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NONCOMMUTATIVE PROBABILITY MODELS IN QUANTUM
COMMUNICATION AND MULTI-AGENT STOCHASTIC CONTROL

J. S. BArRAS

Abstract. In this paper we present a survey of basic results in quantum
communication theory that utilize heavily so called noncommutative probability
models. We indicate by means of examples how these mathematical methods
can lead to actual computations in specific examples. We offer a careful review
of these non-commutative models and we observe the similarities with desired
features in the representation of the statistics in multi-agent stochastic control
problems. We then give suggestions for interpreting some of the basic constructs
of quantum models in the language of multi-agent stochastic control systems.

i. Introduction.

In stochastic control problems the main objective is to achieve
satisfactory performance of a system operating in an uncertain envi-
ronment. Typically, performance is measured by the expected value of
a performance criterion (or cost function). In classical stochastic control
there is one controller (control station, control agent) and one perfor-
mance measure. The controller employs sensors to perform measurements
on the system, collects and stores the resulting data (observations) which
are subsequently processed in actuators to produce the decisions (inputs)
that optimize the performance criterion. This process is customarily
identified as employing feedback (more precisely information feedback)
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from the system. The mathematical formulation of this classical stocha-
stic control problem is thought to be well understood to date but
explicit solutions are known only for few special cases. For example,
in [1] results on existence of optimal strategies are presented for
the case where decisions (or controls) affect only the performance measure
(or criterion) and not the trajectory of a stochastic dynamical system,
while the information available for use in feedback is arbitrary but
prescribed in advance. In [2], via the celebrated theorem of Girsanov
existence results are obtained for the case where decisions affect the
performance measure and the « state » satisfies an It0 type stochastic
differential equation. The case where the information available to the
controller is explicitly generated by some sort of noisy observation of
the « state » (i. e. the case of so called partially observable stochastic
systems) is treated in [3-5]. Different approaches to this problem can
be found in the books [6-9], at various levels of generality and mathema-
tical sophistication. An interesting approach to obtain explicit solutions
to some stochastic control problems appears in Bene§ [10]. In classical
stochastic control there is no concern for the interaction between
information (and its transmission) and control. Furthermore, there is
no interaction between measurement process and system dynamics and
typically selection of measurements (or observations) is not part of
the problem. If we can obtain an explicit solution there is not much
difficulty in implementing the optimal controller which does not
depend explicitly on the observation model (in the sense that the latter
is fixed). Available information is modelled by c-algebras, the system’s
« state » by a vector valued stochastic process, but is not in general
well defined and understood [14].

Serious complications arise, however, when one considers the
control of a stochastic system by various controllers with different
available information and possibly different criteria. Such problems
go under the categories of non-classical information patterns, stochastic
control of large systems, decentralized or hierarchical control, etc.
The recent special issue [16] and in particular the review article [17]
contain a wealth of information about the current status of such pro-
blems and the major unresolved issues. Thus seemingly simple problems
lead to major departures from classical stochastic control results (c. f.
Witsenhausen’s well known and often quoted counterexample [11]).
It is fair to state that despite many worthwhile and enlightening
contributions by several people the major questions still remain
unanswered. In our opinion there are two fundamental problems, whose
resolution is widely recognized as key to further progress:
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(@) The interaction between information and control. Under
this heading are such problems as communication between controllers
via « signaling strategies », « information neighborhoods » for controllers,
cost of information versus cost of control ([16-19], and the references
therein). Despite the pioneering work of Witsenhausen [11-15], who
developed a number of important formulations and results about the
separation of the use of information (i. e. estimation) and control, it is
the author’s opinion that there does not exist to date an agreed upon
and satisfactory formulation of the joint « optimization » problem in
information flow and control. However, recent results by Whittle and
Rudge [20-21] and by Ho, Kastner and Wong [22-23] suggest that,
through a combination of methods from information theory and
control, progress can be achieved in certain cases, although basically
these results give up the « real-time » character of controls in stochastic
control problems.

(b)) The concept of «state» for such a system is not well
understood, although Witsenhausen [13-14] gives results towards
a resolution of this problem. The problem stems primarily from the
fact that in multi-agent stochastic problems there need not be a preassi-
gned total time order of actions. In fact, action times may depend on
observations and controls by the same or other agents. This problem is
also related to the availability (theoretically, despite the obvious compu-
tational complexity) of a dynamic programming algorithm for solution.

In the present paper it is our aim to present a third major problem
that may appear in stochastic control problems with many agents,
which has not been emphasized to date. This is centered around the
possible interactions between measurements by different agents and
between system dynamics and measurements. We shall see that these con-
cepts are related to some of the difficulties encountered to date and are akin
to very strong interaction between information and control. This is
typically the case where one cannot prove existence of an optimal
control law (or strategy or design) [19]. We point out that similar
problems appear in communication problems with quantum mechanical
signal and noise models. We offer a brief review of some of the
major results in this area which is known as « quantum detection and
estimation». Pursuing further the similarities between these two different
problems we suggest certain new formulations for the problems of
interaction between information and control, and system dynamics and
measurement inspired by the methodologies used in the quantum
communication theory. It is seen that a « npn-commutative » probability
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theory (in the sense the term is used in the axiomatic foundation of
quantum mechanics [54-58]) may be necessary for some of these
problems. Our primary objective is to stimulate further investigation
of the conceptual similarities unraveled here between quantum physics
and stochastic systems control, by researchers in these different fields.
In particular, we believe that system theorists would benefit by close
study of the vast mathematical arsenal that physicists have so successfully
exploited in their problem areas.

2. Multi-agent stochastic control problems.

2.1. HEURISTICS.

We are interested in decentralized control problems where one
wishes to specify an optimal design, in Witsenhausen’s terminology
[12] [13] but with the additional characteristic that there is some
flexibility over the information pattern. By that we mean that there are
available several alternatives for the information available to each
controller, on which decisions have to be based. What can be said
abstractly about the joint selection of information and control pattern?
Obviously, we are not interested in an exhaustive search between all
possible information patterns. We are also interested in problems
where there is no strict preassigned order of action times to be foliowed
by the various controllers (or agents). Both phenomena occur quite
naturally in systems with very large number of agents. Thus in economic
systems each agent (which can be an individual or an organization)
has ample choice of sets of data on which to base decisions (consider,
for example, the various economic indicators or statistical data reduction
results available to the public and the government). Furthermore it
does not appear that there exists a strict preassigned order of action
times in economic systems. In systems with such properties, we encounter
a new kind of difficulty. Mainly, since control actions by one controller
affect the measurements (or observations) of another there may very
well exist situations where efforts by two agents (by choice of infor-
mation and control) to cbtain as accurate as possible values for two
critical (for their actions) variables will be in conflict, resulting in the
impossibility of such simultaneous accuracy. This certainly requires
very strong information-control interaction. Finally, we are interested
in systems where the agents can anticipate certain control actions by
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other agents when they are informed of the type, and not the results,
of measurements performed by these other agents. Such so called
anticipatory systems have been studied by others [25]. Often it is
possible to give a statistical description of such a system’s reaction to
measurement. Roughly, the system’s « state » changes due to the measu-
rement performed. It is quite interesting to note that such properties
were used by Wigner [25] [31, p. 187] to produce a well known (but
rather easily resolved) paradox in quantum physics. Such phenomena
can be seen again in economic systems where, for example, measurement
of income levels for taxation may have adverse effects on productivity.
In another setting the knowledge by a driver that a traffic detector
exists nearby, may cause changes in his velocity in order to, for example,
catch the green or yellow at an intersection. Some immediate questions
of interest are: i) What are the implications of such phenomena on
the probabilistic models used in stochastic control? ii) Are there
any assumptions that will permit a reasonable definition of a « state »?
iii) How can we formulate optimization problems for such control
systems? iv) Can we solve any?

It is not our cbjective to provide complete answers to any of the
above questions, we do not believe this is feasible. Instead, we will
promote the thesis that for several classes of such systems, certain
models and methodologies from quantum physics can be successfully
employed. We shall also make an effort to discover and isolate assump-
tions (or properties) that permit the use of such models.

2.2. THE NEED FOR A NON-COMMUTATIVE STRUCTURE.

The heuristic discussion of the previous section suggests that a
careful examination of the information available for decisions and
a precise description of its place in the mathematical formulation are
necessary for further understanding of these problems. Witsenhausen
in [11] [13] proposed a model for doing this. According to that model
the system’s dynamics are determined by the realizations of the noise
variables and all control variables. The performance measure can also
be expressed as a function of these same variables (by solving the
system’s equations). Finally for each decision, the data available for
that decision, are functions of these same variables, and define a o-field
in an appropriate space. The complete specification of the control
problem consists, according to [13], of the specification of the per-
formance measure and these o-fields.

e
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Following [11], [13] let (2,9, P) be the probability space for
the intrinsic random variables of the system (called actions of nature
in [13]) and suppose we have a finite set A of agents acting on the
system. In this formulation a controller acting at two different times
will be considered as two different agents. Let (U,, F.) be the measu-
rable space in which agent a€ A selects his control action u,. Considering
product sets and product o-fields, to a subset B of agents we associate
the set

Hz=02X HBU,z (2.1)
ac€
and the o-field
Fp=WV x sz .. (2.2)

All o-fields (2.2) are considered as subfields of ¢4 using the natural
projection of H,; onto Hp. The information available to agent a is
characterized by a subfield 9, of Fa. The possible control laws for
agent g are the functions y.: Ha—> U, which are measurable from
J. to F,, they form the set I',. Then the control for the subset of

agents BC A can be chosen from I's= II I', and the whole design in
ael;

I'a. Witsenhausen then goes on to characterize various types of information
patterns (i. e. the collection of Y,), such as causal. classical, quasi
classical, without self-information etc.

