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ACCURATE EVALUATION OF STOCHASTIC WIENER INTEGRALS
WITH APPLICATIONS TO SCATTERING IN RANDOM MEDIA
AND TO NONLINEAR FILTERING*

G. L. BLANKENSHIPt aND J. S. BARASTE

Abstract. In 1973 A. J. Chorin [Math. Comp., 27 (1973), pp. 1-1%] reported quadrature formulas
for the approximation of a class of Wiener path integrals by n-fold ordinary integrals with an error O(n 2.

Similar formulas are presented here for certain stochastic Wiener function space integrals in which n-fold
integral approximations result in errors O »or O(n"%'%). Stochastic Wiener integrals arise in the physics
of wave propagation in random media and in signal estimation problems in communication theory. The
present formulas provide simple, accurate computational tools for these applications, among others. This
point is illustrated by several examples in the paper.

1. Introduction. Function space integrals—Wiener integrals—arise in a number
of problems in mathematical physics including the analysis of wave scattering in random
media [2] and representations of the solutions of the “Schrodinger equation” [3], [4]

3 1 9
(1.1) gu(t,x)—iamu(t,xﬂ- Vix)u(t, x),
u(0, x)=f(x), 0=st=T, acC.

That is,
(1.2) ult, x) = ég:[exp (L— Vix(s) ds) f(x(t))]

where {x(¢), t =0} is a path of Brownian motion and 2 is the Wiener function space
integral over all paths starting at x(0)=x. The integral in (1.2) may be represented
explicitly in the following way. Let C([0, r]) be the space of real-valued continuous
functions x(s) on [0, t] with x (0) = 0, and let W be a Wiener measure on C. The integral
in (1.2) is a functional, say F(x), on C ([0, t]), and the Wiener integral is abstractly

(1.3) I=J‘ F(x) dW(x).
C
This is defined as the “‘sequential” limit [5]
. (n) " exp [—(a~—a~,1)2/2a(t~—t-,1)]
1.4) I= lim j'--J’da---daansx L1 =,
max }I,'—t,‘—ﬂ-’o R R ! ( ) jl-=-ll [2770'(ti - tj*l)] ”?
=j=n

where 0<t,<t,<--<t, =t and z,, is a polygonal function on [0, ¢] passing through
xats=0andgqg;at¢, j=1,2, -, n

Except for a few simple cases, it is impossible to evaluate Wiener integrals
explicitly. Approximation formulas amenable to numerical computations are, there-
fore, of considerable interest in applications. In 1973 A. J. Chorin [1] presented some
remarkably simple formulas for the accurate approximation of Wiener integrals. His
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results were based on the use of certain parabolas to interpolate the Wiener paths and
on the expansion of the nonlinear functional F in a Taylor series with the quadrature
formula adjusted to optimize the approximation of the first two terms. Chorin construc-
ted approximation formulas of the form

J Fx)dW(ix)= " J F,(u1, uz, "+, Un)
c n

(1.5) , , .
exp (—ui—+ —up)duy - du, +O(n ). -

In the specific case F(x)= G(j(; V[x(s)]ds) with G and V smooth Chorin obtained
[1, eq. 9]

Io= L G(Lt VIx(s)] ds) dw(x)

R I (< PR CREe - )

- exp (—ui—-- c—ul —v)duy - du,—y do +0(n )

where x;_y=t(u;+- -+ ui_l)/\/n.

Our objective here is to extend the formulas (1.5), (1.6) to stochastic Wiener
integrals. Two types of integrals are considered. Let {£(s), 0=5s =T} be a real-valued
random process on some probability space (Q, Z, P) which has continuous paths £(-, @)
almost surely, and which satisfies E£%(s)< o0, 0=s=T. With x € C([0, t]) we define

(1.7) FO(x, )= G(Lt VIx(s)éGs, ) ds)

and the stochastic Wiener integral of type 1

(1.8) IP(w)= LF“’(x, w) dW(x).

The notation emphasizes the fact that I M s an R -valued random variable on (), &, P).
Integrals of type 1 arise in scattering problems and in filtering problems; see §§ 3

and 4 below.
Now let {y(s), 0=s = T} be an Ito process generated by

dy(s)=f(s) ds +g(s) dw(s),

(1.9)
y(©0)=0, 0=s=T,

where {w(s)} is an R-valued Wiener process on ({2, %, P)and {f(s)}{g(s)} are R-valued
processes on (), #, P) which are nonanticipative with respect to {w(s)} and which have
continuous paths almost surely. With x € C [0, t], 0=t =T fixed, we define

(1.10) FPx, 0)= G(J VIx(s)] dy(s, o))
4]
and the stochastic Wiener integral of type 2

(1.11) 1(2)(w)=J F®x, w) dW(x).
C
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Integrals of type 2 arise in filtering problems; see § 4.
We shall construct approximation formulas' of the form

[P(w) = 2m)™"? j FO G,y tn @)
.

(1.12) )
cexp[(ui— - —ul)/2dus - du, +el,  j=1,2,

where the integrand FY is a simple random variable similar in form to (1.6), and the
error ef,’) is small. In the two cases we show that

(Ele.’[")"*=0(n "),

(113 (Ele@)*=0(n ** or O(n ?).

The paper is organized as follows. In § 2 we present the approximation formulas
in a series of four theorems. In §§ 3 and 4 we apply these formulas to specific problems
in scattering theory and nonlinear filtering theory, respectively. In § 5 we prove
Theorems 1 and 2, which provide the approximation formulas for type 1 integrals. In
§ 6 we establish the results for type 2 integrals. Our proofs, which are similar in form
to Chorin’s argument, differ substantially in detail. For example, in the treatment of
type 2 integrals simple Schwartz type estimates used by Chorin fail, and it is necessary
to estimate several high order moments of the random truncation error very precisely.
This portion of the argument is our main technical contribution.

The examples of scattering and nonlinear filtering problems presented exploit
the longstanding relationship between Wiener-Feynman integrals and differential
equations as established by Feynman [3] and Kac '4]; see [6], [7] for some recent results
and the survey [8, § 4] for a complete history. Stochastic function space integrals of the
types considered here have been used by Chow and others [2], [7], [9], [10] in studies
of wave propagation in random media (especially type 1 integrals) and by Kushner,
Pardoux, Davis and us [11]-[14] in studies of nonlinear filtering problems (type 2
integrals). The approximation results presented here for specific problems in these
areas are intended as illustrations of the use of the formulas rather than definitive
statements about wave propagation or filtering problems.

We have adapted Chorin’s treatment to the stochastic case because of the
particularly simple form of the finite dimensional approximations. Other possibilities
merit consideration. For instance, Cameron obtained accurate (O(n %)) approxima-
tions to Wiener integrals using a version of Simpson’s rule [15]. In treating nonlinear
filtering problems Kushner obtained recursive approximations by exploiting weak
convergence arguments based on appropriate Markov chain structures [16]. Levieux
[17], among others, has directly discretized the nonlinear stochastic PDE which occurs
in the filtering of diffusion processes. Our work should be regarded as complementing
these methods in specific applications.

2. The Approximation formulas. Our first two results are approximation for-
mulas for stochastic Wiener integrals of type 1.

THEOREM 1. Let {£(s), 0=s = T} be a real-valued random process on (Q0, ¥, P),
with right continuous paths and

(A1) sup E|&(s)P <

0=s=T

! For type 2 integrals we are only able to treat the (important) case G(-)=exp ().
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Suppose that V: R - R has derivatives up to order 4 with
t+1/n
(A2) [ vssor as=0m
t

for all t€[0, T) and any continuous f: [0, T]-> R. Then, for any fixed t€ (0, T),
'Y= ! 1% ds| dW(x).
[ L[] vestonees ds] awco

@1  =Qm) "y E,-_l(j n v(x,--1+”—L>

i=1 R V2n

2

2 2
i —ur -
-exp[ > « ]dm s di, dv) +ef,m,

where

(2.2) . _
Ei—1=J- £(s) ds, ti=l—t,
1, n

i—1
and, with expectation on the paths of ¢,
23) (Eled")*=0(n 7).

THEOREM 2. Let{£(s),0=s=T}and V: R > Rsatisfy (Al) and (A2) of Theorem
1. Let G: R - R have derivatives up to order 4 with
4
<0

(A3) E G(J F(NEr) dr)

forall 0=s =t =T and any continuous f: [0, T]-> R. Then, with x;, Z; as in Theorem 2,

"% = L G[Lt V(x(s))&(s) ds] dW (x)

(2.4) - (2#)_"/2J‘ " {G[éI V(x;41+(2—:)£m> E,._,]}

_u2_---—u2 —l)2
‘exp[ 1 2 = ] duy - du, 1 dv+ey”,
where
2.5 (Ele®P)?=0(n™?).

THEOREM 3. Let {w(s),0=s=t} be an R-valued standard Wiener process on
(Q, F, P) and let {f(s), g(s),0=s =t} be R-valued random processes nonanticipative
with respect to w which have continuous paths almost surely and second moments
uniformly bounded in s [0, t]. Let

dy(s)=f(s) ds +g(s) dw(s),

(A4)
y(0)=0, O=s=rt
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Suppose that V: R - R satisfies (A2) of Theorem 1. Then

%Y= L UO V(x(s)) dy(s)] dW(x)

@o  =em ™ an| v(war )

R

i=

_uz—---—uz —vz
. exp[ ! 5 nl ] duq -+ du,_, dv] +e3P,
where t;=it/n,i=0,1,2,---,n, and
2.7) Ayi1=y(t)—y(ti-1).
The approximation error is
(2.8) (Ele V)2 = 0(n™"?).

