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Observed Competing Queues

JOHN S. BARAS, MEMBER, IEEE, AND ARTHUR J. DORSEY, STUDENT MEMBER, IEEE

Abstract— We consider the dynamic control of two queues competing
for the services of one server. The problem is to design a server time
allocation strategy, when the sizes of the queues are not observable. The
performance criterion used is total expected aggregate delay. The server is
assumed to observe arrivals but not departures.

This problem is formulated as a stochastic optimal control problem with
partial observations. The framework we adopt is that of stochastic control
in discrete time and countable “state space.” The observations are modeled
as discrete time, 0-1 point processes with rates that are influenced by a
Markov chain. Examples from computer control of urban traffic are given,
to illustrate the practical motivation behind the present work, and to relate
to earlier work by us on the subject. A particular feature of the formulation
is that the observations are influenced by transitions of the state of the
Markov chain. The classical tools of simple Bayes rule and dynamic
programming suffice for the analysis. In particular, we show that the “one
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step” predicted density for the state of the Markov chain, given the point
process observations is a sufficient statistic for control.

This framework is then applied to the specific problem of two queues
competing for the services of one server. We obtain explicit solutions for
the finite time expected aggregate delay problem. The implications of these
results for practical applications as well as implementation aspects of the
resulting optimal control laws are discussed.

I. INTRODUCTION

PTIMAL control strategies for queuing systems have
become exceedingly important in recent years, due to
potential applications of analytical studies in performance
evaluation and design of computer and communication
networks, computer systems for the control of urban traffic,
computer systems for the control of inventories or net-
works of inventories.
Extensive bibliographics and reviews of queuing control
models and strategies can be found in Crabil er al. [1],
Sobel [2], and Stidham and Prabhu [3]. Typically classical
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queuing theory methods treat static or steady-state models
and strategies. However, several of the intented applica-
tions require dynamic (or transient) analysis and control.
Furthermore, in earlier studies the queue sizes are assumed
observable (i.e., known). Recently, examples of dynamic
control of queuing systems based on point process models
and their relevant theory have been given in studies by
Walrand [4], Brémaud [5), Rosberg er al. [6]. Finally,
progress towards the development of optimal control
strategies in queuing systems requires analysis of systems
involving several queues competing for the services of
server stations. .

This paper analyzes a simple problem involving two
competing queues which exhibits some of the desired mod-
eling characteristics mentioned earlier. The problem of
selecting which of two parallel queues to serve with a single
server is considered. We adopt a discrete time formulation
with the arrival rate at each queueing station allowed to
depend on the queue size and control value. The service
rate is also allowed to depend on queue size and the
control value. The control to be selected is the decision at
each time slot to serve one of the two queues. The con-
troller observes the arrivals of the two queues but the
queue sizes are unobservable, i.e., departures are not ob-
served. The control is to be selected as a function of the
past histories of the observed arrival and control processes.
The instantaneous cost is linear in the waiting times of the
two queues. We thus have a stochastic control problem
involving partially observed queues.

Our motivation comes from examples arising in the
computer control of urban traffic and in satellite communi-
cation problems. We have successfully employed such
queueing models earlier [7] in developing estimation and
prediction algorithms for queues in urban traffic, based on
partial observations. The present paper represents a con-
tinuation of [7] by utilizing these estimates to obtain an
optimal control strategy for a single traffic intersection.
The framework in which the problem is formulated is that
of controlling a partially observed Markov process [13],
[17], [19]. In particular the results of Smallwood and Sondik
[19] hold. It is well known that simple Bayes rule combined
with dynamic programming provide an elementary meth-
odology for such problems [13], [17], [19]. It follows that an
elementary framework for the analysis of dynamic queue-
ing control problems in discrete time is to consider them as
stochastic control problems of Markov chains with 0-1
point process observations. The starting point of this for-
malism is the (assumed known) joint statistics of the ob-
served point process and of the transitions of the Markov
chain. An identical framework in continuous time has been
utilized by Segall [10] (using Martingale techniques) in
analyzing dynamic file assignment in computer networks.
Dependence of arrival and departure rates on queue size
has been considered in queueing networks studies by Jack-
son [8].

Only the finite horizon, average aggregate delay cost
problem is considered in the paper. The formalism and
methodology we use are applicable to more complex
queueing control problems. The tools are standard [19].
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Slight modifications are necessary due to the special rela-
tionship between observations and state transitions that
appear in queueing models. We have followed in the brief
presentation of the existing methodology the same se-
quence as in Varaiya [9]. The contribution of the paper is
in the application of these techniques to dynamic queuing
control problems. It is established that the optimal server
allocation strategy depends on the observed arrivals through
a sufficient statistic which can be computed via the filter-
predictor equations derived in [7] and in the present paper.
This statistic is the “one step” predicted probability vectors
for the two queues based on the observed arrivals. This has
the form of a separation theorem. Consequently, all the
necessary computations needed to implement the optimal
policy can be performed off-line. Due to the linearity of
the instantaneous cost we show that these computations
are quite simple. Furthermore, we discuss how the results
of these off-line computations should be stored in order to
facilitate the on-line implementation of the strategy. The
optimal average delay is shown to be piecewise linear in the
sufficient statistic. Finally, the present paper may serve as
a basis for further analysis of the two competing queues
problem: evaluation of suboptimal policies, alternative per-
formance objectives such as average delay per unit time or
infinite horizon discounted aggregate delay, adaptive con-
trol.