Our first point is that in a well-posed multi-agent stochastic control
problem, the agents will make inferences about system variables based
on their own information fields 9. (appropriately pulled back in 93).
That is the agents will compute conditional expectations (and/or
probabilities) either implicitly or explicitly. To us one important diffe-
rence between classical and nonclassical information patterns is that
these operations commute in a classical pattern and do not commute in
a nonclassical pattern. Indeed according to [13] an information pattern
is classical if it is sequential (i. e. there is an ordering (ai, a, ..., an)
of A such that Jo,,CFiy, .0,y for 1<k =<n) and I, cF,,
gak—lcg“k for k=2,...,n. Then the commutativity of conditional

expectations is just a consequence of the smoothing property of condi-
tional expectations [26]. The statement for the nonclassical patterns
is also obvious. The non-commutative modifier of our title refers to
the corresponding property of conditional expectations. We adopt the
point of view that the o-fields I, forming the information pattern are
generated (or correspond to) by measurements (or observations) per-
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formed on the system. The natural question is then: Does there exist a
different model than the one described above, which can describe
statistically the events (observations) associated with a multi-agent
stochastic control problem, including an intrinsically non-commutative
conditional expectation operation? We shall see in section 4 that there
is an affirmative answer, and that a prime example of such probability
models is the von-Neumann model of quantum mechanics [27].
Second, we firmly believe that one of the deficiencies in the
current development of decentralized stochastic control is that the
information pattern is assumed fixed and given apriori. Little effort
has been directed towards « optimal » selection of information pattern.
The articles that address such problems (see references in [12] and
[17]1), use a formulation that represents the choice of information
pattern as an optimization problem over a finite set of parameters. The
usual method of attacking such problems is to solve a parametrized
family of stochastic control problems, then select the parameters which
result in better performance, and thus choose the corresponding infor-
mation pattern. This approach has been followed for example in problems
of optimizing sensor locations in distributed systems, problems with
considerable communication costs between agents, optimal selection of
parameters in the output equations (corresponding to sensor optimization).
It is important to realize that in the design of a distributed control
scheme the choice of information pattern is at least as important a
task as the choice of control actions. However a proper formulation of
the joint optimization problem escapes us todate. One reason is that
all formulations of multi-agent stochastic control problems are unbalanced,
in the sense that controls dominate while the information pattern is
carried at best as a set of parameters. Consider how difficult would be
to pose such a problem in Witsenhausen’s model [13]. From practical
examples it is well known, that a wisely chosen information pattern can
reduce considerably the control optimization task. The non-commutative
probability model of quantum mechanics developed by von-Neumann
[27] allows a better formulation of the measurement selection problem.
Properly extended to current axiomatic models of quantum physics, it
contains several suggestions in formulating the information pattern
selection problem. We discuss these ideas in section 4. There are
however differences between the quantum mechanical logic (or propo-
sitional calculus) and a proper probabilistic model for a multi-agent
stochastic control problem. The most important one is that the non-
commutative model was created in quantum mechanics to characterize
the passive interaction between a measurement process and a system.
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In stochastic control however we have in addition the active operation
of controls which we try to use to influence the system’s behavior in
addition to changes in the system due to measurements.

3. Quantum communication.

3.1. CLASSICAL VERSUS « QUANTUM » NOISE AND SIGNALS.

In classical communication theory, the signal (message) to be
transmitted is used to « modulate » a carrier signal which typically is an
electromagnetic wave at radio frequency (low frequency end of spectrum
used for telecommunication), which (modulated carrier) is then propa-
gated through a communication channel to the receiver. The function
of the receiver is then to resolve the distortion introduced into the
signal due to propagation and reception, in a way that minimizes a
given distortion measure, and recover the transmitted signal. At radio
frequencies we have thermal noise as the primary source of distortion in
the received signal. This may be intrinsic thermal noise or thermal
noise processed by some linear or nonlinear electronic device. A funda-
mental assumption in classical communication systems design is that
the optimal receiver does not depend on the channel model and the
noise model. This is primarily due to the suppression of any nonreversible
interaction between measuring apparatus and the carrier field, and is
a consequence of the noise (random contamination) model assumed.

In communication at optical frequencies such as laser communi-
cation systems, however, a completely different noise model is necessary
in order to explain observed experimental data. So theory [29] [30]
predicts that as the frequency increases thermal noise power decreases,
but a new type of noise appears, the so called « quantum noise ».
The most common manifestations of quantum noise are in the spontaneous
emission by a laser amplifier and in the detection of light by a photo-
detector. Both noises are ultimately determined by the measuring process
of quantized radiation and, therefore, are quantum phenomena. It is,
therefore, necessary to bring quantum physics into the description of the
receiver with the result being that the measurement outcomes are
random (no matter what measurement we perform) with statistics
dependent on the measurement performed. It is, as a consequence, no
longer true that the receiver can be constructed independently of the
signal and noise model.
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Glauber’s article [28] contains a very enlightening discussion of
the differences between noise and signal models in the radio (low) and
light (high) frequencies end of the telecommunications spectrum. An
additional reference is [29]. Briefly, there are two main differences: a) at
the low frequency end of the electromagnetic spectrum we have large
quantum densities of nonenergetic quanta while at high frequencies
we have very small quantum densities of highly energetic quanta; b) at
low frequencies we have almost complete spatial and temporal control
of the waveforms we generate, while at high (optical) frequencies we
loose this possibility rather quickly (for example, we can have spatial
control of the field but the amplitudes tend to fluctuate uncontrollably).
Both @) and b) are manifestations of the uncertainty principle of quantum
mechanics [30] [31] which can also be thought of as measurement-
control interactions or as state-measurement interactions (in the language
of stochastic control).

Clearly, the same remarks are valid for the transmitter (or source),
since measurement-control interaction manifests itself in the modulation
of a carrier signal at optical frequencies.

In conclusion, at high (optical) frequencies the interaction between
control variables affecting measured variables of an optical field requires
the introduction of quantum physics laws for proper treatment. We
shall see that this is a result of the different, nonclassical structure of
the fundamental propositional logic which has to be created to explain
these interactions. In this section we present an outline of the major
results obtained in the simplest of communication problems, that of
signal detection, when the classical Hilbert space model of quantum
physics is used. While doing this we emphasize and interpret the
differences from the classical theory.

Comprehensive references on Quantum Detection are the recent
monographs by Helstrom [32] on physics-communications aspects
and by A. S. Holevo [33] on mathematical aspects. In the author's
opinion, the best exposition of some of the difficult optimization pro-
blems involved for the Hilbert space model of quantum physics can be
found in the thesis of S. Young [34]. Holevo’s monograph treats a
more general model however (operator algebra model).

3.2. CLASSICAL M-ARY DETECTION.

In the classical formulation of detection theory (Bayesian hypothesis

testing) [32] a certain « system » is observed and we obtain # numbers
I’y
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v, ... , Un On the basis of which we have to decide about the « state »
of the system. The system may be in one of M states and we call
hypothesis H;, j=1, ..., M the proposition « The system is in state j ».
The observed data vector v={vi, v, ..., v}’ is random with proba-
bility density p; (v) depending on the hypothesis. (Note the « system »
may be absolutely fictitious). We also assume we know the prior pro-
babilities {; of hypothesis H; being correct. We then let C; be the cost
incurred by choosing hypothesis H; when H; is true. A decision strategy
is a rule which assigns a hypothesis H;, to be chosen, for every value
of observed data ». A randomized decision strategy consists of M functions
7; (v) such that

p Y
0<m@®=<1, 2 m@=1, 3.1
i=1

where

m; (v)=Pr {H; is chosen when observed data vector is v}.

Then the « risk function » for hypothesis H; is
M
W: (v)= 21§i Cij pi (v) (3.2)
J=
and the average Bayes cost for a strategy is

J= ; Wi (v) m: (v) dv. (3.3)

J =1

R~

The solution to this classical problem (which is just a convex optimization
problem) implies that the optimal decision strategy is

7* (0)=1, m* (@)=0 i+j,
(3.4)
at all veR" such that W; (v)<W; (v) i=]j.

That is a pure strategy, not a randomized one. The effect of including
randomized strategies is in this case to convexify the set of admissible
strategies, but since the extreme points [36] are pure strategies, it is
done here only for mathematical convenience and has no further signifi-
cance. As a consequence there is no difficulty in implementing this
classical optimal decision strategy. If we let

Y (v)= min W; (v) (3.5)
j
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the above solution is equivalent to

[Wi(v)—Y (@)] 7: (v)=0

(3.6)
W: (@)=Y (v)
for all v, i. Furthermore,

M
Y ()= Z W) m (v) (3.7)

and N
/mm:i[ Y (v) do. (3.8)

Rn

3.3. QUANTUM STATES AND MEASUREMENTS.

In the quantum formulation of the same detection problem,
« system » states and observations have to be described according to
the laws of quantum physics. Now in the Hilbert space model of
quantum mechanics, we associate with a quantum system [30-32] a
complex Hiibert space “€. Let us denote by 2 (%) (L, (%)) the space
of all bounded (and selfadjoint) operators on ¥ [30]; by T (%)
(Ts () the space of all trace-class (and selfadjoint) operators on ¢;
by L+ (), Ts* (%) the nonnegative operators in Ls (), ‘T, (%) [37].
The basic notion in quantum mechanics is that of an observable which
is thought of as corresponding to some physical measurable variable (i. e.
energy, momentum, location). Observables actually form the starting
point in the mathematical development of quantum models in certain
studies (see for example Segal [38]). In the Hilbert space model the
observables are represented as elements of L2, (“¥). Since an observable
A is selfadjoint it has a corresponding projection valued measure
(PVM) E4 via the spectral theorem. Recall that an operator Be.2 ()
is trace-class if it is compact and

