)=£ (x(t))dt + db(t)
x(0)=xeR (1.2)
dy(t) = x(t)dt + dw(t) (1.3)

in which b(-) and w(:) are independent Wiener processes, x(-) is the
signal, and y(-) the observation of x(-).

For the system (1.1}H1.3), Benes [1] recently derived an explicit formula
for the conditional density of x(¢) given %7, where #).=g-algebra
generated by {)(s)|0<s<t}. This result is interesting because the class of
functions satisfying (1.1) includes nonlinear f, whereas conditional densities
for (1.2)+1.3) had been computed previously only for linear f: for examples
and an extension to the multidimensional case, see Benes [1].

Besides conditional densities one also wants to calculate filters
E{p|#!} of x()-dependent statistics ¢. Given a random process ¢(t)
we shall say that E{@(t)|#}} is finite dimensionally computable (FDC) if it
can be expressed as the output of finite dimensional system of stochastic
differential equations driven by y(-). When the signal dynamics in (1.2) are
linear, many examples of FDC estimates are known. For example,
E{x"(t)lgf‘,y} is FDC for any integer n, since the Kalman-Bucy equations
calculate E[x(t)]ﬁ 7} and the conditional variance, and higher order
moments are derived from these by virtue of the normality of the
conditional density. A more subtle class of examples consists of estimates
E{n(t)]ﬁ’{} where #(t) is any polynomial functional of x(-) in the form

t Sn—1
ne)=[... [ ¥sp..0us)x*(sy)... X*(s,)ds,...ds, 1<i<n,
0 0

in which y is a separable function and the {k;} are non-negative integers
(Marcus, Willsky [7]; Marcus, Mitter, Ocone [6]). Formulae and recursive
systems for the smoothed estimate E{x(s)[? ¥} are also well known (see [3]).

In this note, we extend the linear theory by showing that these same
statistics are FDC for the general model (1.1)~(1.3). The strategy, as in the
linear case, is to derive finite dimensional systems by using the explicit
form of the conditional density to truncate formally infinite dimensional
systems of moment equations. The material is organized as follows. In
Section 2 we calculate conditional joint densities of x() given %#}. As a
consequence, we show that the conditional law of the process
{x(s)]0<s=<t} given #} and x(t) is Gaussian. This is precisely the feature
that makes it possible to handle polynomial functionals. In Section 3, we
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prove  FDC of conditional moments, smoothers, and polynomial
functionals.

Lie algebraic techniques from geometric control theory have been
introduced recently into filtering, especially as regards finite dimensional
computability, and they have been worked out successfully for known
FDC problems in which f is linear. (For a survey of these ideas, see
Brockett [8].) The main results of this paper, in particular Proposition 3.7,
were suggested by a Lie algebraic analysis of (1.1)~(1.3). Consequently, the
full range of the Lie theory for linear drifts extends to the general case
(1.1). Since our methods here are not algebraic, we do not pursue the issue
further, but refer instead to Ocone [7] for further discussion.

2. CONDITIONAL JOINT DENSITIES

Let x(+) and y(-) be given from (1.1)«1.3), and let t=54,>5,>...>5,=0, z
=(2¢,2y,-.2,)T. The expression p(zo,t; Z(,S1,. - Zn s,,[ﬁ,y) shall denote the
joint density of (x(t), x(s;),...,x(s,) conditioned on %7, that is, for any
bounded, Borel y:R"*! +R

EQ(x(0),..., x(s)| #1} = !_ll//(Z)p(Zot;Zl,Sx;-.-;Zn,snlff)dl-

In Theorem 2.1 of this section, we employ a method of Benes [1] to
compute an explicit formula for this conditional density. From this we
then derive p(zy,s;...2, s,,,g'"{, x(t)), the conditional density of
(x(s1), ..., x(s5,)) given F? and x(t).