The paper is organized as follows. In Section II, we
formulate a simple two competing queues problem. Exten-
sions to more general models are then presented. The basic
questions to be analyzed are formulated. In Section III,
general filtering and prediction results for the class of
stochastic systems with observations influencing “state
transitions,” are reviewed briefly and are then applied to
queueing models. In Section IV, we review briefly general
dynamic programming theorems for partially observed sto-
chastic control problems for the same class. Particular
results for the two competing queues problem are then
obtained. In Section V, we present computations and
evaluations of the strategies obtained, as the theory is
applied to a simple problem.

II. THE Two COMPETING QUEUES PROBLEM

Consider the problem of selecting which of the two
parallel queues to serve with a single server. The system is
depicted in Fig. 1. The time is divided into uniform time
slots; that is we adopt a discrete time formulation.
Customers arrive into stations one and two according to
two independent Bernoulli streams with constant rates
N, A%, respectively. If we let nl(¢), n2(¢t) denote the two
arrival processes, with ¢ discrete, parameterizing the time
slots,

X=Pr{ni(¢)=1}, i=1,2. (2.1)
The two queues compete for the services of a server whose
service completions follow a Bernoulli stream with con-
stant rate p. If we let n,(¢) denote the service process,
whenever the server is connected to one of the two queues
(when it is nonempty)
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Fig. 1.

uft) =1

N

uft) =0

The server time allocation problem.

p=Pr{n,(1)=1}.

Let x,(¢) be the number of customers in queue i during
time slot ¢, the customer in service included. The control to
be selected is clearly of a switching type. When u(f)=1
and the server completes a service, the next customer to be
served comes from queue 1, while if u(¢)=0 the next
customer comes from queue 2. This is a simple priority
assignment (sequencing) problem in a two class queuing
system.

The server time allocation is to be selected in order to
minimize delays, weighted according to ¢, ¢,, two positive
constants. Thus, the cost per unit time with queues
x,(1), x5(1) is ¢;x)(t)+cyx5(t). For a finite horizon of
length T we wish to minimize the average aggregate delay

(2.2)

J:E{ g (clxl(t)+czx2(t))}. (2.3)

=0

The queue sizes are not observable, since only the arrival
processes {n'(t), i=1,2} are observable to the controller.
The server time allocation strategy minimizing (2.3) is
allowed to be a function of the past histories of the arrival
processes and the past history of the control.

This problem is the simplest in a sequence of problems
that appear in urban traffic control. The controller in the
traffic problem is the traffic light, the two queues corre-
spond to the two approaches at a traffic intersection, the
arrival processes are the observations from upstreet loop
detectors. Therefore, the problem we described above mod-
els in a simple way the “critical intersection” traffic control
problem. Traffic activated control laws lead to the depen-
dence of the control value u(#) on past histories of arrivals
and control processes. We refer the interested reader to [7]
for further details on the development of queue models
appropriate for urban traffic problems.

Similar problems appear in computer networks, where
one allocates files according to demand [10] or in satellite
communication networks [11] where one controls retrans-
mission laws according to network traffic load. We shall
not give any further details on these problems here and
refer the reader to [10], [11] instead.

The problem is easier to analyze when the two queues
can grow without bound. In the main body of the paper,
we obtain results that can be applied to more general
queueing models, than the one described in the beginning
of this section. In particular, to represent effects of conges-
tion, we can let the arrival and service rates depend on the
queue size. Thus, we shall consider problems where the
following assumptions hold:
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a’

Prini(z)=1
{ 1) and u, up to time ¢

| past histories of x, x,, nla, n’ }

Pr{ni(1)=1|x,(t)=k, u(r)=v)
=:N(¢t,k,v), i=1,2, (2.4)

A ast histories of x,, x,, n\, n?
Prini(1)=1|P O X1: %20 far Ma
and u, up to time ¢

=P (1) = 1], (1) =k, u(r) =0}
=:pi(t,k,0), i=1,2. (2.5)

Since there are no departures when a queue is empty, we
must have

p(2,0,0)=0, i=12. (2.6)

For the simple problem described in Fig. 1, X(z, k, v)=NX,
i=1,2 for all ¢, k, v, while

(e, k,0)=pv,  k#0
pi(t, ko) =p(l-0),

Most often in applications the queues are bounded in
size. If we let N;, i=1,2 be the maximum queue size for
each queue then in addition to (2.6) we must have

k#0. (2.7)

N(t,N,v)=0, i=1,2. (2.8)

For the simple problem of Fig. 1, (2.8) will imply that

N(t,k,u):{x’ =12 k#0,all 10 () g)

0, 1,2, k=N, all 1, 0.

In queueing models such as the preceding, there is a
strong link between the transitions of the queue process
and the observed arrival process. Indeed the occurence of
an arrival implies that the queue will increase or remain the
same for the next time slot. That is the observations imply
certain “state transitions” for the underlying queue. Thus,
the appropriate way to characterize a descriptive queue
model, like the ones discussed here, is by means of the joint
statistics of queue transitions and observations:

S, (t,0,4):=Pr {x(t+1)=j, y(1)=y|x(t) =i,
‘u(t)=v},

This will be the starting point of the development of
filtering and prediction in Section III.