S i (A% A< oo (3.9)

=1

where * denotes adjoint and A; (B) the ith eigenvalue of the operator B.
The state of a quantum system is represented by an operator p€C,* (%)
with Tr [p] =1, the so called density operator. Here

.
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Tr: T(H)—>C
(3.10)
Tr [A] :2 (A ¢n, ¢n>

and is a linear functional; in (3.10) ¢, is any orthonormal sequence
and (-,-) the inner product in %. Now since p is compact, selfadjoint
and nonnegative it has a sequence of nonnegative real eigenvalues v..
Furthermore since p is trace-class

0<wi=1, Zw=I (3.11)

and we have
p=Zvi (-, i) ¢ (3.12)

where ¢; are the normalized eigenvectors of p. In classical quantum
mechanics the unit vectors of < are the so called pure states. The
fundamental postulate being that if we measure the variable », which
is represented by the observable Ve.2, (%), while the system is in
pure state ¢, we do not get exact values but instead several values with
certain probabilities. The distribution function giving the statistics
of the measurement outcome when the system is in pure state ¢ is

Fo (§)=Tr[Ev(—e,8]1 (-, ¢) ¢] (3.13)

where Ey is the PV M associated with V. The model thus, via the
simple rule (3.13), avoids detailed description of the numerous possi-
bilities of microscopic state transitions in the measurement-system
interaction, and instead provides statistical information which allows
computations of macroscopic variables (such as moments) that can
be recorded by the instruments. Often, and in particular in communication
problems we do not know precisely the state of the system, we rather
have some prior probabilities about the system being in various states.
This is exactly the interpretation of the real scalars v; in (3.11) (3.12).
As a consequence p in (3.12) is also called a « mixture state » [30, 31].

The modelling of measurements via projection valued measures
(see (3.13)) is inadequate for communication problems. This was
demonstrated by Holevo [39] and independently by Davies [40]. Davies
considered repeated measurements on a quantum system and examined
the difficulties arising from the notorious « reduction of the wave
packet » formula. Conventionally it is assumed [37] that if a measure-
ment of the observable A with discrete spectrum {2:} (assumed for
simplicity here) is performed on a quantum system at state p, the state
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immediately after the measurement is

Pi P Pi
(= 14
“TTrp Pl G149
where P; is the spectral projection corresponding to A:. Suppose the
first measurement is immediately followed by a second, represented by
B with eigenvalues y; and spectral projections Q;. Now the probability
of obtaining A; at the first measurement and y; at the second is

pii=Tr [p P; Q; Pi]z ]
2 pii=1. S (3.15)
i\ j
Now an important consequence of quantum physics, is that there are
incompatible observables; that is there are variables which cannot be
measured simultaneously with any desired accuracy. In the Hilbert
space model this is equivalent to noncommutativity of A and B. If then
A and B are not compatible what is an appropriate model for their
joint statistics? Well (3.15) suggests defining

subsets of
R:Z><Z —L () (3.16)

R (E)=X{P:Q; P; (i,j)€E}

(where Z is the set of integers) which has the properties: R (E)=0,
R (¢)=0, R(ZXZ)=1, R( || E))= X R (E,) in the strong operator
| 1

n=l n=

topology ( | | denotes disjoint union). That is R is a probability operator
measure POM [37,41]. Furthermore

Fep'eated Ipeasurement outcome =Tr [o R (E)]. (3.17)
is in E, given state p

So it is possible to define a joint distribution for two non-commuting

discrete observables! In general this POM depends on which of the

two measurements is made first. Furthermore the state-measurement

interaction

Q,' PiPPi Q,’

ir [Q Pip P Q)] (3.18)

g
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”

can be completely characterized by the map
Se(p)=Z{Q;PipP; Q;: (i,))€EE}, (3.19)

which defines (modulo an obvious normalization) the change of state
induced by the composite measurement conditioned upon the outcome
lying in the set E. Clearly Sg is a positive linear map and it contains all
the information about the measurement as well as its interaction with
states. Such maps were called operations by Haag and Kastler [42].
We refer to the excellent treatment by Davies [37] for further
developments along these lines. We would like only to emphasize that
the notions of operation and POM were introduced in order to handle
interactions between noncompatible measurements and between states
and measurements, in quantum systems.

This seems to be an appropriate place for introducing the formal
mathematical definition of a probability operator measure. A POM with
values in the measurable space (U, ) [41] (recall measurable space=a
set U with a o-algebra of subsets of U, W) is a map M: B — L ()
such that

(i) MB)=0, VBe®
(if) if {B;} is a partition of U then s (3.20)
2 M (B)=I (in the strong operator topology on ). \

That is a POM is a positive operator valued measure [41, p. 6] such
that M (U)=1. It is also called a generalized resolution of the identity
[44, p. 121]. It is worth noting that if M is an orthogonal resolution
of the identity, i. e. if in addition BNC=¢, for B, Ce93, implies
M (B) M (C)=0, then M is necessarily a spectral measure (or PVM)
'[41, p. 12], i. e. M (B) is a projection ¥Be93. Holevo [43, p. 341]
termed such POM’s measurements for quantum systems. PVM’s are
termed simple measurements. As in (3.17) a measurement represented
by the POM M, when the quantum system is in state p, produces a

random variable » whose statistics are described by the probability
measure

pB)=Tr [p M (B)] (3.21)
VBeN.

Davies [40], [45] and Benioff [46-48] have shown that the
joint statistics of the sequence of outcomes produced by any sequential
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measuring procedure (involving simple measurements, or observables)
on gny quantum system can always be described by a POM via a formula
like (3.21). Note that this result is an extension of the example above
involving two simple measurements. In [45] Davies and Lewis showed
that von Neumann’s repeatability hypothesis is too restrictive in describing
statistics of repeated measurements and its abandonment leads to the
POM model. This representation is valid even if the observables to be
measured at a later stage of this process are chosen on the basis of the
outcomes of earlier measurements [47], and even if the quantum
system evolves in time, between measurement times, according to the
laws of quantum mechanics (i. e. Schrddinger’s equation or its conse-
quences). Thus the notion of a POM encompasses the statistical descrip-
tion of the outcomes of every conceivable measurement process. However,
whether or not there exists an instrument which realizes these statistics
and how to construct it are questions we know very little about.

3.4. QUANTUM M-ARY DETECTION.

Holevo arrived at this generalization of a quantum measurement
by considering the quantum formulation of the M-ary detection pro-
blem [49]. In analogy with the classical detection problem a certain
quantum « system » is observed and we obtain the outcome wv. The
system may be in one of M states which are represented by density
operators p; in Ts* (%) corresponding to the hypotheses Hi, ...» Hu.
In view of the interpretation of v; in (3.11) the operators p; are the
analogues of the densities p; in the classical problem. Now if the
outcomes v are represented in the quantum model by a POM M, then
pi () dv=Tr [p; M (dv)].

Then for a randomized decision strategy (3.1) the average Bayes
cost from (3.3) is

M M
J=| 2 X (i CiTrlp; M (dv)] m: (v)
1

=1 j=
R»
(3.22)

M
=Tr 2 W,' Hi

1=]

where W;€Cs (%) are the «risk operators » [32]

M
Wi= 2 §,~ C,'j 2j, i:l, ..".,M (3.23)
j=1
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’

and II; are the « detection operators » [32]

II;= [m (v) M (dv). (3.24)
R~

Here it is easy to see that I7;, i=1, ..., M, are self-adjoint, non-negative
and

2 II;=1. (3.25)

That is the set IT;, i=1, ..., M forms a POM on 9. Note that since pi
depends on M, for the quantum problem it is necessary to specify not
only the scheme for processing the observed data (i. e. the functions
7 (+)) but also the measurement to be performed. It is in this sense
that the receiver depends on the noise and signal model. It is also important
to emphasize that the detection operators form a POM and not a PVM.
For, an instrument that simply guesses which hypothesis might be
true, selecting an arbitrary one with probability 1/M without even
interacting with the system corresponds to a measurement with detection
operators

]7,-:1\% I, i=1,..,M

which certainly are not projections.

Thus mathematically the solution of the quantum M-ary detection
problem is to select a POM II;, i=1, ..., M to minimize the Bayes cost
(3.22). This is a linear programming problem with convex restraint set.
The duality theory is delicate and for the details we refer to [34]. The
solution is described by (see also [50], [35]):

THEOREM 3.4.1. There exists a solution to the problem

M
min Tr Z Wi Hi

=1

over all M-component POM’s, where W:€ T, (). A necessary and suj-
ficient condition for the POM II;*, i=1, .., M, to be optimal is that

A
(1) 2 ‘V,H,SW,, l——‘l, ,M
=1

j=
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or

hig
(ll) 2 H]' W,'SW;‘, 121, ...,M.
j=1

Furthermore, under any of the above conditions the operator

S

i
Y= 2 W;II;)= 2 II; W; (3.26)
=1

=1 j

is self-adjoint and is the unique solution of the dual problem.
It is easy to see that in view of (3.26) (i) or (ii) are equivalent to
Y (in (3.26)) being self-adjoint and

w.=Y, i=1,..,M. (3.27)
Then (3.26) (3.27) imply
W:—=Y)II,=II,(W,—Y)=0, i=1,2,..,M. (3.28)

Furthermore,
Jmin=TrY. (3.29)

We obscrve that (3.26)-(3.29) are very similar to the equations describing
the solution to the classical problem (3.6)-(3.8). There are, however,
several fundamental differences, which we now discuss.

First, as we mentioned above the design of an optimal receiver
consists of the simultaneously optimal choice of a measurement process
and a data processing scheme.