As stated in the Introduction, we are not yet able to produce the counterpart of
Theorem 2 for the approximation of

%= J'C G[Lt V(x(s)) dy(s)] dW (x)

when y is an Ito process and G is an arbitrary smooth function. However, by
specializing to the case G(v)=exp (v), we can obtain a useful approximation formula.
Since this case arises in the nonlinear filtering problem (see § 4), our primary application
[14], we report it here.

THEOREM 4. Let w, f, g, and V satisfy the hypotheses of Theorem 3. Then

199 - L exp UO Vix(s)) dy (s)] AW (x)

n it vt
2.9) =2m) /2 J;.- {exp I:’Z:l V(x,-_l +W>Ay;_1]}
_u2 —_— .—uz ——Uz
. exp{ - 5 n-l ] dui - du,_; dv+e?®,
where
(2.10) (Elef,22)|2)1/2= on™).

Remark. Since the measure dW is Gaussian, the restriction G = exp allows us to
exploit the characteristic function of the Gaussian and its moment generating properties
to obtain the estimate (2.10). Since the exponential matches the Gaussian so well, we
obtain a sharper estimate than one would expect from Theorem 3. When G is an
arbitrary smooth function we expect that the approximation will be O(n =3/2). after all
G(x)=x in Theorem 3 leads to this. To date we have not been able to establish this
conjecture.

3. Wave propagation in random media. The problems of wave propagation in
random or turbulent media are frequently modeled by hyperbolic systems with random
coefficients. Typical cases include acoustic or electromagnetic waves propagating in
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turbulent atmosphere, ocean, or plasma (18], [19] or light in imperfect optical fibers
[20]. Most work on these problems begins with random scattering phenomena gov-
erned by the scalar wave equation

2
(3.1) ‘;—t‘%—cz(x,w)zxu:f(t, % ),

where ¢ is the local speed of propagation characterizing the random medium, fisa
randomly distributed source, and  is the random event. Assuming time harmonic
processes (v(t, x) = e”'u(x)) or by using Laplace transforms, etc., the wave equation is
usually reduced to the random Helmholtz equation

(3.2) Au+k2ni(x, w)u = q(x, )
which must satisfy the physical radiation condition
0
(3.3) lim |x|(—”—) —iku =0.
[x|->00 alx

Here the wave number k is complex, Im k >0, and the index of refraction, n(x, w), is
inversely proportional to ¢ (x, @).

An especially simple version of this problem is the scattering of a time-harmonic
wave by a random half-space [2]. It is supposed that the wave propagates in a medium
homogeneous for x <0 and randomly inhomogeneous for x = 0. Here x=(x, 1) is
the space variable with r the transverse coordinate. The wave function u satisfies

Au+kin*(x)u=0, x>0,

(3.4) )
Au+k‘u=0, x <0,

and the requirements that u and u, be continuous at x =0 and that u be outgoing at
infinity. The refractive index is assumed to be nz(g) =1+7(x,r). For a wave
f(r) ¢** incident from the left, one seeks a solution u(x)=v(x) e™ in x>0.
Substituting this in (3.4), and neglecting the term v, in the resulting equation, leads to

o _

i 2
. _ +
(3.5a) 2k(AT k“n)v, x>0,

where Ar is the transverse Laplacian. The “initial”’ condition
(3.5b) v(0, ) =£(r)

determines the solution in the context of the approximation. The reduction of the full
wave problem (3.4) to the initial value problem (3.5) in which x behaves as a time-like
variable is called the parabolic equation approximation. It is a singular perturbation
approximation, valid for large k [21].

Evidently, (3.5) is a special case of the generalized heat equation

% =[BaA+£tx, o), >0,
(3.6)

w0, x)=f(x), xeR’

where « is a complex number with Re (@)= 0, A is the Laplacian in x€ R% and ¢ is
a random field. Other scattering phenomena (e.g., radiation from a point source in a
random medium [2, § 2]) may also be described by (3.6) (with an appropriate source
term appended).
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In a different application,2 when « is real and nonnegative, (3.6) models random
heat generation in an active conducting medium, where the randomly generated source
is proportional to the local temperature.

Formally, the solution to (3.6) is given by

(3.7) u(t,2) = £ exp [j (r, 2(7)+.9) e flz(0) + 1]

where &7 is the sequential Wiener integral

gFl=  tm [ ey
R? R4

max |7;—7;-1|>0
0=j=m
(3.8)
exp {- |YJ Yi- 1| [2a(1; —7;- l)}

Rma(r;—7i- 1)]n/2

Here F: C([0, t]; RY)->R,0<71,<---<1,=tand z,, is a polygonal function of 7 on
[0, t] passing through (y;, 7;),j=1,2,-- -, m,and z at 7=0.

Conditions for the existence of the integral in (3.8) for F deterministic and «
complex are given in Cameron’s paper [5]. If @ is real and positive, then &3 reduces
to an ordinary Wiener integral [5, Thm. 1]. If « is purely imaginary, then €5 is a
“Feynman integral”’ [5, p. 127], and the sequential formulation is essential. When the
variance a is complex with Re (2)>0 and Im « # 0, then the Wiener ‘“‘measure” in
(3.8) has infinite variation, even though the “measure” of the whole space is finite.
Therefore, no integration theory in the usual measure theoretic sense is possible for

nonreal variances.
This fact affects the scattering problem (3.6) since the generic case (3.5) has an

imaginary variance parameter and requires a (stochastic) Feynman integral for its
solution. Existence and uniqueness theorems for (3.6) when « is real and nonnegative,
are in [9]. However, as Chow points out [12], [9], the objects of interest for (3.5), (3.6)
are the moments

* Flz,,] H

I-‘l(ta E) = E[u(t’ &)]7

(3.9)
Ta(t1, t2; X1, x2) = E[u(ty, x))u(ta, x2)1,

where E is expected value with respect to the distribution of the random field &. To
date no one has established a Fubini-type theorem for exchanging the order of the
Lebesgue integral E and the sequential Wiener integral €. Since this step is important
in computing I';, i =1, 2, - - -, it is usually taken even without justification in the course
of the analysis. For example, I'; becomes

(3.10) it 0= 83| B exp ([lg(r, 2+ dr) |+ 20

and the characteristic function for £(r, x) may be used to evaluate the inner integral,
especially if £(r, x) is Gaussian.

By bringing to bear the approximation formula in Theorem 2 both before and
after the change in the order of the integrals, we can produce two types of approxima-
tions to the moments. Note that since £(¢, x) in (3.6) is not generally separable
(&(t, x) # V(x)£(t)) as assumed in Theorems 1 and 2, changes in the approximation
formulas (2.1), (2.4) are necessary. These modifications entail no particular problems.

2 We thank the anonymous referee for suggesting this application.
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Assume that the random process £(, x) satisfies

(AS) sup El¢(r, ) <o VxeRY,
0=t=T
and that each sample path of ¢ as a function of x has continuous derivatives up to
order 4 and that .
1/2

(A6) (J:Hl/n E|&jul(s, E(S))lz ds) = O(nil)

for each continuous z:[0, T]- R (This replaces (A2) in Theorems 1 and 2.) Then
the hypotheses of Chow’s existence and uniqueness criterion for (3.6) are satisfied [9,
eq. (2.10), (2.11)], and (3.7) is the solution. Using our Theorem 2 with G(x) =exp (x),
and d = 1 (for simplicity), we have

THEOREM 5. Under the hypotheses (A5), (A6), d =1, the solution u(t, x) of (3.6),
with « real and nonnegative, satisfies

u(t, x)=Qm)""? Ln [exp [él Ei_l(x +xi-1 +E§%)]

(3.11) -f(x +x,,,,+(—2:—)’1/—2)}

cexp[(~ul—- —ui i —vH/2)dur - - dug do+0(n ),

provided that f is twice continuously differentiable and

«©

(A7) | Fiy) exp (=y?) dy| <co.
Here
(3.12) E,-_l(x)=J‘lV(s,x)ds, i=1,2,-,n, r,:’;t.

To compute the moments (3.9) of u, we must evaluate expectations of the form
E(CXP [ > Ei—l(fi—l)])-
i—1

If we assume that £(1, x) is a centered Gaussian field (as in [2], [9]) which is stationary
and homogeneous, then its covariance R satisfies

(A8) R(t,x)=R(xt, +x), |t|<o, xeR"

The moment I'y in (3.10) is

1 t t

613)  Teo=glew s [ [ RE-w2)-2() drdulfz0+ 9],
0 Y0

Chorin’s method may be applied directly to (3.13); however, the double integral in

(3.13) apparently leads to an approximation error larger than O(n~?). By computing

the expectation directly from (3.11), we obtain a more accurate expansion (since

O(n %) in (3.11) already includes the expectation). Let

Xn :[X(), Xi, ", Xn_1]TERn,
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and R, (y, X) be the n x n matrix with elements rii,j=1,2, - ,n given by (again,
d =1 is assumed)
’Z()’, X)=E[E, 1y +xi-)Ej-1(y +x,-0),

(3.14) vt
y=x +W.