Finally in modeling the admissible control strategies, one
may wish to allow the control during the ¢ time slot to
depend on the observations during the ¢ time slot or not.
This is clearly a modeling question. Realistically, it is
better to allow u(¢) to depend on the observations only up
to time t—1. This is the case considered in the paper.
However, in some applications it may be important to
know the tradeoff in complexity and performance, when

i, j=0,1,---. (2.10)
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u(z) is allowed to depend on observations up to time t. A
simple relabeling' of the observation sequence reduces this
case to the one studied here. Therefore, this case will not be
analyzed. We refer the interested reader to [21] for explicit
results in this case.

It is important to note, that the finite horizon problem
discussed here plays a central role in the analysis of other
criteria, such as average delay per unit time or discounted
aggregate delay.

III. FILTERING AND PREDICTION

A. Formulation and Methodology

In this section, we review briefly filtering and prediction
formulas for the state of a partially observed controlled
Markov chain that influences the observations. Since we
are working in discrete time, these results can be derived in
an elementary fashion using simple Bayes rule [19]. We
then apply these general results to the case of primary
interest to us: discrete time 0-1 point process observations
influenced by the state transistions of a Markov chain. In
the case of queues evolving without bound the Markov
chain has countable state space, while in the case of
bounded queues the Markov chain has finite state space.

Let us assume that we are given the joint statistics of
output (observations) and state transitions:

S, (t,0,9):=Pr{x(t+1)=/,
y()=y|x(t) =i, u(z) =0}, (3.1)

The inclusion of controls in the description of these statis-
tics is meant to emphasize that the filtering and prediction
formulas derived here will be used in later sections for the
solution of stochastic control problems with partial ob-
servations. For our purposes it suffices to assume that the
output process takes values in a finite set %. For queuing
systems, as discussed in Section II, % will be the set {0,1}.
We further assume that the controls take values in a finite
set L. Again for queueing systems with switching controls,
QL will be just the set {0,1} for one controller, or {0,1}"
(mth-fold Cartesian product) in the case of m controllers.
The state set I in (3.1) will be finite /={0,1,---,N}, as in
the case of bounded queues, or countable /={0,1,2, - - -},
as in the case of unbounded queues.

For the queueing problems of interest to us (see Section
IT) the fundamental modeling assumption is that the joint
statistics of observations and state transitions are in-
fluenced only by the current state and current control
values. More precisely letting x*, y*~!, u* denote the past
histories of the state, observation and control processes
respectively, we assume that the following “semi-
Markovian” assumption holds.

i, JEI.

'We thank the anonymous reviewer for making this observation which
helped in the simplification of the presentation.
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Assumption SM:
Pr{x(r+1)=j,y(t)=y|x", y' ' u'}
=Pr (x(t+1)=), y(1) =9 |x(1) =i, u(t) =0}
(3.2)

This assumption is consistent with a “stochastic dynamical
system” model of queues, which as discussed in [7, p. 13,
eq. (2.11)] is valid under very general circumstances. It is
easy to see that on the basis of (3.2) one can describe the
partially observed queue as a probabilistic automaton (see
[12)).

The available information to the controller for inference
purposes at time k is denoted by

zhi=(y* 1wk (3.3)
where as usual
Y h=(0(0), (1), -+, (k= 1))
uk = (u(0), u(1), - - ,u(k—1)). (3.4)

We shall denote by I the set of admissible control policies,
whereby each y €T has the form

Y:=(80 815"+ &ks ") (3.5)
where each g, is a function
g Y XU S QL
2fu(k) =g, (2°). (3.6)

We shall call the policies in I' strictly nonanticipative,
following standard terminology. Following standard usage
we shall call z* the information vector available at time k.

From the given statistics (3.1), we can obviously obtain
the matrix of transition probabilities of the underlying
Markov chain.

P (t,0):=Pr{x(t+1)=j|x(¢)=i,u(r)=0}

= X S,(1,0.9). (3.7)
YEW

Similarly, the output statistics, given the state, are given by

N (. t,0):=Pr { (1) =¢|x(1) =i, u(r) =v)
= 2 Sij(”vv‘l’)-
jer
To simplify later computations we introduce the follow-
ing matrix:

(3.8)

M)— if 3S,(tr,0,9)>0
M, (1,0.9): = j.é,s"f(”""l’) =
S, otherwise
(3.9)
where /, jEI.
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Given a control policy yET the conditional probabil-
ities of interest in filtering and prediction are pj,
(x(k+ )| y*, u*) and pY ((x(k)| y*, u®).

To simplify notation further, we introduce the (possibly
infinite dimensional) row vectors of probabilities:

HZ+1|k(i)::PZ+1\k(i|yk, uk),
HZ\k(i)3:PZ\k(i|yk, uk),

It is a simple consequence of Bayes rule that with this
notation

iel

iel.  (3.10)

HZ+1|k:HZ|kM(k»“(k)’Y(k)) (3.11)
it is convenient to introduce the diagonal matrix
D(k,y)=diag (A, (¥, k)}, iel (3.12)
and the column vector
e=[1,1,1,---,1,---]". (3.13)
Again by Bayes rule it is easy to establish that
HZ+”,(D(k+1,y(k+l)) (3.14)

I1} = .
foetkert Z+”kD(k+1,y(k+l))e

The computations (3.11)—(3.14) are slight modifications of
existing results; see, in particular, [19]. Indeed S;; (z,v,¢)
in (3.1) would be written as p, (v)r in the notation of [19].
Although this product form for S was considered in [19],
the arguments of [19] do not make use of this fact.?