Second, the consideration of measurements (i. e. POM’s) instead
of just simple measurements (i. e. PV’M’s) is not done just to convexify
the problem. The extreme points of the optimization problem considered
here, are not PVM’s. To see this consider the simple example [43] of
linearly polarized photons, with polarization angle equal to @r =
=27 (k—1)/M, k=1,2,..,M with equal probabilities {x=1/M, and
take the simple cost assignment C;=1-—0d;. Let 9 be two dimensional
complex space C2% E; i=1,..,M the projections on M directions of
polarization. Hypothesis Hj, corresponds to the density operator

{ 1 exp (—16k)
Ok=—7" =F.. (3.30)
exp (i &) 1
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”

Then from (3.23) W,=051—M"! pi and it is easy to see that the
operators

Ii=2M-'E, (3.31)

satisfy the optimality condition of Theorem 3.4.1. The minimum average
Bayes cost (which here equals the average probability of error) is (3.29)
Jmin=1—2M"". Pure guessing gives 1 — M-’ But more importantly [49]
the minimum over all PVM is higher than the above value. For example,
for M =3 the minimum average Bayes cost over all PVM is
2-1'3/2) | 3>1-2/3=1/3. It is clear that PVM’s correspond to the
pure strategies of the classical problem. Indeed, the decision maker meas-
ures the observable corresponding to the PVM, he observes one of M pos-
sible values, he chooses then the corresponding hypothesis. So we have
the important difference that the solution to the M-ary Bayes Decision
problem with known apriori statistics does not lead to a pure strategy,
in the quantum model. Holevo showed in [49] that POM’s constitute
an appropriate generalization of the randomized decision strategies in
the classical theory. To see this, observe that if the detection operators
Il commute, they have a common spectral measure [44], E. So there
exist non-negative functions f; such that

H,-:f fi @) E (dv).

Mg M
Since X II;=1, X fi @)=1 for each vweU, that is fi (v) can be consi-
=1 j=1

dered as probabilities. Then such a POM is equivalent to measuring
the observable corresponding to E and deciding hypothesis H; is true
with probability f; (v), when the measurement outcome is v.

Third, while there is no implementation problem in the classical
M-ary detection, solving for the optimal POM in the quantum detection
does not guarantee an implementation for the optimal decision rule
as well. It is only for very few cases that the solution to this implemen-
tation problem is known [32].

Helstrom [32] examines several examples of detection problems
and gives details about their solution. One can also find in [32] solutions
to the implementation problem in specific cases. Recently Yuen and
Shapiro [69-71] have analyzed the other end of the communication
problem (i. e. the source) and found that transmission in certain states
called two-photon coherent states can reduce considerably the quantum
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noise and therefore induce improved detection at the receiver. The so
called quantum channel has also been investigated from the point of
view of information theory and in particular its capacity has been
analyzed by Holevo [72] [74-76] and Ingarden [73].

4. Non-commutative probability models.

4.1. Locic oF QUANTUM MECHANICS.

In the previous section we gave a brief description of a rather
well known model for quantum physics, although some of its aspects
(such as the generalization from PVM to POM) are not widely known.
These extensions are primarily due to proper formulations of communi-
cation problems. Since the initial proposal of von Neumann’s model of
quantum physics a subfield has been created with its main objective
being the deductive derivation of the initial model, or other models
proposed later, starting from few phenomenological axioms. Such work
is of paramount importance and has led to various improvements of
the initial model which closely reflect physical reality. We note that
similar studies have not been undertaken in the area of multi-agent
stochastic systems. The primary benefit from such works is that the
various physical assumptions, engineering intuition, etc., are built into
the algebra of the model and this process mechanizes the subsequent
derivations. The realization theory of deterministic dynamical systems
in its current algebraic form [51-53], with its manyfold uses in various
control and systems problems, should be a motivating example. However,
a non-classical stochastic realization (or representation) theory is needed
for multi-agent stochastic systems.

In quantum mechanics such an approach was originated by
Birkoff and von Neumann. The starting point was the structure of
propositions, that is yes-no measurements [31]. Due to its similarity
to a logical system the set of propositions is called quantum logic. This
set can be easily given the structure of a lattice and the basic question
addressed by physicists was: is there any set of phenomenological
axioms that can allow one to identify the quantum logic with the set
of orthogonal projections on a complex Hilbert space ¥? Details of such
theories can be found in [31]. There is one major disadvantage in this
school of thought, however, as pointed out by Pool [54]. It tacitly
assumes the structure of quantum logic is sufficient in itself to determine
the mathematical formalism which should b¢ employed in the quantum
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theory. This is not true, however. It is a fact that quantum mechanics
is used not so much to reproduce the logical properties of simple yes-no
experiments (and sequences of those) but rather to compute transition
probabilities, cross sections, etc. Therefore, the probabilistic aspects must
be unified with the logical aspects. The interested reader is referred to
[54-58] for details in the developments of the axiomatic foundation.
Briefly, (we follow [58]) there are in the model three basic elements:

i) the set &, of simple events (or effects), which can be ascer-
tained by some sort of physical measurement (or sequence of measure-
ments),

ii) the set & of states (or ensembles) of a physical system,

iii) the probability function P: € X — [0,1], with P (p, a)
(for pe€.aed) giving the probability of occurrence of the event p in
the state a.

The triple (&, 5, P) is called by Pool an event-state-structure and
it represents a specific class of physical systems. Phenomenological
interpretations of the general aspects of the quantum logic approach
are discussed in [31], [54-58]. A set of physically motivated axioms
are imposed on (&, d, P) [58]. These axioms guarantee the existence
of the certain and impossible events; imply an antisymmetric relation
of implication, and thus a partial order on € (denoted p=<g for elements
p. ge€); imply existence of the negation p” of an event pe €. Two

A

events p, g are mutually exclusive if p<q’. A set «dual » to o§,d is
constructed as the set of functions

s €— [0, 1]
4.1)
t. (p)=P (p,a), aed, peé

Finally an axiom asserts the existence of the least upper bound (for
the partial order <) of countable sets of pairwise mutually exclusive
events and the law of additivity of probabilities for mutually exclusive
events. A poset is a set together with a partial order. So (&, <) is a
poset. An orthocomplementation on a poset X with a least (denoted
by 0) and greatest (denoted by 1) elements is a mapping ": X — X
such that: (i) (x")'=x, xeX, (ii) x, yeX and x<y, then y’'<x’, (iii) if
xeX then the greatest lower bound xAx’, and the least upper bound
xVx" of x and x" exist and equal O and 1, respectively. The relation
L of orthogonality is defined via x Ly if x<y". An orthoposet (X,<,)is a
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poset (X, <) together with an orthocomplementation such that if

x,yéX and x Ly then xVy exists. An orthoposet is a o-orthoposet if

X1, X2, ..€ X and x; Lx;, i=j then \V x; exists. An orthoposet is ortho-
T

modular if x,yeX, x<y imply y=xVX'Ay). If (X, <, is a o-
orthoposet then a probability measure on X is a function p: X — [0, 1]
such that: (a) x (0)=0, u (1)=1, (b) if x1, x2, ...€ X, x;: L x; for i%] then
p (V x)=2 p (x:). Let U be the set of probability measures on X. Then

W is: (a) order-determining if x,yeW and u (x)<u (y) for all ueUW
then x<y; (b) strongly-order-determining if x, ye X, {ueUWU: u (x)=1}c
c{ueUWU:u (y)=1} then x<y; (c) separating if x,ye X and u (x)=pu (y)
for all ueW then x=y; (d) o-convex if wi, s, ...€ W, A1, Az, ...€ [0, 1]
with Z/L:l then 3 ueW such that u (x)=2Z A; g (x) for all xeX.

Then one has the following results [58] as a consequence of the
axioms imposed on an event-state structure (&, d, P).

THEOREM 4.1.1: If (&, d, P) is an event-state structure then
a) (&, <, is an orthomodular c-orthoposet,

b) & is a strongly-order-determining, o-convex set of probability
measures on (€, <,"),

C) a—> U is a bijection of S onto 3.
THEOREM 4.1.2: If

a) (X, <, 1) is an orthomodular s-orthoposet,

b) U is a o-convex, strongly-order-determining set of probability
measures on X, and

¢) P: XXU—T[0,1] is defined by
P(x,m=m(x), xeX,meUW

then (X, U, P) is an event-state structure. Moreover, for x,yeX, xSy
iff x<y, for xe X, x' =x" and U =U.

It is a consequence of these theorems that an event-state structure
may be viewed either as a triple (&, o, P) satisfying certain axioms or

as a pair (€, d) where & is a o-convex, strongly-order-determining set
of probability measures on an orthomodular o-orthoposet.
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The reason for this discussion is to indicate that such an event-state
structure is a reasonable model for the probabilistic structure of a
multi-agent stochastic control system. In fact, it is not possible to
find well founded objections in postulating that the set of simple events
in a multi-agent stochastic control system is an orthomodular o-orthoposet.
Note, as we shall see shortly (see example 2 below), that Witsenhausen’s
formulation [13] in terms of product o-fields clearly satisfies the defining
axioms. We find no objection in adopting the axioms for the set of states

o either; and thus that the set of states has a structure like c§ above.
Actually, there may be several options for cli [11], [13], [14].

ExamMpPLE 1: Let PP (%) be the set of all orthogonal projections
on a separable complex Hilbert space ¥, and let < be the usual
order of projections: Q1=Q: iff Q; Q:=Qi. Let Q"=/— Q be the ortho-
gonal complement of Q. Then (P (%), <,”) is an orthomodular

o-orthoposet. Let S ={peT;* (¥),Tr[p]=1} and éz{up(-),ped;

u, (Q)=Tr [p Q]}. Then cAS, P () satisfy the conditions of Theorem
4.1.2 and, therefore, they represent an event - state structure with the
probability function being P (Q, p)=Tr [p Q], which is of course von
Neumann’s Hilbert space mode! used in 3.3. It is instructive to
study the physical arguments that lead to additional axioms [31] [54-58],
which allow one to identify the general event-state structure discussed
above with that of von Neumann.