The results are stated in terms of an auxiliary process &(t), evolving in
R? and defined by

1

dé(t)=A(n&(nde+  |W(1)] dB(2)
0

&0)=(x,0,0)"
where

—K 00
A(t)= 0 00},
ky(t)—ib 0 0O

k=(a+1)"?
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and B(-) is a Brownian motion independent of the signal and observation
noises, b(-) and w(*).

Let
Eo=(&"(0),"(s1),- - ET(sa)"
E=(1(0,&x(s0) - Eulsa)T
Then the following conditional moments are needed:
m(t):= E{&()| 77}
R(t, s):=cov (&(1), &s)|F7)
R(®=[r;(0]1 si.523=R(&1)
M(t,s,...5,): =E{E| #))
=(m,(2), ..., m(s,))"
Po(t, 515 S, = Var(Zo|#7)
P(t,sy,...,5,):=Cov (B Eo | #?)
= E{(B— M)(Eo — E{Z,| #1))"|#1)
Q(t,51,...,5,): = Var (E|#)).

To simplify later expressions, we shall often drop the (t,sy,...5,)
dependence and write only M, Py, P and Q. In addition, let

v=(0,1,—1,0,...,0)T e R3"+1),

The random vectors Pov and Pv play an important role in Theorem 2.1
and are related by

Po=((Pov}1> (PgV)y, - - » (POU)3n+1)T'

Note that  (Pv),=(Pot)ax-»=c0v & (55— 1), Ex(0)—E3(0)] F).

It is important to observe that all these conditional moments are properly
thought of as functionals (on C[0,t]) of y(-). Indeed, these functionals are
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easily calculated by solving for every j(-)e C[0,t] the system

1
& (s)=Ay(s)Cs(s)ds + | J(s) |dB(s)
0

&(0)=(x,0,0)".

Then, if mi(t, y(-)) = E&(1), m(t)w) =m(t, y(-(w)), and similarly for R, P, etc.
As a final bit of notation, set F(z,)= & f(s)ds.

THEOREM 2.1 Let t>s;>5,>...>s,. Then

p(ZO, t;Zl’ Sl; . -;Zm Sn|ﬁ¥)

=(1/¥)exp {F(zo) + zo¥(t) + xK(zg — X) + K[:(ZO 2_ x)z_ t]}

xexp{—4(z—M+Pv, Q" (z—M + Pv))}

where ¥ =Y(t,s,,...,5,, X) is a normalizing factor.

Proof The demonstration is analogous to Benes§’ proof in [1] of the
case p(zq,t|#7), and so we shall only sketch the main steps. The
Kallianpur-Striebel formula for conditional estimation in system (1.2)+1.3)
implies that

P(Z0s b5 s 2y Sp| FD)d2,y .. . d2,

o F {jlj() l{x(s,-)edz,-} exXp i x(s)dy(s)—3 5; XZ(S)dS} (2.2)

In expression (2.2), we think of y(t) as a fixed function and of E as an
expectation against the measure p induced by (1.2) on the space of
continuous sample paths x(-). ‘cc’ here means proportional up to a
normalization factor that does not depend on z. To evaluate (2.2) we
follow Bene$ and apply a sequence of Girsanov measure transformations.
Let pp , denote the measure on C[0,¢] induced by x+ B(-). Then u<pug .
and

() =exp {j Sx(s)ax(s)— & iﬁ(x(s»ds}
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By using this to change measures in the expectation term of (2.2) and
noting, by Ito’s rule, that

J X5)dy(5)=x(03(0)~ { (s
and
F(x+ B(0) — F(x)= I £+ B(s)dB(s)— j Flx+Bs)d
we derive

p(...)dzocexp {F(zo) — F(x)+zoy:}
x E( [T Lix+Bsjedzy €XP— jy(s)dB(s %i V(x + B(s))ds) (2.6)

where V(x)=(a+ 1)x*+bx+c. To evaluate this last expectation, we treat
the quadratic part of V as arising from the Radon-Nikodym derivative of
x+ B(-) with respect to the Ornstein—-Uhlenbeck process &,(-); the linear
terms in the exponent in (2.6) can then be re-expressed in terms of £,(+)
and &;(). The result is

exp {x;c(zo—x)+x|:@%i—t]}
xE { ‘ljo 1{§l(sj)edzj} CXP_(fz(t)_és(l»W;zy}- (2.7)