We follow [9] for the remainder of this brief review. It is
easy to establish that the conditional probability vectors
1Y 4y jks 1 4y« do not depend on YET (i.e., they de-
pend only on the values of the control not the control
policy). They are computed recursively by (3.11) and (3.14).
The initial value for the recursion is

11,.D(0, y(0))

o0 = 11, 5(0, »(0))e (-19)

As a consequence of this fact we shall drop the superscript
from (3.10), (3.11), and (3.14) for the remainder of this
paper. Following [9], [13] we consider information states.
Recall that if z¥ denotes the information vector available at
time k, then a vector ®(k) is called an information state at
time k for the controlled stochastic system described by
(3.1 if

i) ®(k) can be evaluated from z*;

ii) there is a function 7, such that

®(k+1)=T(@(k),(y(k),u(k)))

where ( y(k), u(k)) is the new information obained at time
k+1.

We can now state the following theorem, which is a
slight modification of well-known results [9], [13], [17], [19].

Theorem 3.1: T1,,,_, is an information state at time k
for (3.1), (3.2).

We note in passing that (3.11), (3.14) suggest the dif-
ference equations for the “unnormalized” probability vec-
tors

(3.16)

2We thank the anonymous reviewer for this comment.
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pk+l|k+l:pk\kM(k’u(k)v Y(k))D(k+1-Y(k+1))

Pojo =1lojo- (3.17)
Pr+1)k :pk\k—ls(k’ u(k), )’(k))
poj—1:=11,. (3.18)
Then »
Hk\k:;i%
M= sl , k=0,1,--- (3.19)
Pi+11k€

which is the reason we call py;, pyy i the unnormalized
probability vectors. As a result of (3.17)-(3.19), we have
the following.

Corollary 3.1: pyj;—y 1s an information state at time k
for (3.1), (3.2).

The importance of considering the “unnormalized” ver-
sions (3.17) and (3.18), rests primarily on their linearity
[compared to the nonlinear equations (3.11) and (3.14)], as
it has been recently emphasized in nonlinear filtering stud-
ies [14], [15). The recursions (3.17) and (3.18) are slight
modifications (appropriate for our framework) of the re-
sults of Rudemo [22].

B. Application to Queueing Models in Discrete Time.

In this section we apply the methodology of the previous
section to the queueing models developed in Section L
Actually, we will apply these results to more general queue-
ing models where the arrival and departure rates are al-
lowed to depend on the queue size. We first consider a
single controlled queue and then we will consider two
interacting queues as it is necessary for the application
described in Section II.

Let the arrival and departure rates of a controlled queue
in discrete time be given by

an arrival occurs in [¢,¢+1) when
control u(¢)=v

}\(t,i,v):Pr{the queue size at time ¢ is i and

and

a departure occurs in [¢, ¢+ 1) when
p(t,i,v)=Pr{ the queue size at time 7 is i and ;.
control u(t)=v

(3.20)

We assume, as stated earlier, that time discretization is
such that the probability of more than one arrival or
departure in a single time slot is zero. It is convenient to
introduce the arrival and departure point processes
n (1), ny(t). Clearly,

1, if an arrival occurs
n(1)= in th time slot

0, otherwise

17
n,(t)=

03

if a departure occurs

in ¢th time siot
otherwise.
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Then
A, i,0)=Pr{n,()=1x(2)=i, u(t)=0}
p(t,i,0)=Pr{n, (1)=1x(t)=i, u(t)=v}.

Here x(¢) denotes the queue size during the rth time slot
and is integer valued. We have assumed here that the queue

(3.21)

M, (t,0,1)=p(t,i,v)
M, (1, 0,1)=1—p(1,i,0)

M, (1,0,1)=0, elsewhere

is controlled by controlling the departure and (or) the
arrival rate. The departure rate u(z, i, v) is also referred to
as the service rate. Finally, we make the usual assumption
(see [7]) that the state of the departure and arrival processes
in slot 1+ 1 are conditionally independent given the queue
size and the control value in slot 7.

We are interested in the case of partially observed queues.
Thus, as in Section II, we assume that arrivals, i.e., n,(?)
are observed, while departures, i.e., n,(¢), are not observed.
In the terminology of Section III-A

y(1)=n,(1).

To describe the partially observed queue statistically in the
framework of Section I1I-A, we need to specify the matrix
of joint statistics S;; [see (3.1)]. Thus,

(3.22)

S, (t,0,1)=Pr{x(t+1)=j,n,(t)=1x(1)=i, u(z)=0}
=Pr{x(t+1)=jin,(t)=1,x(t)=i, u(1)=0}
Pr{n,(t)=1x(t)=i, u(t)=0}.
Therefore,
S.(t,0,1)=A(t,i,0)u(t,i,v)
S, (o, )=N(t,i,0)(1—p(e,i,0))

S, (t,0,1)=0,  elsewhere. (3.23)
Similarly,
S, (£,0,0)=(1=N(¢,i,0)) (1 —p(z,i,0))
S, (t,0,0)=(1=A(t,i,v))u(t,i,v)
S, (t,v,0)=0,  elsewhere. (3.29)

In the case of a queue evolving without bounds the only
constraint imposed on A(¢, 7, v), u(t, i, v) is that

u(,0,0)=0, Vi, ve. (3.25)

On the other hand, in the case of a finite queue bound, i.e.,
when the queue is not allowed to grow beyond N, in
addition to (3.25) we have

A, N,0)=0, Vi, vE. (3.26)

We note that the matrix of state transition probabilities
computed from the S matrix given above, according to
(3.7), coincides with that used in our earlier work [7, eq.
(2.19)]. The point we wish to make here ig that the descrip-
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tion of S is more appropriate as a starting point for
queueing models.