ExaMPLE 2: Consider the event-state structure (&, 5) where &

is a o-algebra of subsets of a set X and Sis a o-convex, strongly-order-
determining set of probability measures on . This is the classical
Kolmogorov model of probability theory with several probability measures.

4.2, NONCOMPATIBILITY AND OPERATIONS.

We know from the brief exposition in 3.3 that there is one, at least,
fundamental difference between the event-state structures described in
examples 1 and 2 of 4.1. Namely, example 1 allows for events which are
not compatible (i. e. not simultaneously observable), while this cannot
happen in example 2. We recall from our discussion in 2.2 that this is
required in a model for a multi-agent stochastic system. Formally, to
describe compatibility, one introduces a relation C (compatibility)
on € via:

L4
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for p, ge €, pCq iff 3 a Boolean sublogic W< €
(4.2)
such that p, ge B

This relation C may be defined as follows: for p, ge €, pCq means 3
Po, go, r€ € such that: (i) poL qo, (ii) poL7, and p=poVr, (iii) go L r and
q=qo\Vr. Now, clearly if p, ge €, and pCq then pAq exists in €. Then
one deficiency of the event-state model of 4.1 is that the following
question cannot be answered satisfactorily: if p, qe&, and pZq (p, q
non-compatible) then does p/Agq exist in €? Physically, this translates
to: if observation (measurement) procedures for two incompatible (i.
e. non-simultaneously observable) events are given, then how does one
describe the observation (measurement) procedure for the « and » (or
conjunction) of these two events. A similar problem appeared in section
3.3 where it was circumvented by introducing the notion of an operation
in the von Neumann model (3.19).

This question is linked with the concept of «conditional probability»
in an event-state structure. In the Kolmogorov model the concept of
conditional probability and the associated concept of Radon-Nikodym
derivative are of paramcunt significance for the analysis of classical
stochastic control systems [26] [6-9]. In the classical model conditional
probability is expressed as a mathematical object defined constructively
in terms of the primitive entities of the theory. How can this be done
in the generality of our discussion here? The hint comes from the
interpretation of the operation introduced in (3.19) in order to handle
joint statistics of repeated non-compatible measurements on the same
system. That is operations are a form of conditioning. Indeed, the
transformations (3.14), (3.18) are widely employed to represent the
concept of conditional probability in von Neumann’s model. This
approach leads to difficulties, however, [37]. These are circumvented
by introducing event-state-operation structures, (Pool [58]). We follow
the exposition in [58]. An event-state-operation structure is a 4-tuple
(€,d,P, T) where (&,d, P) is an event-state structure and T is a
mapping from & into Z= {set of all maps from J into o}, which
satisfies certain axioms. If pe&, T, is the operation corresponding to
the event p. The first axiom defines the domain of T, as D,={aed;
P (p,a)#%0}. Since for pe& and a€D,, T,a is interpreted as the
state conditioned on the event p and the state g, the first axiom is just
for consistency. The elements of the set Sr={T,, oTp 0...0oTp ;
pi, ..., pn€E} are called operations (o is composition, order of appli-
cation is from right to left). Other (necessary) consistency axioms are:
(ii) if P(p,a)=1, then T,a=a, (iii) if deD,, P (p, T, a)=1. There is
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an axiom guaranteeing consistency in « reversal » of experimental pro-
cedure. Now (S7,0) is a sub-semigroup of X and the latter axiom
provides this semigroup with an involution denoted by *; i. e. a map*:
Sr—> Sr which maps the operation x=T,,0 ..o T into x*=T, o ...0 T,
such that: (a) for x€Sr, (x*)*=x; (b) for x, yeSr, (x 0o y)* =y* o x*, That
is (St,0, *) becomes an involution semigroup. Note that if 0 and 1
denote the least and greatest elements of &, then T, is the identity of
Sr, while Ty (has empty domain) is a zero of Sr. The meaning of the
latter becomes clear by observing that for any pe &, T, o To=To o T,=T.
Furthermore, we need an experimental procedure to determine whether
a state belongs to the domain . of an operation. There is an axiom
which guarantees the existence of an event ¢.€ &, such that g. occurs
with certainty in the state a if and only if @ does not belong to Q..
For each pe&, T, is in the set of projections of Sr

P (Sr)={e€Sr=coe=e*=e¢}. 4.3)

P (Sr) is a poset where e<f means eo f=e. Then pe€ > T,eP (Sr)
is an order preserving map. Also consider the map™ : St —> P (Sr) which
maps x€Sr into the element 7, €% (Sr), where g. is the event which

helps us test if a state is not in .. Clearly To=T; and if x=T, then
x=T,.

Now a Baer*-semigroup (S,o,*,” ) is an involution semigroup
(S,0,*) with a zero and a mapping”™ : S— P (S) such that if xeS,

then {yeS: xoy=0}={y€S: y:;o z, for some ze€S} ( i. e. an invo-
lution semigroup where the annihilator of each element is a principal left
(right) ideal generated by a self-adjoint idempotent). The closed projec-

~

tions of a Baer*-semigroup are the elements of @(S):{ee SD(S)I(eN):e}.
Then we have,

THEOREM 4.2.1: If (€, d, P, T) is an event-state-operation structure,
then (Sr,o, *,”") as constructed above is a Baer*-semigroup. Moreover,
the mapping pe € — T,eP (Sr) is an isomorphism of the orthomodular

orthoposet (€, <,”) onto the orthomodular orthoposet (P (S), <,7).
Let us see how these constructions look in the two examples.
ExamMpLE 1: The event-state structure (P (%), d, P) of von Neu-

mann’s model admits an operation map T. If a is the state with density
operator p.€ and P (Q, a)=Tr [p. Q] 30 then Ty « is the state a’ with

density operator pafzzg[p; %]

If xeSr and x=Ty,0..0o Ty, where

L4
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Qi ..., QueP (¥) then g, is the projection Q on the null space of
Q: Q... Q..

ExaMPLE 2: The event-state structure (é,cAS) of the Kolmogorov
model admits an operation map. For pe &, T, is defined via:

Dpy={ped, u (p)+0}

and

T y— 4 PAQ) .
(Tp @) (9) 4 () , ge€, (4.4)

which is the usual conditional probability.

If one views the event-state structure of the previous section as a
passive picture (in the sense that it considers only the probability of
occurrence of events), then the introduction of the concept of operation
provides an active picture. Now it is easily seen from Theorem 4.2.1
and the construction above that for p, ge €,

p<q iff T,oT,=T,. (4.5)

The natural question (from which we started in this section) is then:
Can the greatest lower bound pAgq, for p, ge € be interpreted via the
composition of the Baer*-semigroup? The answer is in [58]:

THEOREM 4.2.2: If (€, S, P, T) is an event-state-operation structure,
then (&, <,”) is an ortholattice. Moreover, if p, qe € then

—~ ,
Tpluj = (Tp’ o Tq) o 7 q .
Furthermore,

THEOREM 4.2.3: Assumptions as above. Then for p,ge€ the
following are equivalent:

(@ pCq
(b) Tp o Tq:Tq © Tp.

If pCq then Tynq =T, T,.

So in the setting of Baer*-semigroups we can associate the compa-
tible events with commutativity of the corresponding operations. Note
[37] that operations and observables are quite different kinds of
entities. It is accepted that the various constructs of Baer*-semigroups
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have nice physical interpretations in this model of quantum physics.

Returning to multi-agent stochastic control systems we note that
classical systems are characterized by a commutative Baer*-semigroup
structure, while nonclassical information patterns correspond to non-
commutative semigroups. Some natural questions that need to be
answered are: how specific structural properties of the system appear
in the structure of the semigroup? In particular, how does the informa-
tion pattern appear in the semigroup? Another important point is that
an operation associates to every event a map of the state set into itself,
which can be interpreted as due to a control law. That is we can
think of an operation as a model for the combined operation of obtaining
a measurement and applying a control law by an agent. This is the
active interpretation of an operation which we believe is significant
for stochastic control. The passive can also be used to model the system'’s
interaction to measurements.

4.3. FURTHER DEVELOPMENTS ON MODELS FOR MEASUREMENTS.

Let us consider here the particular Baer*-semigroup that pertains
in the quantum model used in section 3 to formulate the M-ary detection
problem. We saw in 4.2 that this model admits an operation map. It
turns out that it is more convenient to work with the unnormalized
version of operations [37, p. 17]. So in the Hilbert space model an
operation is a positive linear map T: T, (%) — 'Cs (%) which also
satisfies

O<Tr[T (]1=Tr [p] (4.6)

for all peT,* (). We emphasize again the phenomenological interpre-
tation of an operation: An operation describes the change of state
associated with a measurement which passes only a proportion of the
ensemble tested. The probability of transmission of a state p by an
operation S is taken to be Tr [S (p)], while the output state conditional
upon transmission is taken to be

_ S
Pout=r o™ 0 4.7)

Associated with the operation S is its effect, defined as the unique
operator A for which

Tr [S ()1=Tyr [0 Al (4.8)
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for all peT, (). The interpretation of A is that it determines the
probability of transmission but not the form of transmitted state. It is
now seen that this unnormalized version of operations leads to a slightly
different model for the propositional calculus which is actually more
satisfactory. The set of all effects ¢F consists of all bounded operators
A on 9 such that 0SA<1. EF is a poset and has a least and greatest
element. Furthermore, it has an ortho-complementation given by the
map A’=1—A. It is easily seen that the set of orthogonal projections
P (%) is the set of extreme points of EF. Note, however, that €F
is not a lattice, but on the other hand it is a convex set in .2 ().
Furthermore, P (%) is dense in €F for the weak operator topology.
This circle of ideas emphasizes T (%) as the state (or ensemble) set
for the quantum model, i. e. consider the normalization T [p]=1 of
secondary importance. Since we know that the density operator of a
quantum system is the analog of the probability density of a stochastic
system it is seen that the above argumentation is akin to considering
the unnormalized probability density in classical formulations of filtering
and control problems [26]. This often turns some of the crucial equa-
tions to linear ones! See, for example, the unnormalized conditional
density equation of classical nonlinear fiitering of diffusion processes [26].