Given %7, &(-) is a Gaussian process, and thus the expectation in (2.7)
may be written, up to a normalizing factor, as

RZLZ dfexp{—%@—EyEoJrPov, PSI(C—EyEo+Pov)>} eXP%@a Py

where E,Eo=E{E,|#}} and where d{ signifies that (;=2z, {4
=2z,,...,03,41=2, are held fixed and integration is over the remaining
variables. But this last expression integrates by standard Gaussian integral
formulae to a factor proportional to

exp{—3{z—M+Puv, Q" '(z—M+P))}. (2.8)

By combining (2.6)2.8), we arrive at the desired result. O
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The conditional density of the process x(-) thus consists of a Gaussian
factor multiplied by exp F(z,). Further conditioning on x(tf) will remove
exp F(z,) and leave only the normal part. Indeed, let

E(Z):(él(sl), e él(sn))T

_ rilt) Qi
ot,54,...,8,)= I: 0., sz]

Qalt, 51, 5,) = Var (B| #7)
t)— t t
PU:[:rlz() "13():|’ M= ml():l
pv(2) M(Z)

CorOLLARY 2.9 The conditional law of (x(sy),...,x(s,) given F! and
x(t) is normal with mean

M@ — PyD 4 HD)Q, (x(t) —m, (t) + Pv,)

and variance Q,, — r;ll(t)QZIQIZ'

Proof Use (2.1) to conclude that
p(zl, St3eeZp Sn’xO(t) =Z2o, 'gay)=p(20, ... Zps Sn“g;f)/p(ZOa t‘yf)

ocexp{—4(z—M+Pv,Q " '(z— M+ Pv))}

1
X €Xp {%m(zo—ml(t)+(1’v)l)2}.

But this is just the conditional density of #,...,n, given n, where
(- ---1,) 1s a normal random vector with mean M — Py and variance Q.
The result then follows from the standard formula for conditioning one
part of a normal random vector upon another. O

This corollary demonstrates how closely those diffusions defined by
(1.1)H1.2) are related to Gaussian processes. In fact, the steps above can
be repeated to calculate joint densities of the process x(-); (2.1) yields the
correct expression if y(-) is replaced by 0. Then, in the same way, it
follows that (x(s,),..., x(s,)|x(1)) is normal, that is, the process {x(s)| <s<t]
conditioned on the endpoint x(¢) is Gaussian. This conditional normality
is key to the filtering results of Section 3.
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3. FILTERING EQUATIONS

3.1 Conditional moments

~ N o .
Let x"(t): = E{x"(t)\ﬁ{}. x"(t) satisfies the equation
N

e s T Fas
dx"=[(n(n—1))/2x"" 2+ nf (x)x"~ ' 1dt + [x"* ' —xx"][dy—%dt] (3.1)

(Fujisaki, Kallianpur, Kunita [2]). To calculate < one must therefore also
find xﬁl, F(x)x""1, etc. These in turn also satisfy stochastic differential
equations that introduce yet other quantities to be estimated. Continuing
in this manner, if we begin with X, we arri\;e\ at an infinite, coupled system
of conditiona] moment equations for X, x%.L,x . (x)x, ete. We will
show that x* is FDC by deriving expressions for f)x" T and x"*! in
(3.1) as functions of )‘c,...,@ and 1. The infinite system of moment
equations therefore truncates without approximation to a finite
dimensional system that computes o Actually, FDC of the moments
could be argued on general grounds using the fact that the FDC process
w(t) (see immediately below) characterizes p(z,t|#?}). However, the
approach here leads to explicit filtering equations.