Since we are only interested in queueing systems which
are controlled by controlling the departure rate (or service
rate), we shall drop the argument v from the arrival rate A,
for the remainder of this paper.

The matrix M introduced in (3.9) now becomes

M, (t,0,0)=1-p(s,i,0)
M, _\(1,0,0)=p(t,i,0)
Mij(t’ U’O):O,

elsewhere. 3.27)

Furthermore, the matrix D introduced in (3.12) now be-
comes
D(t,1)=diag {A(7,i)},
D(1,0)=diag {1—=A(z,i)}. (3.28)

Substituting (3.27) and (3.28) in (3.11) and (3.14) we obtain
)\(1, i)Hmfl(i)

o oy | T ing()=1
; (I_A(t’l))‘n"’*'(l)_ . ifn,(1)=0
Eiel(l_)‘(tv’))nm—l(’)
(3.29)
p(t,i,0)I0,, (i)
+(1=p(e,i—1,0)I0,,(i—1),
I, ()= ifn,(1)=1
(1=p(2,i,0))10,, (i)
+p(r,i+1,0)I0,,(i+1), if n (1)=0.
(3.30)

Thus, we have recovered [7, egs. (3.14) and (3.15)]. We
have obtained via elementary methods the filtering and
prediction formulas for queue size obtained previously in
[7]. Furthermore, we have also obtained the unnormalized
versions of these filtering and prediction formulas [cf.
(3.17) and (3.19)).

We next describe the application of the methedology of
Section III-A to a generalization of the two competing
queues problem of Section II. Each queue will be described
as before and we shall use superscripts 1 or 2 to refer to the
parameters for each queue. In particular, S', S? will be
matrices like (3.23) and (3.24) describing the stochastic
queue model. The observation on the combined two queues
system is

y(0)=(n(0), yo(1)) = (nl(1), n2(1)).

Again the control is applied through the departure rates of
each queue. Although we can accomodate more general
models, we shall assume the following independence condi-
tion to simplify the computations.

Independence Condition: Each queue’s transitions and
the state of the arrival process in slot ¢+ 1 are conditionally
independent given the queue sizes and the control value in
slot ¢

(3.31)
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In most practical applications (e.g., urban traffic control,
computer or communication networks) this condition is
usually satisfied. It basically expresses the observed fact
that when queues are competing and the control is through
the server, the basic coupling between the two arrival
processes is provided through the control and each queue’s
evolution in response to the control.

The state for the combined system is (x,(¢), x,(¢)). The
state set for the combined system is clearly IXI. The S
matrix [cf. (3.1)] for the combined system is

Si|i2,j,j2(t’ v, ‘I’)::Sil,j,(t’ v, \Pl)Siijz(t’ v, ‘Pz) (3~32)
or

S(t,0,9)=S'(t,0,9,)®S5*(t,v,¢,)  (3.33)

where ® denotes tensor product. Letting D(t, n'(z)),
D*(t,n’(1)) denote the D-matrices for each queue [see
(3.28)], the output probabilities for the combined system
are

Pr{y()=(y, ¥o)lx, (1) =iy, xy(1) =1y, u(t) =v)
= 2

Jeh €1

Siviz iyt 0.%)

:Dilli,(t’ lpl)Dizzfz(t’ ¥2)-

Therefore, the D-matrix for the combined system is
D(1, y(1))=D'(1,n(1))®D*(1,n2(z)). (3.34)

Similarly, if M'(z, v, n'(1)), M*(t, v, n%(t)) denote the M-
matrices for each queue [see (3.27)] the M-matrix for the
combined system is

M(t,0,y)=M"(1,0, ni(1))®M?(1,0, n2(1)).
(3.35)

Assuming that the initial probability vectors I}, 113 for
the two queue sizes are independent, implies that the initial
probability vector for the combined state can be written as

II,=II®II]. (3.36)
Then the initial condition for the filtering-prediction recur-
sions for the combined system is [cf. (3.15)]

— l_IOD(O’ y(O))

=0 T ®TT2
o0 = Tb(0, y(0))e oo o

(3.37)

in view of (3.34). In view of (3.33) and (3.36) it is plain that
(3.11), (3.14) inductively imply

I, =I,®0;,, k=01, - (3.38)

Hk+l|k:H}<+l|k®H12<+”k’ k=0,1,---. (3.39)

Clearly, similar tensor product expressions are valid for the
unnormalized filtered and one-step predicted probability

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-26, NO. 5, OCTOBER 1981

vectors of the combined two queue system. Clearly,
Hﬁﬂl,,Hﬁl,, /=1,2 are given by the recursions (3.29),
(3.30) for each queue.

To emphasize the significance of this “decoupling” of
the filtering-prediction recursions for the stochastic control
problem, we state it as (compare with Theorem 3.1,
Corollary 3.1).