Finally, let e =[1,1,- -+, 11" € R". With this notation we have

[yt x)=Qm)™"? L" {exp [%STRn(x +(2—:)tm, [xo, ", xn-1]>6]

(3.15) .f(x +xn,l+@’l’—)’lﬁ)}

2 2

— 2—-.-— J—
-exp[ el 2u"4 v:ldul---du,l,ldv+0(n42).

A similar but more complex formula could be given for I'; (or any higher order
moment). Indeed, one could obtain an approximation to the characteristic functional’

(3.16) W(p) = E{exp [i{p, u)}}

of the random variable u(t, x, - ) in terms of a functional Taylor (Volterra) series (which
is absolutely convergent in the Gaussian case, among others) by expanding the
exponential function in (3.16) in a power series

(3.17) (o) = E| io%—,@, W™}

and evaluating E{p, u)". For example, if the solution space of (3.6) consists of bounded,
continuous functions on [0, T'] X R? = D which vanish as |x| > o (assume f(x)~>0 as
|x| > o), then

(3.18) =] [ utxdoitx,

where p(t, x) is a function of bounded variation on Dr (see [9, p. 395]). It follows that
(3.19)

B =([ [ )V ([ ) Amtn st 00 60 o 01,00 do (i, 6

where A, is the mth order moment of u(t, x). Using (3.19) in (3.17) results in the
functional series for W. It is evident that this series together with the approximation
(3.11) could be used to produce simple estimates accurate to O(n?) for ¥(p). Since
the pair (u, ¥) determines the process u completely, one acquires in this way a complete
approximation theory for the random solutions of (3.6) in terms of n-fold ordinary
integrals. This possibility was anticipated by Chow [9, p. 381, Remark 3].

We wish to emphasize that the approximation is rigorously established here only
for a real and nonnegative in (3.6). For a complex the formal representation of the

3 Here (p, u) is the value of the linear functional p on the solution space of (3.6) at u.
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solution of (3.6) by the path integral (3.7) is commonly accepted, although to establish
it rigorously certain steps still remain open (see [21,[9)). Thus the formal representation
of the scattered wave by (3.7) is at the same level as formal calculations widely used in
random wave propagation studies [2]. The authors share with others the understanding
that the representation (3.7) (3.8) can be rigorously established for a rather wide class
of random PDE’s like (3.6). With the approximation formula of Theorem 5 a second
difficulty arises, however: namely to rigorously establish a finite dimensional approxi-
mation to the sequential integral (3.8). This will require quite different techniques from
those presented here.

4. Nonlinear filtering of diffusion processes. We consider here two examples
which we believe to be generic to a class of nonlinear filtering problems. First, consider
the pair of scalar [to equations

dx (1) =3x(6) dt + x(¢) dw(t),
4.1) dy(t)=x(t) dt+dv(t),
x(0) = xo, y(0)=0, 0=t=T,

where w and v are independent, standard Brownian motions and x, is a positive-valued
random variable with a smooth density po independent of w and v. We call x the signal
and y the observation. The filtering problem is to determine an estimate of x(¢) given
observations of y(s), s = t; specifically, the o-algebra Y, generated by {y(s), 0=s =t}.
For the estimate one usually takes the conditional mean £(t) = El[x(t)| Y.], since this
produces the minimum mean square error.

To compute £(¢) it suffices to know the conditional density p(#, x | Y,) of x(¢) given
Y, if it exists. This satisfies a complex nonlinear stochastic partial differential equation
which is difficult to analyze or to treat numerically [11], [17]. Alternatively, one can
write

(4.2) plt, x| YJ=%
where the unnormalized conditional density ¢ satisfies

15
2 9x°
#0,x)=polx), 0=t=T,

1
d (1, x) = [ (*6)-3 %(J«b)] di +x dy(1),

(4.3)

a linear stochastic PDE discovered by Zakai [22] (for general Ito diffusion processes).”

Let L be the second order operator in (4.3). Using the density of the Markov
diffusion generated by L (that is, x(¢) in (4.1)), one can write down a stochastic function
space integral (like those of type 2 in § 2) for the solution of (4.3). However, since L
is not the Laplacian, i.e., x(¢) is not a Wiener process, this function space integral will
not be a “pure” Wiener integral (of type 2) since the underlying measure is not a Wiener
measure on C[0, T']. For this reason it is difficult to verify that the formal expression
for the function space integral makes sense’ or to evaluate it numerically.

4 Actually, R. Mortensen and, independently, T. Duncan also derived evolution equations for the
unnormalized conditional density, see [22] for remarks on this point.

® Especially since the coefficients in (4.3) are unbounded. Otherwise, the general theory of Pardoux [12]
would guarantee existence and uniqueness.
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A simple coordinate change in (4.1) remedies both problems. Let
(4.4) z()=1Inx(1)..
Then, using the Ito calculus, we have
dz(1)=dw(t),
(4.5) dy(t)=e*"" dt+dv(r),
z(0)=zo=1n xy, y(0)=0, 0=t=T.

In the new coordinates the signal z(¢) is a Wiener process which is observed through
a nonlinear processor. The Zakai equation for the unnormalized density u(t, z) of z (1)
given Y, satisfies
19 .
du(t, z) =3 Fu(t, z)dz+eult, z) dy(t),
(4.6) z
u(0, z) = qo(z) = density of z, 0=t=T.

In effect, the coordinate change transfers the complexity from the second order
operator L in (4.3) to the “‘potential” term e’y(t)in (4.6).

Since the Laplacian appears in (4.6), we may write its solution in terms of a “‘pure”
Wiener stochastic function space integral of type 2; namely,

(4.7) u(t, z)= %’{ [exp (J.O' e dy(s) —% J{ezz"’*zz ds)]qo(z(t)+z)},

0

It is not obvious that (4.7) is well defined; however, using some results of Meyer [23]
on stochastic integrals with respect to semi-martingales or the results in [24, pp.
211-226], one can show that (4.7) is finite almost surely (samples of y). Using Ito’s
formula on u(t, z), one can show that it satisfies (4.6). Also, u(¢, z) is the minimum
positive solution of (4.6); a stronger uniqueness property is not yet available (see [14]
for details).

Applying Theorem 4 to (4.7), we have

_ " t
u(t,z)=Qm) "/ZI {exp[ exp(z +xi_1+—U—->Ay,~Al
R" =1

P 2n)'"?
_% él exp (2(2 +xi~1+(75§1—/_2)>;t:|

. qo(Z +x"_1+Lt1/2)}
(2n)

2

4.8)

2 2
[—ux—' T Un-1 U
- exXp
2

]dul oo dup_ dv+0((n ),

where Ay,_1 = y(it/n)—y (i — 1)t/n).°

The approximation (4.8) is not recursive, and is thus less attractive than the
evolution equation for the conditional distribution or mean as a state estimator;
however, its high accuracy suggests the possibility of rapid implementation based on a
few terms.

$ Numerical integration formulas for Ito equations are reported in [24], [25].
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Another class of filtering problems which appears to be generic and to admit
treatment by our approximation formulas is

dx(t)=flx(t)] dt +dw(z),
(4.9) dy(t)=x(t) dt +do(t),
x(0) = x, y(0)=0, 0=r=T.

Here w, v, xo are as above and f:P - R is smooth. The nonlinear drift makes x(¢t)
non-Gaussian and complicates the problem of estimating x(t) given a{y(s), s=t}=Y.
If, however, f satisfies f +f2 = ax’+bx +c for some constants, then Bene§ [27] has
shown that the optimal least squares estimator for a transformed version of the system
is the linear, finite dimensional Kalman-Bucy filter. Several others, including Mitter
and Ocone [28] and Brockett [29], have studied this system which has some interesting
algebraic structure.

The Zakai equation for the unnormalized conditional density of x(t), given Y, is

2
du(t,x)= [% aii-f(x)ai—f’(x)]u(t, x)dt+xu(t,x) dy(t),
(4.10) * x
u(0, x) = po(x) = density of xo.

To this we apply the “‘gauge transformation” as suggested by Mitter (28],

(4.11) v(t,x)=exp<J —f(r) dr)u(t,x).
(¢}
This yields
2
dv(t, x) =% 6‘1—2 olt, x) di = V(x)o(t, x) di +xo(t, x) dy 1),

(4.12)
V(x) =3 (x)+ ()]

By adapting certain comparison theorems one can show that this equation admits a
well-defined nonnegative solution for some f’s [28].

To apply our technique, we regard the last two terms on the right in (4.12) as a
potential. The isolation of the Laplacian via (4.11) permits us to write the solution to
(4.12) as a Wiener stochastic function space integral of type 2, namely,

o(t, x) = %’{exp [L (x(s) +x) dys —% J'Ot (x(s)+x)? ds]
(4.13)

- exp Hot —V(x(s)+x) ds]po(x(t) +x)}.

From this formula it is evident that, if
(4.14) V) =3f(x)+f(x)]=ax’+bx+c

for some constants a, b, ¢ with (a + 1) =0, then we can evaluate the integral in closed
form. This is the essence of Bene§’s result [27], though his argument is very different.