Straightforward analysis of (2.1) shows that

1
F)=
2 N(t, x)

plz.t exp {F(z) —(z—p(t))*/20(1)}

where N(t, x) is a normalizing factor, and
6=1—xK’c? a(0)=0 (3.2).
dp=[—K?cp—3boldt+ody  w0)=x (3.3)

(See Bene$ [1]) Note that (3.2) implies that 1—x%0%1)>0 V¢=0, and
hence that

a<o Yt) Viz0.

As a consequence, )/c}(t) is well-defined for any n. If >0, (1.1) implies
f(x)~a'?x as |x|> oo and thus that F(z)~(a'/*/2)z* as |z|— 0. Therefore

F(z)—(z—w?/20 ~Yal? —o V)22, |z| - o0

and so P(z,t|#?) decays as exp[ —6z2], 6=3(c" 1 —a'?)>0. If a=0, then b
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=0, ¢>0 is necessary in order that (1.1) have a solution f on R without
singularities. Then f will be bounded, and F(z) will grow at most linearly.

LEmma 34 For n=0

A A A~
(6™ —a)x" " 2=(b+2uc A)x" 1+ (c+((2n+1)—p?)o " Hx"
A\ N
+2ung” 'x" " —n(n—1)x"" 2.

Proof Integrating by parts, we have

2

= d .
N Ojodzepr(Z)E(Z exp [ —(z—p)%/20])

= [ 01D+ 212" e 1] 72)

Vs VN PN
=ax" 24+ bx"" 4 cox”.

Calculation of d?/dz*(z"exp [ —(z —u)*/20]) in the first integral leads to the
desired identity. O

PROPOSITION 3.5 Q(t) is FDC for all n.

Proof Since 07 '(t)—a>0, Lemma 3.1 implies that x’k(t), m=2 can be
expressed as a linear combination with FDC coefficients of lower order
conditional moments. Thus it suffices to prove that x(t) is FDC. For £(¢),
(3.1) becomes

di f)dt+(x = $)dy—5dt),  #(0)=x.

Now

9= oLz exp F@l exp [ —(—?20)
— —fdelz— o ' p(z, 1| #)
=—(F—po?

and

;?:[)E(b-+-2,uo_2)+c+(1 —uHo Yo l—a) L.
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Thus

dX=(u—x)o " 'dt
+[(Rb+2us ) +c+(1—pPo Yo ' —a) ' —x*)[dy—xdi]
together with (3.2)+3.3) constitutes a finite-dimensional system for

X(1). O

Remark Tt is also clear that f (xm will be FDC for any n; simply
eliminate f(x(¢)) in favor of polynomials in x(¢) by integration by parts as
in the proof above. In the same way, filters may be constructed for any
conditional estimate in the infinite set of moment equations generated by
starting with %(¢) and using (3.1).

3.2 Smoothing

PROPOSITION 3.6 Let s<t. Then

sinh ks

E{x(s)lgf',y} = [R(t) — xe ™™ + (P(t, 5)v), ] + xe ~“*—(P(t, 5)v),.

sinh kt

Proof This is immediately consequent from Corollary 2.9 once it is
noted that

sinh ks

it (0Qa, =rii () cov (&), &5(5) =

sinh xt

and

Kt

my(H)=xe .

Explicit formulae for (P(t,s)v), and (P(t,s)v), are easily found and will be
given in the next section. O

3.3 Polynomial functionalis

Let #() be any non-anticipating functional of the signal process of the
form

t Sn—1

=(})y (f) bf YS s v o SX¥U(S1) ... X (s, )dS, . . . dsy
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where k,,...k, are arbitrary, non-negative integers and y(s,...,s,) 1S a
separable function. Also let r?(t)=E{11(t)‘97 7}

ProposiTION 3.7 #(t) is FDC.

For simplicity we restrict attention to the case k; =k,=... =k,=1; the
method of proof extends easily to general choices for the k,’s. Our proof
relies on the following identity, presented here in the form that it appears
in Marcus and Willsky [7].