Theorem 3.2: For strictly nonanticipative control
strategies (IT;,_,, Hl%]k—l) (or (plkjk~1’pi|k—l)) is an in-
formation state at time k for the combined two queues
system.

IV. FiNITE HORIZON STOCHASTIC OPTIMAL
CONTROL

A. Formulation and Methodology

In this section we review briefly existing basic results
that can be used in finite horizon stochastic control prob-
lems, when the partially observed controlled system is of
the type described in Section I1I-A.

We shall denote by T the finite time horizon, by c(k, x, u)
the running cost and by ¢(T, x) the terminal cost. For a
control policy y the cost is denoted by

J(y)::E{ /éoc(k, k), u'(k)) +e(T, x’(T))}
(4.1)

where the superscript y in x, u, indicates the state and
control trajectories induced by the policy y. For a partially
observed stochastic system, modeled by (3.1) and (3.2), we
wish to select yET [see (3.3)-(3.6)] in order to minimize
J(v). It is well known {16}, [17] that due to partial observa-
tion of the state the optimal policy will not be Markovian
[18]. It has been shown in [16]-[19], for various partially
observed stochastic systems, that instead the optimal policy
is a function only of the information state which is typi-
cally the vector of filtered probabilities II ki [see (3.10)].
For the intended application a slight modification of this
result is needed, to reflect the fact that for the queueing
problem of interest the information state is I, ,_, (see in
particular Theorem 3.2). We briefly sketch the basic steps
here since the methodology is standard dynamic pro-
gramming and is well known [16]-[19].

Following [9] we shall call a policy y=
{80, 81" " "+ 8>+ * } separated if g, depends on the availa-
ble information vector at time k, z, “through” the infor-
mation state (k) [see (3.16)), i.e., u(k)=g (P(k)). We let
I', be the subset of separated strictly nonanticipative poli-
cies.

Let = be the set of all probability vectors {II(i)},c;,
[1(i)=0, 2,,I1(i)=1. Letting z** denote the information
vector sample path generated while using policy y we
consider as usual the sequence of costs

J; ::E{ é c(l, x(1))+c(T, x)IZY‘k},

1=k
k=0,1,---.T. (4.2)
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To simplify later computations ‘let Cj, Ci(u), k=
0,1,---,T7—1,u€9 be the column vectors

Cr(i)=e(T,i)
[C)] () =c(k,i,u),

For strictly nonanticipative policies we have the follow-
ing standard dynamic programming result [9], [16]-[19].

Theorem 4.1: For 0<k<T, define the functions V(-)
on 7 via

a) Vp(II)=I1C;

iel. (4.3)

b) V()= uiggu [Hck( u)+Z eVt

( TS(k, u, ¢)

TIS(k, u.9)e ) -HD(k,xp)e].

Then for yET

V(i (275N <0y, k=0,1,2,---,T. (44)

Furthermore, let y* €T, be a separated policy such that
g¥(II) achieves the infimum in (b). Then y* is optimal in T’
and

V(T (274D =02, k=0,1,---,T (4.5)
with probability 1.

Theorem 4.1, characterizes optimal policies as feedback
laws on estimates of the states. In cases where the dynamic
programming recursions can be solved explicitly for the
functions V,, the only on line implementation needed for
the control policy is that of the filter /predictor [see (3.11)
and (3.14)].

B. Application to the Two Competing Queues Problem.

Here we consider the stochastic control formulation of
the two queues problem discussed in Section III-B. The
queues are partially observed through their arrival
processes. They are modeled as described in the second
part of Section II-B.

We denote by ¢, ¢, (nonnegative real numbers) the cost
per unit time delay in queues 1 and 2, respectively. Here we
assume ¢, ¢, are constants. Generalizations will be consid-
ered elsewhere. As a running cost we choose the delay cost
¢, x,(2)+c,x,(¢) per unit time. So for a policy y the cost is
the average aggregate delay cost

J(y):=E{ E clx{(t)+c‘2x;’(t)}. (4.6)

i=0

The model for the combined two queues system was de-
scribed in (3.31)-(3.37).

We consider strictly nonanticipative control policies. The
optimal policy and value function are described then by
Theorem 4.1. Since the state set is IX/ we order the
components of the probability vectors of the combined
system according to the sequence 00,01,02,---,
10,11,12,- -+, 20,21,22, - - - . From (4.3) and (4.6)
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Culiy,iy)=cyi,teyiy, iy, i, €L (4.7)
Let » be the vector
v=[0 1 2 3 4 -..]". (4.8)
Then
Cp=c¥®e+ce®v (4.9)

where ® denotes again tensor product. Since C, does not
depend on k, we shall drop the k dependence

C, =¢C, k=0,1,---.
Due to the “decoupling” of the filtering-prediction recur-

sions discovered in Section II1-B [see (3.38)] the dynamic
programming recursion of Theorem 4.1b) reduces to

V(I T12)=c¢,1'v+¢,I1%»

V(I T1?) = inf | c,IT'v+c,11%»
ueY

'Sk, u,¢,) 12S*(k,u,y,)
IS (k,u, ¢, )e TI2S%(k,u,y,)e

+ 2

V¥ €{0,1}

k+1

A(T1'D'(k,¢,)e) (II2D%(k, ¥, )e). (4.10)

In (4.10) IT',I1? are probability vectors over I,S‘, D',
i=1,2, are described for each queue by (3.23)-(3.28).
Recall from (3.7) that the matrix of transition probabilities
is given for each queue by

i=1,2.