These ideas can be extended to the general Baer*-semigroup setting,
and this was done by Ludwig [55,56] and Dihn [57]. Starting from
an event-state structure (&, 5, P) one embeds o into the real vector

space Y of functions on ¢ defined by x (p)= Z ¢ P (p, @), i€, i
i=1

real numbers, n arbitrary. Under this embedding the state g goes into
the function P (-, a). By letting

1l = sup [x ()] (4.9)

pec

for xeV, <V becomes a normed linear space and we consider its
completion which we also write as ). Then <V is a real Banach space
and we let V* be its dual. By considering P (p, x)=x (p), P can be
defined on the whole of YV, and for p fixed this defines a linear functional
on Y, allowing us to identify ¢ with a subset of Y *. Furthermore,
one can introduce a partial order in <Y by a ccne Y+ such that: (i) Y+
is closed in V; (i) if x, yeV* then ||x|| + |lyl| = ||x+y|; (i) given
x€Y and €>0 then there exist x, x,eV* such that X=x;—x> and
| + [Pl < [lx]] +&. 9V is usually called the state space by Davies
[37]. In Y the norm is linear on Y+ and, therefore, can be uniquely
extended to a positive linear functional 7: Y — R, with |7 (x)| < ||x|| for

]
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all xeV, and 7 (x)= ||x|| for all xeV*. The states & are indentified
as the elements of {xeVY*: 7 (x)=1} and form a convex set. T he set
of effects €F is in this general setting identified with

EF={peV*; 0<¢p=t). (4.10)

EF is convex, weak* compact, partially ordered and has the orthocom-
plementation

ptaT—9.

The events & are identified as the extreme points of EF.

There are several advantages of doing this transformation from an
event-state structure to a state space structure: (@) we embed a nonlinear
structure into a linear richer structure, (b) the relationship with classical
probability theory becomes more apparent, (c) the theory fits in nicely
with the use of C*-algebras [59] in quantum statistical mechanics
and quantum field theory. The two examples we have been using now
appear as,

EXAMPLE 1: Y ="7C, (%) with trace norm.

EXAMPLE 2: €V is the space of all real finite signed measures on
the Baire o-field 9 of a locally compact Hausdorff space X. Let Y+
be the cone of nonnegative measures and let

llul| = sup { |z (E)—u (X—E)|; E€B}.

We turn now in a discussion of more complex (but more realistic)
models of the measurement process in quantum systems, utilizing the
framework of a state space and in particular the state space of example 1
above. It is important to realize that the concepts and constructions to
be introduced can actually be worked out for the general setting of an
abstract state space (or a Baer*-semigroup). This is of particular impor-
tance to us, since we do not have at the moment axioms for multi-agent
stochastic control systems that will permit a concrete representation
of these constructs (be it an event-state structure, or a Baer*-semigroup,
or an abstract state space).

Thinking of the transformation performed on a state by an operation
as one corresponding to a simple yes-no measurement, and recalling
the discussion in section 3.3 (of equations (3.16)-(3.18)) it is easily

seen that for a general continuous measurement we need to consider
]
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operation-valued measures OVM. This was first done by Davies and Lewis
[45] in order to incorporate state-measurement interaction in the
measurement process model. They introduced the concept of an
instrument IV on a measurable space (U, W), which is a map
IN: B — L+ (V)={the set of positive linear maps on VYV =T, (¥)},
such that: (1) IN (BY=IN (¢) for all BeB; (ii) if {B;} is a coun-

table collection of disjoint sets in 9 then TN ( E B,) = ; IN (B,
!

n=1

(in the strong operator topology); (iii) Tr [TN (U) p1=Tr [p], for
all peY =T, (AN).

The idea behind this is to capture the concept of a measurement
which accepts a state, measures some physical variable, and gives an
output state conditional on the value observed. We would like to
emphasize that it is a notion stronger than an observable and a POM.
In fact, if I is an instrument on (U, 9B) then there is a unique
POM, M on (U, %) such that

Trle M (B)]=Tr [p TN (B)] (4.11)

for all Be B and peT, (). The POM thus associated to the instrument
is calied the measurement perjormed by the instrument. Considering
two instruments I, on Uy and IV, on U, with values in a state
space <V, we can then define their composition Iy, as an instrument
on U, XU, which represents the measurement of first I, and then
JN2 [37]. The composition is uniquely determined from the equation

TN 12 (B X By) p=I N, (B)) TN, (B) p (4.12)

for all p€V and all By, B,. This then leads naturally to a family of
instruments, parametrized by time if we wish to describe repeated
measurements (observations) from the same system. In a series of papers
[60-62] Davies introduced such families when the measurement out-
comes form a marked point process [64] and he termed them quantum
stochastic processes. We introduced a generalization in [63] to allow
for outcomes with continuous sample paths. Let U be a complete
separable metric space, 9% the Borel o-algebra on U, Y, the set of
all measurable functions from [0, ¢] into U and &, a c-algebra on ..
A quantum stochastic process with outcomes adapted to F, is a
family of instruments I, on Y, such that:

(i) lim JUN, (Y.) p=p for all pe Ts (),

t—

(i) TN (B) TN, (A) p=I N5 (c (AXB)) pfor A€ F,, Be Fs,
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where ¢ maps Y. XY, onto U,., via concatenation of sample paths.
Note that (ii) is the appropriate analog of the Chapman-Kolmogorov
equation of classical probability. The physical interpretation is clear:
I N, (A)p is the new state given the initial state was p and that the
sample path of the outcome process was in A€ F,. The one parameter
family T:=IN,:(Y:) forms a semigroup of operators on C, ()
describing the evolution of the state as perturbed by measurement. If we
let z denote the empty sample path then S,;=I 9V, ({z}) is also a semi-
group on C,(¥) describing the evolution of the state unperturbed
from measurements. For certain processes Davies was able to charac-
terize the differential version of the effects of measurement.

We close this section with an important result of Naimark [44]
which has significant implications to questions of implementation of
POM, instruments, etc. A natural question is how are POM’s interpreted
from phenomenological measurement theory? A nice exposition of the
underlying ideas can be found in Davies [37, p. 38]. Briefly let us consider
a POM, M on the product measurable space (U, B)= (Ui, B1) X (Uz, 9B2).
If one could measure together two quantities which take values in
Ui, U, then their composite measurement should be describable by such
a POM on (U, B). Then we can define the « marginal measurements »
M; on Ui, M, on U, via M; (B)=M (BX W), and similarly for M,.
It is a well known fact that if both Mi, M. are projection valued (and,
therefore, directly interpretable by measurement phenomenology) then M
is projection valued and M;, M, commute. There is a way to interpret
M as « approximate » joint measurement of two noncompatible obser-
vables. An example of this kind is given in Davies [37 pp. 39-41]
where a POM corresponding to approximate simultaneous joint measu-
rement of position and momentum is constructed. A different inter-
pretation is provided by Naimark’s theorem which asserts that given
a POM M on (U, B) with values in 2 (%), there exist a pure state
pe on a Hilbert space . and a PVM Ey on U X%. such that
TripM (A)]=Tr [(pXpe) E (A)], for any p and any A€B. The triple
{H., pe, En} is called a realization of M and the physical interpretation
is that M is statistically equivalent to the simultaneous measurement of
compatible observables on an augmented system (the original augmented
by the auxiliary system p., “%.). Examples of such constructions appear
in quantum communication problems [32], [33], [65-67].

4.4. ANALOGIES WITH MULTI-AGENT STOCHASTIC CONTROL.

Having analyzed noncommutative probability models of various de-
grees of complexity in quantum physics we want to explicitly indicate
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here the properties of these models that we believe make them attractive
candidates for use in multi-agent stochastic control.

We start with the set of simple propositions that can be verified
by the agents in such a control problem. As indicated earlier this set,
let us call it €, has a natural partial order, that of implication <. It is
also natural to assume the existence of the certain and impossible events
and the negation p’ of an event p, which defines an orthocomplementation
on €.

To postulate that (&, <,”) is an orthoposet is, therefore, in
complete agreement with fundamentals of multi-agent control systems.
The property of orthomodularity is a necessary consequence of the
meaning we attach to implication, and the modifier ¢ in orthoposet can
be justified on technical and intuitive grounds. We think of « states » or
ensembles of such a system as measures which assign probabilities
on these simple propositions. The notion of o-convexity has an obvious
interpretation in terms of « mixture » states or prior probabilities about
states. We think of states here as all possible configurations of the
multi-agent system, we do not necessarily assume a memory interpre-
tation (as is done for example in [13] [14]). As a result our causality
notion is « loose ». There is a reason for this in view of our remarks on
anticipatory agents in section 2.1. To assume that the set of states
is strongly order determining is clearly natural. The only objection is
whether or not it can be verified, since to find all states for which an
elementary proposition is true may not be feasible.

We thus have,

POSTULATE 4.4.1: The data bases in a multi-agent stochastic control
system can be used to construct an event-state structure (€,d,P) or

(€,d) as in section 4.1. Moreover, this representation is faithful in
the sense it can generate the data on which it was based.