Lemma 3.8  Let (uy,...,u,) be a normal random vector with e;=Eu; and V;;

=cov(u;, u;). Then

E[ul m] He +Z Jiiz 13 e +Z Jid2 1314 Js ‘efm+”“

The sums are taken over all possible combinations of pairs of indices.
LemMma 39 Let s;>...>s,. Then
E{x(s2).. X(5)|#2x0} = 3 0)at,515-5)
I=
Jfor some separable functions aft,s,,...,s,), 0<j=n, depending on ().

Proof Let ,=MP —Pv\? +r }(1)Q,,(t,. .., s,)[x(t) —m,(t)+ (Pv),]

0=0,,-r11(00120,

and apply Lemma 3.8 and Corollary 2.9. Thus

E{x(sy)...x(s)|x(0), Fy =1, .. L+ Y 05 10,

jn
+35 05,0 L0+

This is an nth order polynomial in x(t) since /; is a linear function of x(¢) for
each j. Moreover, it is clear that the coefficients a; will be separable if
Py(t,s,,..s, and hence Q(t,s,,...,s,) are separable (Q is a submatrix of
P,). But

R(t,t) R(t,s)) ... R(,s,)
R(s;,t) R(s;,sy) ... R(s,5,)

PO(t7sl,---y sn)

R(s,l', ) ... R(s,, s,)
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and R(t,s)=® 4(t, S)R(s, s) =D (¢, 0)(D;'1(s, O)R(s) where @ ,(t,s) is the state
transition matrix of A(t). Thus P(t,...,s,) is indeed separable. O

Remark Upon further inspection of the terms ®,(t,s) and R(s), the
proof of this lemma demonstrates that a; may be written

At S1, .80 =2 85, 1(O0B] os1) - B a(s1) (3.10)

where each ﬂj-'k, 0<k<n is either deterministic or a non-anticipating
functional of the observation process y(-).

Proof of proposition By using Lemma 3.9

E{n(t)| 7}

Sn—

. (y)1yl(sl)...y"(s,,)E{E[x(sl)...x(sn)yyg,x(tmy,y}dsn...dsl

I
Ot

tSh-1

=ZO)%"(t)£ g WStse v SALL S1, - S)dS, .. dsy .
=

To complete the proof, it is only necessary to show that the coefficients of
X/(t) are FDC. Each coefficient is a sum of terms of the form

u,.+1(r>=ao(z)§ ...Zfaasl)...a,.<sn>dsn...ds1

which can be computed on-line by the system

1y (1) = ,(2) u;(0)=0
(1) =0ty - 1 () (1) u(0)=0
thy(1) _ oy (1) u,{0)=0
thy +1(2) = ot (1) U, +1(0)=0.

Thus u,, ,(¢) will be FDC if each «(t) is FDC. However, reasoning from
the remark after Lemma 3.9, each ofr) will be either deterministic, or a
deterministic function multiplied by one of the y(-)-dependent f; (¢) from
(3.10). Now by the proof of Lemma~3.9 these f (f) come from the y(-)-
dependent terms in [, 1<i<n, and Q. Actually, inspection reveals that (i)
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Q is independent of y(-), since it is a function of the joint covariance
Ei(8),.., & (s,); and (ii) the only y-dependence in the /; lies in Pv. Recall
from Sectlon 2, that a typical element of Pv is cov(él(s) E)—E5@1); a
simple calculation shows this equals

cov (&,(s), E,(s)— E5(s))—k " sinh ks 5) e *“g(u)du

—k 'sink ks | e *g(u)du (3.11)
0

where g(u)=xy(u)—1b. The y(-) functionals in this expression are certainly
FDC and thus the components f%,() are FDC. This completes the
proof. O

The proof of Proposition 3.7 is similar to the proof of the linear case
due to Marcus and Willsky [7] in its use of Gaussian moment identities.
Actually, because conditional Gaussianity obtains in the linear case
without first conditioning on x(t), Marcus and Willsky are able to use the
general filtering equation and a simpler moment identity than Lemma 3.8
to build a proof by induction on the order of #(¢). By “general filtering
equation” is meant the representation of Fujisaki, Kallianpur, Kunita [2]:

Sn-2

dﬁ:E{xk‘ j j x*3(s ). .. x*(s n—1)d5n—1md31'g;ty}dt
0
+ [n(e)x(t) — n(t)x(t)][d)’(f) x(t)dt]. (3.12)

In our proof, application of (3.12) is superfluous, although, when
calculating the filter in a particular example, it can be employed to
advantage. The example below will illustrate the possibilities.