Even if (4.14) does not hold, the gauge transformation (4.11) has the bene-
ficial effect of making the underlying measure in (4.13) Wiener measure. Hence,
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Theorem 4 applies and yields

ot 0)=@m ™ | exp] £ (xx10 =2s) Ay
e P L2, @n)
1 vt \*t
5 5 (v
n vt t
15 * 5o ),

vt
.po(_x +x,,v1 +_‘—(2n)1/2>}

2 2

T U1V s
> duy: - du,_1dv+0O(n™").

Ui

-exp[

Note that, if V(x) is a quadratic form and p, is normal, then the n-fold integral can be
evaluated explicitly and recursively in ¢, if desired.

The two filtering problems (4.1) and (4.9) have as a common feature the existence
of a transformation ((4.4) or (4.11), respectively) which ‘‘isolates’’ the Laplacian in the
associated evolution equation and causes the corresponding function space integral to
be a Wiener integral. This is crucial for the application of our approximation formulas
in their simplest form. In other, more complex cases,

dx(t) = f(x (1)) dt + g(x (1)) dw(2),
dy(t) = h(x(t)) dt+dv(¢),

one may be able to employ a Girsanov-Cameron-Martin transformation [24, Chapt.
7] on the probability distribution of the x-process so that with respect to the new
measure x is a Wiener process. Relative to the new measure, y is an observation in
noise of a nonlinear functional of a Wiener process. In this setting the Girsanov
transformation behaves like a gauge transformation, and creates the possibility of
applying approximation formulas like those in § 2 to the transformed system. Any such
formulas will be useful only when the transformation itself can be computed.

(4.16)

5. Proofs of Theorems 1 and 2.

5.1. Proof of Theorem 1. We use three lemmas. In each case V and {£(s), 0=
s =t} satisfy the hypotheses (A1), (A2) in Theorem 1.

LEmMMA 5.1,

1“”=L(ﬂvuunand0dw

5.1) =LQ§[qugf1anm

i —

t

1
2V | £ ds]) AW +0(n"?),

where t; = it/n, &1 = &(ti—1) and
Axi(s)=Vnu(s =t )+ bl(s —ti-)(t - )13,  t1=s=t,

tur+- - +uisa) .
X =———————, i=1,2,--+,n

Vn

(5.2)
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The b; are independent, zero-mean Gaussian random variables with unity variance.

Remark. The interpolation (5.2) for Brownian paths is due to P. Lévy [30].
Proof. For s e[ti_1, t;], x(s) = x;-1 + Ax;(s) and

j " Vi + Axi(s)]E(s) ds

ti 1
- j [V(xi-1>+ V'<x,-_1>Axi<s)+EV"(xi_l)<Axf(s))2]§<s> ds

(5.3) )
re] v s as
+ijli V™(x; +0Ax-($))(Ax»(s))4§(s) ds
24 i1 i-1 i i s

for some 6, 0= 0 = 1. Consider the last term in (5.3),

(5.4) e = J i V"(x;—1+ HAx,»(s))(Axi(s))df(s) ds.

i1

Evidently (omitting the arguments),

¢ 2
Ee? = E(I V() (Axi) e ds)
(5.5) -

LT (v Fax) BEG) d.

i—1

A

Now E¢*(s)=c for all s€[0, T], and

(5.6) sup |Ax;(s)| ;M
o1 =Ss=Y \/n
Hence,
(5.7) E(eD)=c(ul+1b:)°C - (n7) - j V()P ds
and so
(5.8) [E(e)]/*=0(n").
Consider the next to last term in (5.3),
(5.9) d={ V@) €G) ds.

Using a Fubini theorem, we have

(5.10) L d;dw = J:ti HC V"(x;1)(Bxi(s))’ dW]g(s) ds.

i—1
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Now

[ v p@xts) aw

C

= (2#)*"j V)@ nls = i)+ b nlls = i) (6= )T
(5.11) ®

2 2 2 2
—Ml‘uz—"“—lln—bx—""‘b
- exp

2
> "]dul---du,,dbl-“db,.
=0.

Hence, for any k =k, 3,5, - - odd,

(5.12) i J'C VP ) Axi(s) dW =0, k=1,3,---,

i—1

and, in particular,

(5.13) [E él jcdidW 2]”2=0.
So
(5.14) [E‘ Lé_l (e +dy) dW| Tﬂgj é, (Ee2)? dW = O(n~?).

The centering property (5.12) implies that the Wiener integral of first order (in
Ax;(s)) in (5.3) is zero. This and the estimate (5.14) give (5.1). QED
LEMMA 5.2. Let 2, = j':l_‘_l &(s) ds. Then

(5.15) I'V= él E,«-l{ L [ V(xi_1) +% V"(x,-,-l)% ’n—z(u% + b?)] dW} +0(n 2.

(Here Icu? dW is interpreted as a 2n-fold integral as in (5.11).)
Proof. The first term in the sum in (5.15) is just a change of notation in (5.1). To
derive the second, consider

(Axi(s) = uln(s —t;i )2 +bin(s — i)t — )]

(5.16)
+2ubin (s — ti_)[(s — i) (5 — )12
That is,
1"
; j VP (xio)(Axi())2E(s) ds
(5.17) . . X
:%V”(xi-l)n[u?-':-ivl+b%Ei—l+2uibiEi*1]a
where
- 4 10\ .
z,-_1=j (s~ t17¢() ds = (5 5) Biitéion,
ti—1 2 n
- ‘-' 10\~ .
(5.18) & = [(s—zi_,>(:.~~s>]§<s>ds=(5;) Syt éi,

2

ll 1 .
i-1= J:H (s —ti-)[(s — tifl)(tifs)]l/zg(s) ds = <5 ;t) Eioiteiy,

[1h
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and we claim

(5.19) (Eléia )2 +(Eléa) 2+ (Eléi ) =0 ).
To see this, we write out é;_1,
a K > 1 2
(5.20) b= Us—a0 = glh=t0 ) ds
(that is, (5.18) is a kind of midpoint rule). Now
1 V3 2
=i =g—a1=(5 )
(5.21) .
it
t,71§5§t, =—.
n
Hence,
V3 ot _
(5.22) Elé: 2;(—3 —) iJ' E&(s)ds = O(n"°).
2 n/ nl,,

The other estimates in (5.19) are similar.
The Wiener integral of the cross term in (5.17) is zero. The estimate in (5.15)
follows from the sum of the estimates in (5.19), a total of n terms. QED
It remains to reduce the 2n-fold integral in (5.15).
LEMMA 5.3.
2

" L 1. 1t
=g Eaen ™ | (Ve svise g wo)

(5.23)
cexpl(—ui—-—ut1—0")/2)duy -+ dun-, du] +0((n™?

Proof. Referring to (5.15), consider the term

J' V'(xi)(u? +b2)dW

C

(5.24) - (21r)*"j Vi) +b2)
R2r|

2 2 2
_ul_..._un_bl_....

12
- exp [ 5 b"] du, - - - db,.

Now

ﬂ*‘j V(i )(u? +b2) exp (—u? —b?) du, db,
R2

! J U V(i )l +b2)e db,] e~ du;
R R

(B v e ale
(_2_

\/_) I V'(xio)vle ™ dv.
™ “R

(5.25)
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Hence, the 2n-fold integral in (5.15) may be reduced to an n-fold integral. QED

To complete the proof of the theorem, note that the integrand in (5.23) is an
expansion of V(x,»,1+vt/~/ 2n) around x;—;. The centering property (5.12) cancels
odd powers of v, and so, the expansion in (5.23) is accurate to O(n “2), This completes
the proof of Theorem 1.

5.2. Proof of Theorem 2. Expanding G(-) in a Taylor series, we have

GUOI Vix(s)E(s) ds]

=G[§ j V(x,--1+Ax,-(s))§(s)ds]

i=1J4_,

n 1 n
(5.26) =G(q)+G'(q) .Zl Ag;+5G"(q) kZ  AaiBd
j= k=
1 " <
+gG (@) ¥ AgiAqida
jki=1
1 - (iv)
+— Y  Gjim AqiAqAqiAG,
24 ik im=1
where
q= §l g 4= Vx-1)Ei,
(5.27) Ag; = J [V(xj-1+Ax;(s)) — V;-1)]E(s) ds,

ti—1

G, = G™(q+6,0q; + 0B+ 0Aq + 0, Ag,),  0=6=1.
Our first problem is to estimate the expansion errors

1 n
e1=gG’"(q) Y Aq;AqcAqy
Lki=1

(5.28) .
2= Y GiimBqAGAQAG.
24 1 jtm=1

LEMMA 5.4. Let E(-) be expectation with respect to the distributions of {£(s),
0=s=t}. Then

(5.29) (E| Lel dW]z) " omn),

Remark. This should be compared with Chorin’s estimate [1, p. 8], which is (n 7).
Proof. We introduce the notation (following Chorin)

‘/[= V(X[), i<j’

ut
V(X,'——l‘_>, = ',
Jn g

which eliminates the jth element in the sum x; = tug+- -+ u,-)/\/n. So V! does not

(5.30) v =
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depend on u;. Also,