Pi(t,v)= 3 Si(t,v,¢), (4.11)

¥=0

We next can show that (4.10) can be solved easily
off-line and that all functions V,, k=0,1,---,T are piece-
wise linear in IT', IT1%. The piecewise linearity of the value
function has been established previously in [19]. To see this
we work inductively backwards.

For k=T, (4.10) implies

Vo(IT', 12)=T1'd} + 11242,  VII',TI*€xn (4.12)

where

di=cy, =12 (4.13)

are column vectors of dimension equal to the cardinality of
I. Next at k=T—1, (4.10) implies

V.. (', 112)= mi
r—( ) (Min

+I12(§+PHT—1,u))d2] (4.14)

[(4+P(T—1,u))d}

where § is the identity operator of dimension equal to the
cardinality of I. Clearly, the optimal control as a function
of IT', I1?% is described as follows. The set 7 X is separated
in two disjoint subsets
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A, ={(IT", 1I1?) emxa, s.t.
m'(P(T—1,0)-P(T—1,1))d}
>I12(PX(T—1,1)—PX(T—1,0))d}}
A, =complement of 4, in 7 X,

(4.15)

We associate the index 1 with A4,, the index 0 with A,
since clearly

I, onA4,

u*(T—l)Z{O’

Let a;_,(IT', IT?) be the function

on .. (4.16)

1, if (II', 12) €4,
a;_ (', 11%) = .
0, if (I",I1%)€A4,
and
dy (11, 11%)=($4P(T—1,ar_,(II", 11%))) d}.
d2_ (I, 11%) = ($+P3(T—1, a,_ (11", T12)) ) d3.
(4.17)
It is now clear that
Ve (T, I1%) =T'dy_ (11", I1%) + I1%d7_ (IT', 11%)
(4.18)

and, therefore, V,_, is piecewise linear also. The general
computation follows from the following lemma.

Lemma 4.1: Define the binary valued functions q,, /=
0,1,---,T—1, on # X« (where 7 is the set of probability
vectors on /), and the column vectors d}, i=1,2,/=
0,1,---,T (of dimension equal to the cardinality of I) by
the backward recursions

i —
dr=cw

di_,=di+P(T—1,a,_)d

dr_p(@roprsary)
1, if [ P(T—1,0)~PN(T-1,1)]
'd}~/+1(ar—1+1~' “,ap_y)
ap_ (1, 11%) = =I12[PX(T—1,1)—P*(T—1,0)]
'd%—1+1(ar—1+1,' “Lar_y)
0, otherwise
i=1,2, I=1,2,---,T—1.

Then for k=0,1,-- -, T,(IT', 1}y En X7
V(I T1?)=11'dy (ay, - ap ) +11%d¢(ay, - ar ).

That is V, is piecewise linear for each k.

Note: The recursive backwards computation proceeds

along the diagram:
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1 1 1
a- ||k dh_,
d7 2ldio | 7 di
ar— ar_, ar—1—\
1
dr_;- dl
— d2 — e 0 .
T—1—1 d&
ar_j—2

Proof: Let us assume the result holds for k=T~
Then from (4.10), after a computation identical to (4.14),
we have

Vi (I, T1%) = ué%n” [IT'd}+11%2

+II'P(T—1—1,u)d}_,
+I2PY(T—1—1,u)d?_)].

It is obvious now by the definition of a,_,_(II', I1*) and
d}_,_,, d#_,_, that the result holds for k=T—/—1.
We also have established the following Corollary.
Corollary 4.1: The optimal control policy in feedback
form, as function of II', I1? is given by

u(k)=a (114 11%),  k=0,1,---,T—1.

Combining now the results of Lemma 4.1, Corollary 4.1,
and (4.5) of Theorem 4.1 we have established the following
result. :

Theorem 4.2: The optimal server time allocation strategy
and expected aggregate delay, when using strictly nonantic-
ipative strategies are determined as follows. First, the vec-
tors d}, i=1,2, I=0,1,---,T and binary valued functions
a,, 1=0,1,---,T—1 are computed off-line and stored from
Lemma 4.1. For each queue the one-step queue predicted
probability vectors H’,'(‘ «—1» i=1,2 are computed, using the
recursions (3.29) and (3.30) with initial conditions (3.36).
The optimal strategy at time k is

we=a, (T 112,y ),  k=0,1,2,---,T—1.

(4.19)
The optimal average aggregate delay is

Vo(I1h, 113) =11} d} +11242. (4.20)

Note: The vectors dj,d; in (4.20) are functions of
113, 3.

The implementation is rather interesting. The decision
space m X7 is divided at most to 27 % subsets which are
characterized by binary numbers with T-k binary digits,
ie., a,a, - -ar_,. The first binary digit of the number
associated with the subset provides according to Corollary
4.1 the optimal control in feedback form. These observa-
tions are quite useful when implementing these strategies in
a microprocessor. The only on-line computation needed, as
emphasized earlier, is that of the filter-predictor (3.29) and
(3.30) which as we have shown elsewhere [7] are easily
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implemented on a microprocessor. Specific computational
examples will be given in the next section.

Finally, observe that the value functions ¥V, are concave
in IT', concave in I1? for k=0, 1,---,T; a fact that follows
easily from the defining backwards recursion (4.10) by an
inductive argument.