Marcus, et al [6] give an alternate proof of finite dimensional
computability when f is linear by using homogeneous chaos theory and
multiple integral expansions. Such an approach might also be possible
here by first conditioning on x(t), but this is not pursued, since the
calculation would ultimately be like the one here.

Example Consider the model

dx(t) =1 (x(e))de + db(t) x(0)=x,
dn(t)=x*(t)dt n0)=0

dy(t) = x(O)dt + dw(t) $(0)=



14 D. L. OCONE, J. S. BARAS AND S. I. MARCUS

where the x{-) and y(-) equations are as in (1.1)«(1.2). We will present a
finite dimensional system for computing #(t)=E{[, x*(s)ds|#}}. This
problem was chosen in part by way of comparison to the special case
f =0 which is treated in detail in Liu and Marcus [4]. The system given
here for #(t) is, of course, one among many possibilities; our construction
was guided by the decision to use Ito equations driven by the innovations
dv(t): = dy(t) — X(t)dt.
Let

u(t)=(sinh kt)~ [ (sinh xs)*ds=(sinh k1) " '[(4k) " 'sinh kt —31].
0

Then
~
N O
di = x*dt +u(t)[ x* — x*X]dv
5 )
+2[x? — X2 [ult)(vy(t)c " sinh kt + (oy(t)—p)
1+xko
+v,(t) sinhxt — (i sinh k1)~ 'v5(6) ] dv
#(0)=0 PR K
. o
dv, =sinh kt(u—oy(t)) t 0,(0)=0
1+xo
dvy = e “[rey(t)—sb] dt 0,(0)=0
dvy = (sinh xt)?v,(t)dt v5(0)=0. D

N N\
(3.13) is not the complete system, since equations for u,a,%,x?, and x* are

also needed. However, these are easily garnered from Section 3. A brief
derivation of (3.13) follows. From (3.12)
~ A
dij=x2dt+ (nx —Ax)dv. (3.14)
However, Corollary 2.9 implies
E{xz(s)’f]zyax([)}:sz_rfll(t)Q21Q12+E2{X(S)|gty»x(t)}

=F(t,5)+r; (003, x%(1)

+2x(t)r1-11(t)Q21[m1(5)—(Pv)z_rfll([)Q21(m1(t)‘PUl)] (3.15)
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where F(t,s) combines those terms not depending on x(t). Now

r11'(t)Q,, =sinh ks/sinh kt,

and

t s
Pv,=Pv,(s)—«x !sinhks |:_f e "guydu—fe” "“g(u)du:|.
0 4]
(Recall that g(u)=xy(u)—1/2b.) Further, it can be shown

g

m;(f)‘Pﬂl(t)Zm(#—UY)(t)-

Using these identities in (3.15) it follows that

t

X —fx :g E{(x(t) = X()E{x*(s)| 7}, x(1)}| #} ds

g

= (= 20u0) + 20~ ooy — ) o

+x~ !sinh kt j£ e *g(u)du
0
A\ 15
+2(x?— fz)[(sinh k)~ [ (sinh ks)[m,(s)— Pvy(s)]ds
0

t s
—(xsinhkt)™! [(sinhks)® e~ ""g(u)duds].
(V] 0

15

N ~ pu
=(x*—x*X)u(t) +2(x* — &2)[u(t)(vz(t)x “lsinhkt+ (oy(t) — )
1+ko
+v,(t)sinh xt — (x sinh x) ! v3(t)_J (3.16)

Placing (3.16) in (3.14) one obtains the desired result.
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