Vi, i<k,

il
V(x,——%), izj i<k,
n

(5.31) vk =
V(xi Lf/"t) i<j izk,
n
v(x-UTE), ek
n

and VY is defined similarly. That is, we write in the superscript the indices of those
variables ug, - - + , u, which are set equal to zero in the argument of V. Also,

(5.32) g"=3Y V282, qW=3% VIHE_, et
i=1

i=1

Using this notation, we have

Gm(q)__ Glr!(q(lkl))+Gllrl< z V(a(l) )E )

(5.33)
( Z V'(a, :i_l)(u,-ts/;) +two similar terms in uy, u,.
=j+1
Here
Xu—1, té/a
(534)  aifi=qtlatecFuwat O tunt U)oy =g,
Vn
Alternatively,
Gm(q) Gm(q(]kl))_+_[va(q(lk1))q(lkl) ]
+[two similiar terms in 1, ;]
(5.35) {[G“”( ¥ Ve =, 1>(qu,"”)q(”‘“)
63 vt et un
+{two similar terms in (uu;), (e},
where

Xi-1y jé}’ k’l
t(u1+' . -+u,~_1+0,-u,+u,+1+- . -+u,-_1)
(5.36) at = Vn

t(u1+"'+[£,'_1+0,‘u]‘+0kuk+'"+uivl) k¢]<l k<i l<1
— v » ’ =b

Jn

, J<i=kl
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etc., and
N 9 n t
(5.37) qu ==t (£ viaEEa) -
ou; ! wyug =0 i=j+1 Jn
: & n 2
(538) q(u]’ii) =—q =( Z V"( (’kll) = 1>
du;du i=max (j.k.D)+1 n’

uj g,y =0

etc. Here x\™ = al™ with 8, = 6, = 6, = 0 as appropriate. (Note that dx;—y/ou; =0 if
i=jand t/\/n1f12]+1.)
Now from Lemma 5.1, specifically the estimate (5.4)-(5.8), we have

Agi= j V(i1 + Axi(s) — V(xi)]EGs) ds

i—1

(5.39) X
- j [V () Axi(s) + 2V (xi0)(Ax () JEGs) ds +ax
where
241/2
5.40 ; = -3
o )"

To define Aq(’kl) we use the notation x'\”;, which means that u; has been set equal to
zero in the expression for x;_1, and the expression

l(x(l) lé],
(541) V’(X,'_l) =
Vi + Vi PDug/Ne+ 0™, i>],

and similarly for V". Hence, for i >,

Aq,:J” [V Axi(s) +3 V"(x i) (Axi(s))*Jé(s) ds

(5.42)

+(u]t) I [V 2)Axi(s) + 3 V" (D) Axi) Wels) ds + &, i>),
Vn

-1

where (E|{ca&idW)| H2<0(n?). The second term in (5.42) is linear in u; and is
(pointwise in u;, ux, bi, kK =i, k # j)of order n™ Lumpmg this term with &; to give a;,
we have

2, 1/2

(5.43) Agi = AqY +6, (E ) =0(n™.

j G dW
C

In a similar way we can define Aq®, Aq(’kl) etc., with the obvious change in (5.42), and

(5.44) Agi=AqY +a, a&=0n").
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Using this notation, we consider the integral

T = J G"(q)AqjAqAq dW

- [ 6"a"*aq 8080 aw
C

+J (I:Gmr(q(ikl))_ Z V( (lkl) :z .
C i=j+1 \/

(5.45) +two similar terms in ug,

] AgiAqy Aq,) aw

[ {lera 5L v viEEaE,.,

i=j+1 p=k+1

+G”"(q(jkl)) Z V"( (]kl))E- 1)

i=max (k,j)+1

2
Ui
~’—:—y] Aq;AGy Aq,} AW

+ two similar terms in (u;u;), (uxu;)
+0(n 7).

The first term on the right of (5.45) is zero by the centering property (5.12). The
second term may be written as

Tz:J {[G:I/r(q(ikl)) . z V(x(]kl))_l ) Ll]t]
C i=j+1 n
- (Aq" +&)(8q" + @)} + )| aw,
where (Elfca dW|)?=0(n"?) in each case. Then, using the same parenthetical
structure as in (5.46), we have

(5.46)

T,=Q2m)" j 16" —=1aq" " —)(—) (=)

R2n

2 2 2 2
— — e —U,— _..._b”
-exp( “i u2 bi )dul---db,1

(k1)
) (k) —b7—- ._bi
=(2m) j db, - - db, exp(———)
R 2
(k)

(Gikl) —uz—---—ui
. {(2#)_("'3)J duy - du, exp (—1———>
Rn-3 2

{[ema@™( 5 viszo)]

(5.47) =i+l
—u2 b (ki)
[\/—(211-) J exp(—T—)u,Aq du,db]
n R?
2 42 ‘
- [(%)“ j exp (ﬁz—b—“)Aqy” duy dbk]
RZ

2 2

—u-p ]
: [(277)‘1 J exp (—L‘—’?——’)Aq?‘” duy db,] }} A, @ ).
R3
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GkI)
Here the notation du, - - - du,, means that the uj, us, u; terms are omitted from the
expression. Also, A(a;, dx, &) contains products of the @’s. Evidently, A(a;, @, a;) is
smaller than O(n~>'?). Using (5.38), (5.39), we have
—ui —bi

me=2m)"" J _eXp (———2——>Aq§<ﬂ) duy dby

R

2 2 t
_ —ur—>b ke . 1 )
~@m)! j exp (——2—5)H (VA ls) +5 V()
R? te—1

K —

 (Bxe(s))E(s) ds +ak] duy dby

=0+ J- i V' (x ) (Ax3(5)E(s) ds + O(n ™)),

fe—1 2
where
Ax*(s) = n[d(s — te-1)" + (s = i)t = 8)]
(5.49)
t
=—(5 —tk-1).
n
Now
2
—
(5.50) sup Ax“(s)=—

n b
and it follows that
(5.51) (Em3)"?=0(n H)+0(n™)=0n">.

The O(rn>) term is the integral of &, and O(n?) follows from (5.50). By a similar
argument
2, 1/2

(5.52) (E Lom J exp (——“f—_ﬁ) u;Aq\" du; db; ) =0(n*"?).
Vn R? 2
Combining these estimates in (5.47), we have
(5.53) (ET2)*=K - O(n HO(n>»)0(n *)O(n %)+ (EA?'.
Using similar arguments and the estimate (5.44) for a, we can show that
(5.54) (EA™(a, a, )2 = O(n %),
and so that
(5.55) (ET3)"*=0(n""").
A similar analysis of the third integral (7%) in (5.45) yields the bound
(5.56) (ET3)*=0(n™
and the error estimate in (5.45). Combining these results, we see that
(5.57) (Ell1]2)?=0(n "),
and so, that
n 2, 1/2
(5.58) Eley?=(E| 3 1] ) =007,

as desired. QED
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LEMMA 5.5. The term e, in (5.28) satisfies
2, 1/2

(5.59) (E Lez dW ) —0(n™).
Proof. From (5.28),
(5.60a) J e2dW= 3 Ium
C LkLm=1
(5.60b) Litm =J GjimAqAq AqiAG,, dW.

Now

1/16 1/16

--~(JEAq3,,“6dW> ,

where L =[], E(Gf-f:},),. )* dW1"*, and we assume it to be bounded. With probability one,

(5.61) (ElI,»k,mlz)méL( J EAq}édW>
C

(5.62) Ag; = J i [V'(xj-1)Ax;(s) +%V”(x,-_1 + OAx;(s))(Ax,(s))z]g(s) ds
and so, defining v;(s) = [V’(x,,1)+%V”(x,;1 + 0Ax;(s))Ax;(s)]Ax;(s), we have
2 8 & 8
E(qu)mé[‘[ v,z(s) ds] EU- §2(s)ds]

(5.63) '; 8T e
é[J: 1 v,?(s) ds] (;) J;,-: E§]6(s)ds.
Now .

sup |v;(s)>=c(x;_1, u;, b;)/n and E¢'(s)<co

for every 5 €[0, t]. Hence, for some K,

(5.64) E(Ag)' *=Kn '*n"®
and so,

1/16
(5.65) (J' EAq!® dW) <Kn"¥2

It follows that
(5.66) (ElLim>)*=Kn™°.
There are n* such terms in (5.60a); the estimate (5.59) follows. QED

Remark. If we attempt to use the simple estimates like (5.61)-(5.63) in the
estimate of ¢; in Lemma 5.4, we would have

1/2
(Elu)"?= U EAq; AqiAq? dW]

1/16 1/16

1/16
(5.67) gK(j EAq'® dW) (J' EAql® dW) (J‘ EAql® dw)

=0(n"""?.
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Since there are n° such terms in the expression for e;, we would have (Elf e\ dw)'? =
O(n*'%). The elaborate argument used in the proof of Lemma 5.4 is (apparently)
necessary to improve this estimate and to obtain the sharp estimate in Theorem 2.

Continuing the proof of Theorem 2, we can use an argument similar to that in
Lemma 5.4 to prove

2, 1/2

) =0(n).