We note that the assumption that € can be made isomorphic to a
c-algebra on a set X implies that the operations (A) and (or) (V)
implied by the partial order < are distributive and this seems to violate
basic properties of multi-agent control systems, such as different infor-
mation, noncompatibility of data analysis by two different agents, etc.
That is the logic of a multi-agent stochastic system cannot be Boolean.

To introduce the operation structure we assume that there are
events that are incompatible. Now this singles out a particular class
of multi-agent control systems. Namely, those where there is strong
information-control interaction between at least a pair of agents. This
leads naturally to operations as conditioning on a simple event. The
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only axioms on the set of operations, introduced in 4.2, that need
discussion are those that imply the involution and the map” . Recall
that involution is identical to consistency in « reversal » of experimental
procedure. This may not be true in certain stochastic systems. Also the
property of existence of perfect test events (the g. in 4.2) may not
hold. Nevertheless, there are many multi-agent stochastic systems having
both properties. We restrict our attention to those. Then we have,

PoSTULATE 4.4.2: It is possible to represent inferences made by
agents via an operation map on (&, d, P) and thus obtain an event-
state-operation structure characterizing the statistics of the multi-agent
control system. We can then according to theorem 4.2.1 represent these
statistics and conditioning via a Baer*-semigroup.

This latter identification we find very intriguing because it alge-
brizes the notion of information pattern. For example, agents using
common data bases will be represented by commuting conditioning
operations. It is tempting to conjecture that there are classes of multi-
agent stochastic systems where the information pattern can be comple-
tely specified by describing the structure of the Baer*-semigroup of the
system. By this we mean the identification of commutative subsemigroups,
ideal structure, etc. It will be interesting to investigate the statistical
meaning of these algebraic constructs.

These algebraic constructions, we believe can help us understand
how these classes of multi-agent stochastic systems operate. When we
want to consider optimization, however, we need an analytic framework
(in particular, norms) and if possible convexity. This is provided in the
models discussed in 4.3 via embedding the event-state structure into
a pair of Banach spaces connected by a duality which is induced by
the probabilistic laws of the system. In this general framework there
are analogs of constructs in quantum mechanics such as POM, instru-
ments, etc. We have aluded to their stochastic control interpretation
before. Clearly, the results of Davies and Benioff on repeated measure-
ments being represented by a POM, can be interpreted as providing a
useful model for analyzing observation patterns in certain multi-agent
stochastic control problems. Optimal selection of a sequence of instru-
ments can be interpreted as a joint optimization of information pattern
and control.

Conceptually, the similarities between quantum physics and multi-
agent stochastic control are striking. This is not a surprise. After all
quantum mechanics provides meaningful statistical interpretation of ma-
croscopic variables by avoiding microscopic considerations; exactly the
objective in stochastic control systems with a large number of interacting
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controllers. We have pointed out differences. It remains to be seen if
such formalisms can be effectively used in solving such problems. We
hope the results in quantum detection (sec. 3) and quantum filtering
(sec. 5) will convince the reader that there are feasible and challenging
optimization probiems in this setting.

5. Quantum estimation and filtering.

5.1. QUANTUM ESTIMATION.

As was discussed in 3, the main objective of detection and estimation
theory with quantum mechanical models is the development of perfor-
mance bounds for communication devices at the optical end of the
spectrum used for communication. Despite its complicated appearance,
one can extend some of the results of classical detection and estimation
theory to the non-commutative probability model. In 3 we gave a summary
of the major results in quantum detection theory. Here we would like
to review estimation and filtering problems which are clearly more
important for stochastic control.

The mathematical foundations of quantum estimation theory have
been developed in [33] [34] [43], although earlier results by Helstrom
on maximum likelihood and minimum variance estimators existed (see
[32]. and the references therein, in particular Ch. VIII). The case of
continuous measurements require delicate mathematics, such as integration
theory of operator valued functions with POM’s. Thus suppose the
state of the quantum field depends on a parameter &, p (§). For similar
reasons as in the detection problem we do not only have to specify
the data processing scheme used to compute the estimator but also the
measurement to be performed. Let M be the POM representing the
measurement performed which gives the outcome v in the measurable

space (U, D). The estimator is a measurable function é( ) of the data,

and is also to be chosen. Let (@, F) be the measurable space where &,
take values. Again we are compelled to consider randomized estimation
strategies, that is we have to specify the conditional distribution

n@lv(zﬂ; §):Pr{é§z}‘, given v=§}. (5.1)

The statistics of the measurement outcomes (see 3.21) are now charac-
terized by the conditional probability density
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poie(§; N dE=Tr [p () M (dS)]. (5.2)

Letting C (é, #) be the cost function according to which we choose the

estimator 4, and recalling the Bayesian formulation of the M-ary detection
in 3.4, we easily see that the average cost for the randomized estimation
strategy (5.1) is

]:ff fc(b’ﬁ) n5lv(d5,§) pvi6(§, ) d§ m (dd) (5.3)
6 U 0

where n (-) is the prior distribution function of 8. In view of (5.2), (5.3)
becomes

]=f f fc @,9) 7 g,,(d, &) Tr p 3) M (d§) w (dD). (5.4)
U 6

(2]

The next step requires a rigorous theory of integration of operator
valued functions with POM’s and a Fubini-type theorem in order to
exchange the order of integration and trace operation. Such theories
were developed first by Holevo [43] [33] and later in a more complete
form by Young [34]. This allows the introduction of the operator
valued risk function

W )= f CO,No@ mdd). (5.5)

o

Note that this is the continuous analog of (3.23) and with the appro-

priate integration theory it can be shown that for each z?A, %% (5)(—: Ts ().
Next for every set FeF define

I (F)———/u & F, &) M (d§) (5.6)

(74

where I, 18 the probability measure corresponding to z,. It is straightfor-

ward to verify that IT is a POM on (©, ). Using now (5.5) and (5.6) we
can rewrite the average cost for this strategy as

/=Tr[ [ W () 1T (d??)], (5.7)
e

L4
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which is easily seen to be the continuous analog of (3.22) as expected.
We shall use Holevo’s terminology and notation. So the integral in (5.7)
is called the trace integral and is denoted by

J=(W, II)e. (5.8)

It is important to realize that the problem of optimally estimating
¢ now becomes

min Tr

[W@n@ﬂ (5.9)
6

over all POM on (O, F).

That is the selection of an optimal measurement M on the data space
and of an optimal randomized strategy are both subsumed in the
selection of a POM II. This may create implementation (or realization)
problems, once the optimal /I is found. Now (5.9) is a convex optimi-
zation problem which has a very interesting duality theory (see [33] [34]
and [68] for details). Existence of an optimal POM is not difficult to
establish under mild conditions on C (-,-) and is typically done by proving
that in an appropriate topology the set of POM’s is compact and the
cost functional lower semicontinuous [33] [68]. To formulate the
duality properly one considers the set N (F, L (%)) of countably
additive operator valued measures on the measurable space (@, F) (. e.
MEeN (F, L, (%)) implies M (F)eLs (A) for every FeF, and
M (||F.)=X M (F,) for a disjoint sequence of subsets F.). Then (5.9)

which is the primal problem can be stated as: given the operator valued
function W (+): = Ts (9¢) solve the optimization problem

P= inf

Tr f W @) M (d9): MeM (F, L5 ),
]

M (@®)=I, M (F)=0 for every FEF (5.10)

Then the dual problem is to solve for
D=sup{TrY: YET; (%), Y=W (), MJle@}. (5.11)

The optimal POM is characterized by ([33] [34] [68])

-
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THEOREM 5.1.1: Necessary and sufficient conditions for M« to be
the optimal solution to (5.10) (or equivalently (5.9)) are

(i) [W (@) Mx (dH<W () for every 0€®
L)

or

(i1) fM* (d) W (=W () for every fe@®.
)

Furthermore under any of the above conditions it follows that

Y:/W @ M« (dD)= /‘M* dH W @
) C)

is selfadjoint, is the unique solution of the dual (5.11) and

This result has been obtained in various equivalent forms in [33]
[34] [68]; here we presented the result as in [34]. Note that this theo-
rem is the continuous analog of theorem 3.4.1 of quantum detection.
As a consequence our remarks there are valid here as well. A plethora
of specializations of these conditions can be found in [33]. Their
importance lies primarily in computing solutions for specific applica-
tions problems.

Two special cases of this result deserve attention. First consider
the case of a quadratic cost function

c@,0=o—a, (5.13)

which corresponds to minimum error variance estimators. Then assuming
all densities (or distributions) appearing in (5.3) have finite second mo-
ments we get existence of an optimal POM. For simplicity assume ® =R”
and F =9"= the Borel c-algebra on R". The following operators are
well defined under our assumptions (the integrals are Bochner-integrals

[43])

[.0 (@) w (dd)=n €T+ (%)
Rn
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[z&p @) 7 (@) =8 €T (W)=T. (W)X .. X T+ (%) (5.14)
R

[ Hdp @ n(dH)=AeTst (K).
o

Then in (5.5)
W @w=ngu"u—-2u"6+21; ueR™ _ (5.15)

We say that the optimal measurement is a minimum error variance
measurement for the family {p (f)}. We then have

COROLLARY 5.1.2: The POM M is minimum error variance for the

family {p ()} iff

n(uTu— fuTuM(du)) —2 af(u— [uM (du)) >0  (5.16)
R” ~ R»

for all ueR" (6T u stands for the operator X u; ).
=1

We can now introduce the operator moments of the POM M,
following Holevo [74]

Ui,...ip =fu;l o Ui, M (du). (5.17)
Rn

So U; are the first operator moments and U;; the second operator moments.
Observe that in the case of a simple measurement M is a PVM and it
is uniquely defined by its first operator moment. For M a POM U;=U; U,.
Then (5.16) yields

n Z (uiZ—Uﬁ)—Z Z 51' (Lli—-Ui)ZO (5.18)
=1 =1

for all ueR” It can be seen that this solution defines an appropriate
extension of the conditional expectation which solves the corresponding
classical problem [43, section 8]. If we cast the classical problem using
the state space structure of 4.3, it turns out that the operators d; commute
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and thus the analysis of Holevo [43] applies. In a simpler case suppose
n=1. Then (5.17) implies that the solution to the minimum variance
estimator of #eR is provided by the measurement of the observable

® which satisfies the Lyapunov equation

nO+6 n=26. (5.19)

In the classical case all operators commute and the solution can be

written (degenerate cases apart) as @=6n'=n"'8 which if we think
of p(f) as a «density » is in some sense like conditional expectation.
Cases where p (f) commute for all values of 4 are thus termed « classical ».
As an example of (5.18) consider the estimation problem corresponding
to the detection problem discussed in 3.4 (eq. (3.30)-(3.31)).