V. AN EXAMPLE

As an illustration of the foregoing methodology, we
consider the example of Section II with the same arrival
rates (X' =A\? =A) and waiting costs (¢, =c, =c). The ag-
gregate delay under the optimal strictly nonanticipative
policy of Theorem 4.2 is compared with two suboptimal
policies by means of Monte Carlo simulation.
The combined two queue system is modelled as de-
scribed in (3.31)-(3.39) with the performance objective of
(4.6). A finite buffer size (N, =N, =10) is simulated, with
each queue and state estimator initialized to zero customers
(w.p.1). For the finite-horizon (7=50), Bernoulli arrival
and departure processes are generated at each time step
such that
1) no customers arrive in a queue when it is full; i=1,2
[see (3.26)].

il) no customer departs from queue / when either queue
i has zero customers or queue j ( j#i) is being served
[see (3.25)].

The selection of the optimal control sequence follows
from the normals to the hyperplanes characterizing the
value functions V(IT', I1?) of Lemma 4.1. To weigh the
merits of the calculation of these normals (optimal policy),
two suboptimal policies were simulated. Using the suffi-
cient statistic (IT;,_,, T3 ,—,) of the one-step predictor,
we define

B={(II',I1?) €7 Xa: IT*(0) >11'(0) }
c={(I", 1*) exXq: M'»>T1%}
and let

u(k)n:{l, if (I, T2, ) €B
0, otherwise
u(k)MMSE:{l, if (T, T2, ,) €C

0, otherwise.
The probability-of-zero strategy {u(k)n; k=0,1,---,T—1}
chooses to serve the queue which has the higher probability
of being nonempty. The MMSE strategy {u(k)MMSE; k=

0,1,---,T—1} selects the queue having the higher esti-
mated queue size. Recall from (3.10),

£ (k= 1) =E{x, (R)] )
:Hj(‘k_lv, i=1,2.

Both suboptimal policies are computationally simpler by
disregarding the future evolutions of the Markov chain and
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only consider the immediate cost. On the other hand, the
optimal strategy incorporates the coupling of the future
states via the dynamic programming formulation. Thus,
one expects on the average that the performance of the
optimal strategy is superior to the suboptimal ones.

The parameters selected for the model were chosen
rather arbitrarily. The case of unity cost (¢, =c¢, =1) with
the same arrival rate was investigated because the symme-
try of the problem provides a better insight into the control
selection process while not introducing other factors.
Clearly, for the two suboptimal policies, the defining sets B
and C are different when the waiting cost or the arrival
rates differ. The arrival and departure rates were chosen so
that two different traffic conditions are represented, light
and heavy.

Figs. 2 and 3 show results obtained in the first case,
intented to represent light to moderate traffic. Here A' =\?
=0.35,v=0.70. In Fig. 2 a particular sample path of the
optimal and two suboptimal policies is shown. We show
for each policy three graphs. The first and second depict
the time histories of the queues, while the third depicts the
time history of the control policy. The same arrival
processes are used under each control law and the aggre-
gate delay for each policy is computed by summing the two
queue sizes over the finite horizon. For the case of Fig. 2
the optimal policy results in an aggregate delay of 130, the
policy u™' results in 153 and the policy «™MSE in 128. In
order to evaluate better these three policies we show in Fig.
3 a table with aggregate delays achieved in 50 samples. It is
seen that all policies perform comparably for most sample
paths. This raises the very interesting question of obtaining
some analytical comparison results. This problem will be
studied elsewhere.

Similar results are presented in Figs. 4 and 5 for a
heavier traffic case with X' =A> =0.35, p=0.35. It is seen
that in this heavier traffic case, the optimal policy performs
considerably better in almost all samples. These observa-
tions seem to imply that in heavier traffic the difference
between optimal and suboptimal policies is greater, while
in light traffic it is negligible. This conclusion agrees with
intuition. Its analytical establishment, however is an open
problem.

VI. CONCLUSIONS

In this paper we have established a framework for filter-
ing /prediction and stochastic control for queuing systems
in discrete time. We have applied this general framework to
the problem of two partially observed competing queues
and have obtained an explicit solution for the finite time
horizon problem. We have explained how the solution can
be easily implemented and have presented and evaluated
briefly two other policies, suggested on the basis of intui-
tion. An analytical evaluation of practical policies which
are easier to implement than the optimal policy has emerged
as a significant future problem. »
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u u u

329 343 343
383 471 481
448 483 489
463 548 557
407 452 463
342 391 391
389 377 384
273 257 257
406 444 444
384 384 375
342 361 356
354 354 354
542 582 560
488 567 540
404 458 463
536 574 563
570 581 545
479 508 518
389 454 464
279 279 319
318 318 318
236 200 215
351 362 364
383 383 383
435 460 476
378 400 402
479 613 650
345 345 345
470 500 494
594 622 630
569 695 680
555 620 613
496 497 496
457 520 509
188 188 188
345 345 345
334 345 345
482 513 518
393 438 460
457 514 511
343 402 409
425 424 430
535 536 535
364 364 364
220 258 220
318 332 356
366 443 451
620 652 653
406 465 479
303 294 294

Fig. 5. Aggregate delays achieved in 50 samples, by each policy. ' =A%
=0.35, p=0.35.
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