(5.68) (E

j G'(q) ¥ AqiAqrdW)
C Lk=1

(Once again simple estimates like (5.63) are inadequate for this purpose.)
At this point we have shown that

T

1“2>=L{GUO V(x(s))g(s)ds]} AW

(5.69) - L { G(é1 q,») +a/( il q,-) él qu} AW +0(n"?)

j=

Ar+omn .

Using As; = s — #;_, and an obvious shorthand, we have

r=em | {6(E v oza) o vie o)
Y j [V(x;-1 +uNnAs; +bNn(As;(t/n—Bs)') = V(x;1)Ié(s) ds
j=1445_4
— 2 —_— . e 2 — 2 —_— 8 8 - 2
(5.70) . exp[ X unz i b"]}dul -+ db,

@[ (G exp () dus - b,

n

o[ forr £ [ e s e ) dun - a,

j=1 i1

AL+
Since V(x;_1),i=1,2,---,n is independent of u, = v, and
—p—.. '—bi
(5.71) j exp [—‘—2———] dby - - db, =(2m)"?,
-

the 2n-fold integral I, reduces to

IL=Qm) " J i {6(1:1 V(xi—l)Ei—l)
(5.72)

2

— 2_.'--— —_— 2
~exp[ 4 2”"_1 ? ]}dul o du, 1 do.
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Toreduce I,, we regarditasasum I, = 27:1 L,; where (using an obvious shorthand)

n=0m" |

R2n

o5, v o2

: j | V(1 Ax ()~ Vi 0)(s) ds)
2
—u1

— e —b2
- exp [———2-4] du, - - db,

n N 1 n .
(5.73) =(2#)_"j {[G( T v, EH)+5G”(Z vﬁf)la_l)
R2" i i=1

i=1
Y VIO i+ O(n_z)]
i>j
, [V,’--lt(“’ +b) 1 Jul +b +2ub,

il VORIt BRI BNk nt Wi Y Ry ) =P ]}
wWn 2 7 4n !

2
—uy+-

— b
- exp [———2——] duy -+ db,

The first estimate on the right is from Taylor’s formula; the second is from (5.18) (and
its modification for the first order integrals | As;£(s) ds, [ (8s;(t; —5))*£(s) ds). We omit
these terms in subsequent expressions. Substituting u; = v, and using superscript 4
to indicate omission of the jth component, we have

)
! 2

n o w D = Ui
L = (2m) { G ( Yy v, :m) exp|———5——
- R 2

: 24524+ )
. [I {(V],*I t(l) +_b])+l V’]"-ltzv b! 2vbl)
n+1 2Vn 2 4n

R

2 2 2 i
_ —_ —b _..._bn (¥2)
-[:,»4 exp[ v 12 ]dbl - -db, dv}]}dul -+ du,

(5.74)
_ 1 n : n vt
+(2m) J {[—G”( Vi B ) Vi —_]
Rr2n (L2 i=1 ' ' E,’ 1\/n

+b; 1 24+ b7 +20b;
-[V}_ltv i1 ,'-'_1tzv b; 2Ub,]
2Vn 2 4n
o)
— [—u%—“-—uﬁ-bf—---—bi—vz}}
=i-1 €Xp )

()
duy - dundb, - dbpdv +O0(n?)

46, +8,;,+0(n7).
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Note that fv*e "> dv=0when k=1, 3,5, - - (0dd), and that

(—v2-b?)

]

(5.75) I (W +bH)° " db]_:(zﬂ)uzjvze-vz/z "
R

It follows that

—-n ’ < —_ 1 " U2
su=em [ {o(5 vinzo)[vig]

(§2)

B )
"B exp[ 12 ]} duy + + - du, dv,

(5.76)

and that

1 n ‘
sy=@n [ {[S6( % vins ) 3 vitia ]
R" 2 i=1 i>j \/n
(5.77)

[§2 2

2_ 2 _ W _ 0
, t ] v Ui U,
-[Vj,lﬁ]:, 10 exp[ 5 ]}dul---du,,dv.

Therefore

L= ‘21 (S1;+82)
iz

[
. *o°
+[G"(}: Vi B x)(Z viii=,. 1) Vi Ej—l])
P 4n
)
222 )
exp [ “|} duy -+ duydv +O(n)

2.2

n n t
~am | {3 [o(L viha. ) v;'gla,-#l]—”
L i=1 4n

ot 6))
-exp[ L u12 u"]dul---du,,dv

2.2
" t'v

_(2#)—n/2J { Z [Gu( Z V(]) 7_7 >V,(li :1 IV;])I :] 1] }
R li=j=1 4n

()
2 2 )

— —_ e s — 2
.exp[ L “"] duy « - - du, dv.
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A simple estimate shows that the last integral is O(n_z) in the same sense used above

Combining these results, we have

1“2)=11+12
=Il+ z 121'
i=1
. B L S
=(2w)_"/2j [G(z v<x,-,1)> exp[ — ]]dul---dun_,du
R" i=1

. LaTl (& o= \ur =
(5.79)  +(@2m) ”I {E-ZI[G(ZI Vﬁ’llzi‘l)vf-lcf-l]
ji= i=

R"

1 2 n .
3 [G”(kz VI S ) VIR VIS S 1]}
=1 =1
(§2]
102 i o B
'Wexp[ > ]du1-~~dundv+0(n ).

A change of variables u; > u, 1 in each of the j =1 2 , n integrals in the second
part of the expression gives

1(12)= (277_)-"/2 J {G( Z Vk—lEk71>
R" k=1

1 - ' z — " — tzvz
+= Z G( Z Vk-litﬁ]) ijl =i ]
2,5 K=1 2n
1 " n _ . - .- *v?
(5.80) =2 [ ( > Vk—likﬂ) ViaaZiq-Via :.,'~1“—:|}
2 ij=1 k=1 2n
2

2—0--— 2_
! Un "V ]dul---du,,_ldu+0(n“2)

L Ln{G[é, Vixr+ o @n) ) ||

2 2
.exp[_u1 e
2

)
v ] duy - du,_ dv+0(n2).

The latter is the desired integration formula. This completes the proof of Theorem

2. QED
6. Proofs of Theorems 3 and 4. The basic plan of the proofs is identical to that

used for Theorems 1 and 2. The major difference is the incorporation of the estimate
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of Ay into the process. Since y(¢) in (1.9) is an Ito process, we have

1 2 2 t+1/n
E y<t+——>—y(t) =E +I Eg’(s) ds
n t

‘[H»l/nf(s) i

t+1/n

t+1/n
6.1) =n"" j Efz(s)ds+J. Egz(s) ds

=0(n™)+0(n H=0(n"").
Therefore, with Ay(t) = y(t+1/n)—y(t) we have
(6.2) (Elay () =0 ").
This basic estimate makes the error term in the approximations in Theorems 3 and 4

larger than those in Theorems 1 and 2.

6.1. Proof of Theorem 3.
LEMMA 6.1. Let V and y satisfy the hypotheses of the theorem. Then

6.3) 1Y =I

C

(él [V(xi—l)Ayf—1+-21- J'r V' (xi-1)(Axi(s)) dy(s)]) AW+ 0",

Proof. This differs only in detail from Lemma 5.1. Consider the expansion (5.3)
withlg(s) ds replaced by dy(s). Let e; be that last term in that expansion, i.e., (without
the 33)

(6.4) e = I | V(1 + 8Axi(5))(Axi())* dy (s).

Omitting some arguments, we have

t.

Ee? =E(J'
)

2
V(—)(Axils))* dy (s))

(6.5) =E(jf V(=) (Axi(5)*F(s) ds>2

i—1

[ v TES ) ds

i—1

Using (5.6) and the assumption that Efz(s)<00, Egz(s)<00, uniformly in s, and
assumption (A2), we have

Ee? = C(lu|+b:))®

(6.6) . tgn‘ﬂ i |V"(—)(Ef*(s)t/n + Eg*(s)) ds]

i —

=0n™).

Hence, (Ee,?)l/2 = O(n°"?), which compares with (5.8). This changes the estimate in
(5.14) to O(n 73/2). The remainder of the proof is identical to Lemma 5.1. QED

The next step in the proof is to prove the analogue of formula (5.15), i.e.,

ey _ ¢ 1., _ti 2, 42 —3/2
67) I —l_zlAy,-,l{jc[vui_l)wuzv(xi_1>4n<ui+bi)]dw}+0<n )
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Following the reasoning in the proof of Lemma 5.2, we write

1"
" j V' (xi-)(Axi(s)? dy(s)
(6.8)
1 2 ¢ 2%y 3
= EV”(x,-_l)n[u,- Y _1+biYi1 +2u:b;Yi 1],
where
A ,l. t 2

-1

and the other terms are clear from (5.18), (6.8). Now

(6.10) éi1 =I " s —t,-fl)z—%(t.- 1)1 dy(s),

and it is a simple matter to show that
(6.11) (Elé)*=0(n"")

(compare (5.22)). The n terms of this form give the O(n —3/2y estimate in (6.7). The
remainder of the argument follows the proof of Lemma 5.2.

The remainder of the proof of Theorem 3 is identical to that of Theorem 2, as
embodied in Lemma 5.3, with the obvious modifications in notation and the estimate.

6.2. Proof of Theorem 4. The main line of the argument is similar to that which
we used to prove Theorem 2. However, the property (6.2) of dy(s) causes some basic
difficulties in estimating the approximation error. We will highlight the changey these
problems impose.

Again consider the expansion

G(j Vix(s) dy(s) = G{ ¥ j Vix1+Axds) dy(s))

i=1 4

(6.12)
=G(q)+G'(q) él Ag; +%G"(q) j_kil Aq;Aqy +e1+ e,
where
q= él qi qi=V(x;i_1)Ayi-1,
8= [ IV 050+ Bns) = V-] dy (),
(6.13)

1
6

e1=-G"(q) Y AqAqilqy,
Lk,d=1

1 - iv
== Y GhmAqAqAqAG,.
24 jkim=1
LEMMA 6.2. Let E(-) be expectation with respect to the distribution of {y(s),
0=s=T}. Then

(6.14) (EUCel AW, 2>1/2= On)

(compare this with (5.29)).
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Proof. The long argument used to prove Lemma 5.4 suffices here as well. Property
(6.2) causes the estimates to be larger. For example, (5.40) is replaced by O(n "),
and (5.43), (5.44) are replaced by O(n~'?). The estimate (5.57) is replaced by O(n ®),
and this with the formula (5.58) yields (6.14). Once again simple estimates based on
the Schwartz—Holder inequalities badly over estimate the integral of e, and so, the
long argument is necessary to achieve the desired accuracy. QED

LEMMA 6.3. The term e in (6.12) satisfies

2. 1/2
(E

) -ow?
in the case when G{-)=exp ().

Proof. The simple argument used to prove Lemma 5.5 (and used by Chorin) fails
here. It appears to be necessary to evaluate more explicit expressions for moments.
This is the reason that we must add the restriction G = exp.

From (6.13) and the interpolation formula (5.2) we have

j- €2dW
C

Z Vixi-1)Ayi1
i=1

q —1
n X n ) t
(6.15) -y v, Ay,._1+( v v, Ay;_1>\/—_u, e
i=1 i=j+1 n

247 +8q;+¢;

where
2. 1/2
(6.16) (E J' e, dW ) -0 )
C
and we have used the notation (5.30). Similarly, for k #j, g = q'"* + 8qu +0(n ',
etc. Also,
Aqi:[‘/;‘/,’;l j Cl’]'(S) dy(S)]MjWL[‘/;V}—l J Bj(s) dY(s)]bi_‘_O(nA}/z)
(6.17)
éallu,+a12b,+0(n‘3/2),
where
(6.18) a;(s)=s—t;_1, Bi(s)=[(s —t;-)(;=)1"%,  faSs=y
Now consider G(x)=e”* and the generic term in e, in (6.13),
Lim = j GimAg; - -+ A dW
C
(6.19)
:J [exp (q+ 0,0+ + 6,nAG,)AG - -+ Agmd W, J K Lm=1,2,-n.
C
Case 1. j=k =1=m, in which case Lixim = O(n ). Thatis(§=6;=-+-=80),
Lum = | [e%€™"*%(Ag)*1dW,  0=6=1

Jc
(6.20) —| ™" exp (8q; +¢,+46Aq,)(Ag)* dW

Jc

- eq‘“H exp (8q;+40Aq; +¢,)(Ag)" dw,] aw'’
C(l) C;

i
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Here we use the notation
2

oyt _p?
(6.21) L Flx) dWi(x)2 2m) ! J'sz(u,, bisuy, -+, by)exp (J'z—b) du; db,

and [ dW' is the remainder of the 2n-fold integral {~dW. Using this and (6.17),
H,= [ exp(6q,+465g)(8q)" aW,
G,

§
2 2

(622) :(277')_] J exXp (L]—> exp [a;lu,+40a12b,~+0(n‘1/2)]
R2

2
. [a“u,- +a12b,- + O(ff¥3/2))4 duj db,
where a,;, a,, are from (6.17) and

(6.23) a'11=40a11+< S Vi Ay )
i=j+1 \/n

Note that
an=Viava [ afs)dyis) =0,

(6.24) an=0(n""),
ai, =0(1) (by a simple Schwartz estimate)’

in the sense (Eai,)"/?= O(n™, etc. Now, for some constants C,,
4

(6.25)  [anu+anb+0n )] = ¥ Clanu)* (anb) +0(n ),
1=0

and the sum is O(n 74). Consider

32

ﬁj =Q2m)" J‘ exp (ui 5 j> exp (a11u; +46a,2b;)
R2

4
| £ Glanu* ay] duyan

C,[(Zﬂ)fla‘fl_’J‘ exp (——__u ) airuy 4 Idu]
(4] -0 2
2.

: [(27)‘”2a’uf exp (Tb) e“’“lz”b‘db].'

To evaluate this, we use the formulas

(6.26)

(g kS

1

2

1 (® ~
Fk(a):fj exp( ;>e“xxkdx, k=0,1,2,3,4,
mY_o

p<4) k=0,

6.27)

ll
A
IR
\_/

k‘

il

b

=3aF . +3k—1)F.5, k=2,3,4.

-1/2

" In fact, ay, =0(n ), see the analysis after (6.40).
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From these expressions we can see that the term /=0 is the dominant one (since
ap = O(n ") in the sum (6.26)). It is O(n ~*) and so, therefore, is the sum H;.

Therefore
(6.28) H+H+§=0n""+é,
where

2

2
. - —ut—p’
& =02m) 1J exp (————u'z ’)exp [aiiu;+46a12b;]
R2

clarui+ axzbj]4[€E’ —1) du; db;

2 2

~ —u?—b?
(6.29) +4Q2m)7" LZ exp (%—’) exp [at1u; +46a12b;]
. [a“u,-+a12b,-]30(n‘3/2)e5' du; db;
+smaller terms (integrand = O(n ).

Evidently, the first term on the right in (6.29) is O(n E on *)=0(n ~°/2 For n
large enough exp On H)=1+ O(n~""%). (One can write out the explicit expression
for the exponent and confirm this.) In this instance the second term on the right in
(6.29) behaves like

2 2

—ut = b _
(6.30) J exp (—%——’) exp[a'uu,»+46a12b,-][anu,-+alzb,-]30(n 32y du; db;.
R2

From (6.17) the O(n ~3/2y term is actually
t;

(6.31) O(n‘m):J"

1

1
EV”[x,--1+0Ax,-(s)]Ax?(s) dy(s), 0=6=1.

Substituting this in (6.30) and computing the integrals explicitly (using (6.27) and the
interpolation formula for Ax(s)), one finds that (6.30) is O(nig/z). It follows that
&= 0(n"°"?), and so, from (6.28)

(6.32) H;=0(n™.

Referring back to (6.22) and (6.20), we see that Iy, = O(n*) when G(x)=exp (x)
and j =k =1=m. In the expression (6.13) for e, there are n such terms whose total
contribution is O(n %), (when G is exp).

Case2. j#k#1#m (mutually) in which case Lixim = O(n™®). That is,

(6.33) Liim = j [exp (q + 6;Aq; + - * * + 6mAGm)]AG; - - - Aq dW.
C

Since the increments Ax;, Axy, etc., j # k, are independent with respect to the measure
dW, the variables Aq;, Aqy are also independent (for each sample y(+)). We use this
property to evaluate Ljum. As in Case 1 (6.15), we write

q=q"+8q;+¢;
(6.34) =qUR™ L §gi+ -+ 8Gm et Em

= gl 4 gqlm) 4. +6qU) 1 ¢
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where (using (6.15)) the typical term is

it
(6.35) s =( § vimay)
i=j+1 ‘/n

and £ = O(n~'’?). Using this notation, consider

-~

fun=[ e @ [ exp (60 +6,80)80,dW]

c(;klm C,

(6.36)

. U exp (645" + 6,, A )AGm dWm] AW,
Cpm

The terminology in (6.21) has been extended to encompass (6.36) in an obvious way.
We proceed by evaluating I,k,m and then the difference Lixim —I,klm
Using (6.22), we can evaluate

H= I exp (8q;"™ +6,Aq;)Aq; dW;
C;
2,2

(6.37) =(2ﬂ)ﬂj exp(:%_b_) exp [alsi; + B.a1zby + O(n~*'?)]
RZ

: [auu, + a12b,' + O(H—B/Z)] du, db,
Here we have used (6.17) for Ag;, and

t
(638) a'{l = 0011+( Z V’(]kl)A Vi— 1) .
i=j+1 \/n

—3/2

Again a;; = O(n™YY=a;,. We may ignore the O(n ) exponential term in (6.37).

Using (6.27) for k =0, 1, we have
(6.39) A= (analy +6ad) exp[(afy) +6]at]+ O ™).

Claim. I‘{, = 0(n"*'?). To see this, note that the sum S, = Z?:,-n ViU Ay s,
for j, k, I, m fixed, a “‘retarded” sum which converges in mean square to an Ito stochastic
integral, i.e.,

n Jiklm (m.s.) t

640)  Si= T VI -y ) s [ o(s) dy(s) =10

i=j+1 n=o Jo

for some sure function v(s). It follows that Vna 1, » tr (t) in mean square as n - o0;

that is, a?, is O(n~"/?) A similar, but more complex, analysis shows that a,ai; is

on™¥ 2); This, together with an analysis like that in (6.29) establishes the claim.
Now H; = O(n =32 implies

(6.41) Tiim = O(n™°).

From (6.33)—(6.36) we see that Lyim and [y, differ by the O(n~"/?) term £ (in (6.34))
which appears in the exponent in (6. 33) (1mpllcxtly) and which is (explicitly) omitted
in (6.36). Let §=q""™ +8q%"™ +. +8q7 + 6.0+ + - +6,Aqm, and Ad =
Ag; * + - Agm. Then

(6.42) Tt — Tim = j et — 110G dW = j MG AW +R,.
C C
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The first term on the right is strictly smaller than f,k,,,,, which differs from it by the
absence of £ in the integrand. The remainder term is O(n 1/2) smaller than this. (A
complete analysis of (6.42) is very tedious and is omitted here.)

It follows that Iy, = O(n “®) for j #k # 1 # m, mutually. In the expression (6.13)
for e, there are n(n —1)(n —=2)(n —3)= O(n*) such terms whose total contribution is
O ).

The other cases j =k # [ # m (piecewise) and j = k = [ # m are treated similarly.
They produce smaller net contributions to e, than does Case 2, j# k #!# m. This
dominant term produces the estimate e, = O(n “2) which completes the proof of Lemma
6.3. QED

Referring to (6.12), we have shown that

T

J’c G[L Vi(x(s)) dy(s)] aw
(6.43) -[{ow+c'@ £ 2q+16"@ £ aqi}aw
c i=1 i=1

1 n _
+j 2G'@) 3 AqAqdW+0(n™).
C jrk=1

We must estimate the second integral and show that the first is equal to the expression
(2.9).

To carry out the first step, we follow the argument used in the proof of Lemma
5.4. Let

I = j G"(@)AgAGdW, k]
C
- [ 6"a"aq0q0aW
C

+J‘ I:G,"(q(jk))' Z V(x(lk))Ay' .
C i=j+1 \/

(6.44) +a similar term in u,

]Aq,Aqk aw
n

[ {[oma®) £ 5 vV, ]

i=j+1 p=k+1

+G"(q™) % ([V"(x"“’>Ay, ]u,-uktz/n)Aq,-Aqk} AW +R,.

i=max (j, k)+1

Since j # k and Aq; has zero mean relative to d W, the first term is zero. The second one
is zero since Ag, has zero mean and Ag;, Aq, are independent under dW. An analysis
similar to the proof of Lemma 6.3 shows that the third integral (written out) on the
right in (6.44) is O(n “*). The remainder R, is smaller by at least O(n 1/2) (since its
dominant terms involve odd powers of u; or u). Hence, I is O(n~ *) for j # k. Since
there are n(n — 1) terms in the sum in (6.43), their net contribution is O(n ~2). This
term may be included in the O(n %) error in (6.43).

To complete the proof of Theorem 4, we must show that the first integral on the
right in (6.43) is equal to the right side of (2.9). This process differs little from the final
arguments (from (5.69) on) in the proof of Theorem 2. The main difference is the need
to account for the properties of the Ito process dy(t) = f(t) dt +g(t) dv(t). Namely,
dy*(1)=g*(1) dt.



STOCHASTIC WIENER INTEGRALS 551
Thus far we have shown that
645 1%=] {[6@+G@) L 2a+iG"@) 3 sq}}aw + 0,
C i=1 j=1

when G(-)=exp (-). Consider the last term in the integrand. Simple modifications of
a standard argument for Ito integrals [24, p. 89], shows that

¥ Aqt= 5 (J:tj

i—

2
[V (31 + Axy(s)— Vxy-0]1dy(s)
(6.46) ‘

— J v(s)gz(s) ds (in mean square)
n-»o00 0

for some v(s). From this argument we have the result

n

©47) S A =% [ [Veyi+Ar(s) - VP dsr

j=1 i=1

j—

where r" =~ O(n~?). Using this, we have

- [ {o@+6'@ 5 ag)aw

i=1

(6.48) .
+J~c{% G"(q) ‘Z J [V(xj—1+Axi(s)) — V(x,-_l)]zgz(tj_l) ds} dW

i=1d4
+0(n ).

This constitutes an expansion of G[f, V(x(s)) dy(s)] about q =YY", V(xi-)Ayi-

taking into acount the Ito—Stratonovich correction term (the second integral in (6.48)).
The reduction of the (2n)-fold integrals in (6.48) to the n-fold integral in (2.9)

follows the argument in the proof of Lemma 5.4 and is omitted for brevity. QED

REFERENCES

[1] A.J. CHORIN, Accurate evaluation of Wiener integrals, Math. Comp., 27 (1973), pp. 1-15.
[2] P. L. CHOw, Applications of function space integrals to problems in wave propagation in random media,
J. Math. Phys., 13 (1972), pp. 1224-1236.
[3] R.P. FEYNMAN AND A. R. HIBBS, Quantum Mechanics and Path Integrals, McGraw-Hill, New York,
1965.
[4] M. KAC, On the distribution of certain Weiner functionals, Trans. Amer. Math. Soc., 65 (1949), pp. 1-13.
[5] R. H. CAMERON, A family of integrals serving to connect the Wiener and Feynman integrals, J. Math.
Physics, 39 (1960), pp. 126-140.
[6] M. DONSKER AND S. R. §. VARADHAN, Asymptotic evaluation of certain Wiener integrals for large
time, in Functional Integration and Its Applications, Clarendon Press, Oxford, pp. 15-33.
[7]1 P. L. CHOW, Stochastic partial differential equations in turbulence related problems, in Probabilistic
Analysis and Related Topics, vol. 1, A. T. Bharucha-Reid, ed., Academic Press, New York, 1978,
pp. 1-43.
(8] 1. M. KOVAL'CHIK, The Wiener integral, Russian Math. Surveys, 18 (1963), pp. 97-134.
[9] P. L. CHOW, On the exact and approximate solutions of a random parabolic equation, SIAM J. Appl.
Math., 27 (1974), pp. 376-397.
[10] J. A. DESANTO, Theoretical methods in ocean acoustics, in Ocean Acoustics, J. A. DeSanto, ed.,
Springer-Verlag, New York, 1979, pp. 7-77.
[11] H.J. KUSHNER, Dynamical equations for optimal nonlinear filtering, J. Differential Equations, 2 (1967),
pp. 179-190.
[12] E. PARDOUX, Stochastic partial differential equations and filtering of diffusion processes, Stochastics,
to appear.



552 G. L. BLANKENSHIP AND J. S. BARAS

[13] M. H. A. DAVIS, Pathwise solutions and multiplicative functionals in nonlinear filtering, Proc. IEEE
Conference on Decision and Control, Ft. Lauderdale, 1979, pp. 176-181.

[14] 1. S. BARAS AND G. L. BLANKENSHIP, Nonlinear filtering of diffusion processes: a generic example,
to appear.

[15] R. H. CAMERON, A Simpson’s rule for the numerical evaluation of Wiener’s integrals in function space,
Duke Math. J., 18 (1951), pp. 111-130.

[16] H. KUSHNER, Probability Methods for Approximations in Stochastic Control and for Elliptic Equations,
Academic Press, New York, 1977.

[17] E. LEVIEUX, Conception d’algorithmes parallelisables et convergents de filtrage récursif non-linéaire,
Appl. Math. Opt., 4 (1977), pp. 61-95.

[18] U. FriscH, Wave propagation in random media, in Probabilistic Methods in Applied Mathematics,
A. T. Bharucha-Reid, ed., Academic Press, New York, 1968.

[19] J. B. KELLER, Stochastic equations and wave propagation in random media, Proc. Symp. Appl. Math.,
16 (1964), pp. 145-170.

[20] W. KOHLER, to appear.

[21] V.L. KLYATSKIN AND V. L. TATARSKI, The parabolic equation approximation for propagation of waves
in a medium with random inhomogenities, Soviet Physics JETP, 31 (1970), pp. 335-339.

[22] M. ZAKAL, On the optimal filtering of diffusion processes, Z. Wahrsch. Verw. Geb., 11 (1969), pp.
230-243.

[23] P.MEYER, Generation of o-fields by step processes, Seminaire de Probabilités, Université de Strasbourg,
Lecture Notes in Mathematics 511, Springer-Verlag, New York, 1974-75, pp. 118-124.

[24] R. S. LIPTSER AND A. N. SHIRYAYEYV, Statistics of Random Processes 1, General Theory, Springer-
Verlag, New York, 1977.

[25] N.J. RAO, J. D. BORWANKAR AND D. RAMKRISHNA, Numerical solution of Ito integral equations,
SIAM J. Control, 12 (1974), pp. 124-139.

[26] E. HELFAND, Numerical integration of stochastic differential equations, Bell System Tech. J., 58 (1979),
pp. 2289-2299.

[27] V. E. BENEsS, to appear.

[28] S. K. MITTER, On the analogy between mathematical problems of non-linear filtering and quantum
physics, Richerche di Automatica, 1980, to appear.

[29] R. W. BROCKETT, Classification and equivalence in estimation theory, Proc. IEEE Conference on
Decision and Control, Ft. Lauderdale, 1979, pp. 172-175.

[30] P. LEVY, Processus stochastiques et mouvement Brownien, Gauthier-Villars, Paris, 1948.