The second case corresponds to the maximum likelihcod estimator

for which = (df) is uniform, L df say, and C (@, H= -5 (9—6).
Then from (5.5)

Wdh=— 5o (5.20)

and therefore the optimal POM maximizes

1:%%[ jp(z?)M(dz?)]. (5.21)
e

We say that the optimal POM is a maximum likelihood measurement for
the family {p ()} (a term due to Holevo [43]).

COROLLARY 5.1.3: The POM M, is maximum likelihood for the
family p (0) iff

(i) p(ﬂ)sfp(ﬁ)ML(dz?), Vle®

]
or

(i) p©®) S[ ML (d)p (0, WeO.
)

As an example consider again the analog of the example treated in

L4
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3.4. Now

1
2

1 exp (—i6)

H=
P (0) exp (i) 1

}, 0=<0<2m.

Then consider the POM

M, (d)=0 (©) %” .

Now
it d
[rorman=[r0Z =1,
2] 0
and since
1—p(<9):_1_[ b= eXp(—“L))Jzo
2 |—exp(id) 1

we have optimality. The conditional density of the measurement outcome
is

A ~db 1, (6—8
p@1O=Tr @ O1% =~ oo (/57).
The book by Helstrom [32] and Holevo’s paper [43] contain
several worked out examples and special cases of the general theoretical

results presented here.

5.2. QuaNTUM FILTERING.

The extension of classical filtering theory to the noncommutative
model presents several difficulties. First, there are state dynamics and,
therefore, the state (density operator) depends explicitly on time.
Second, the parameter is now the sample path of the signal process x;
that modulates the quantum field. Third, there is state- measurement
interaction which has to be properly modelled. If we suppress all these
interactions and use Davies’s and Benioff’s results [40,45] [46-48]
discussed in 3.3 to represent repeated measurements by a POM on a
large o-field, we abandon in a way our hopes for recursive solutions and
the implementation of the filter is not taken into consideration. A more
promising approach is to study a hierarchy of problems with increasing
complexity with the hope to discover cases with feasible solutions. We
have followed this approach in a series-of papers [63, 65-68].
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In [65] the linear filtering problem for a scalar signal process in
discrete time was analyzed. This is the simplest case. Measurements
were modelled by observables and the solution was obtained via an
elegant application of the projection theorem. However, there were
several important assumptions made: (a) the density operator depends
at each time only on the signal value at the same time (b) time is
discrete and (c) the measurement outcomes at different times are
independent conditioned on the signal sequence. These assumptions
prevent the inclusion of the state evolution and state-measurement
interaction in the model. However, there are cases where these assump-
tions are satisfied in practical systems. Furthermore, the bounds obtained
by these methods are conservative. In [66], the same problem was
analyzed for vector processes. The formulation and solution are far
more complex than in the scalar case. We briefly describe the main
ideas here.

We consider a quantum field (for example, a laser) which is
modulated in some fashion by a vector discrete time stochastic process
x,, t=0,1, ... in R". The field’s state is described by a density operator
p (x;). Note the lack of memory in p (-). Furthermore, we assume that
the outcomes v (classical vector random variables) are independent
when conditioned upon the sequence {x,}. At times =0, 1, ... measure-
ments are performed on the field, represented by POM’s, M., t=0, 1, ...
and giving outcomes v, t=0,1,... in R”. We combine the outcomes
linearly to compute the estimator

A t
= 2 C;i(t) v (5.22)

=0

where C: (¢),t=0, 1, ... are nXn matrices. The problem is then to opti-
mize jointly over the selection of measurements (POM’s M,) and
processing scheme (matrices C; (f)) to obtain the minimum error variance
linear filtered estimate of x,, i. e. minimize

J=E {||xc—x{*} (5.23)

This problem is similar in nature with the quadratic cost estimation
problem treated in (5.1). At time ¢ we have to choose the new measu-
rement and the processing scheme, having observed previous measure-
ments. We can express (5.23) as a trace integral [66] of an operator

L4
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valued function with M,

] =Tr[ f F (u, C (¢)) M; (du) (5.24)
Rn

similarly as in (5.7), where & is quadratic in u and linear in the matrices
C: (t). The interested reader will find the details in [66]. Existence to
this joint optimization problem is settled in [68], where also the necessary
and sufficient conditions for optimality are proven employing the duality
discussed in relation to Theorem 5.1.1. The main result is:

THEOREM 5.2.1: Necessary and sufficient conditions for 6’0 @®, ...

wes Coo1 (8), and M. to be optimal processing coefficient matrices and
measurement at time t are

t A
(i) .Z E {fv,- ’va} C,'T (H)=E {?)i ka}, i=0,1,..,¢

j=0
where C, (t)=1, and v:=w;,,

(1) < (u, é (t))Z/EF (u, 6‘ ®) Mz (du), for all ueR"
Rn

Note that (ii) is identical to the result of Theorem 5.5.1, and that
(i) are just the normal equations for the classical random variables of
the measurement outcomes. It is important to compare the solution of
this vector problem to that of the scalar one. The main point is that
in the vector case the above equations characterize only the first and
second operator moments of the optimal measurements. In the scalar
case, this is enough to uniquely determine the measurements. Here we
have more flexibility, and so we can look for other properties such as
implementation. An example of such an approach is [74], which contains
results on estimation problems with Gaussian field states and canonical
measurements. More recently these were related to two-photon coherent
states and photon counting measurements [77].

In [66] we pursued further structural properties of the filter. In
particular, the question we analyzed was: how different is the minimum
error variance filtered measurement at ¢ (see 5.1 for definition) from
the minimum error variance measurement at #? The latter measurements
produce the minimum error variance estimator for x. without postpro-
cessing (i. e. where C; (¢)=0, i=0, ..., ¢t—1 in (5.22)). This is a natural
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question to analyze since due to our assumptions we only utilize corre-
lation between {x:}. When {x:} is an uncorrelated sequence the filter
measurements can be chosen independently at each time ¢. We discovered
in [66] that when {x:} is a Gaussian sequence, the optimal measure-
ment outcomes are jointly Gaussian with {x,} and a certain linearity
condition is satisfied, then the filter separates. That is, we showed that
in this case, the optimal quantum measurements are chosen separately
from the optimal (classical) linear postprocessing of the measurement
outcomes. In such cases, one wishes to establish that the same measurement
is performed for all ¢+ and then there is hope for a recursive solution,
if the classical problem has one. Such an example was given in [66]
for a monochromatic laser, which is carrying a 2 dimensional vector
signal process x:= [xi, x2:]7 as its in phase and quadrature amplitudes,
and is received along with thermal noise in a single-mode cavity. We
assumed x; is generated by a linear model

Xer1 =@ x:+ W

The optimal linear filter reduced to a very simple form (see details in
[66]). Namely, the same measurement (called optical heterodyning) was
performed on the received field and then the measurement outcomes
were processed by a Kalman-filter. Unfortunately, we do not have many
examples as successful to report in this area.

More recently in [63] [67] [78], we have, using the results of Davies
on quantum stochastic processes [60-62], formulated the general conti-
nuous quantum filtering problem incorporating state evolution and state-
measurement interaction. Davies has also used quantum stochastic proc-
esses to model a quantum communication system [79]. The main ideas
are as follows. We are given the state representation of a quantum system
p (¢, x*) which at time ¢ depends on the sample path x' of the signal up
to time ¢. This for example can be obtained by modelling the modulation
via a stochastic Liouville operator equation

=—i [H (x (1), p D]; (5.25)

see the references for explicit examples. Incidentally, it is interesting
to note that often equations like (5.25) arising in quantum optics, when
explicit representations for p are assumed (i. e. as integral operators) lead
to stochastic partial differential equations of the same type as the
unnormalized conditional density equation of nonlinear (classical) filtering

L



QUANTUM COMMUNICATION AND STOCHASTIC CONTROL 259

[67]. We are given a class Cy of quantum measurement processes (cf.
sec. 4.3) (representing measurements on the system) and a class Cp of
processing schemes (i. e. functionals on the sample paths of the outcomes
of measurements). We let y, denote the outcome process for a quantum

stochastic process, f. the processing scheme. Then the filtered estimate
is

xe=f: ). | (5.26)

The problem is to select a quantum stochastic process from Chu and a

scheme from C, to minimize the error variance E {[Ix,—gctHZ}. First, one
establishes that there exists a quantum stochastic process in Cu para-
metrized by the sample paths x* of the signal process on UL ITN (x',E)p(0)
such that p )=IN: (X', Y)p(0) (see also 4.3). Then we have
to compute the differential description of the dynamics of p(-), where
I, will show its influence. Once this is done, further progress can be
achieved since the probability measure

ue (x5, Ey=Tr [TN. (x', E) p (0)] (5.27)

characterizes the statistics of the classical measurement process y: given
the classical signal process x.. Explicit examples appear in [63], [67],
[78], [79].

6. Conclusions.

We have outlined here a number of noncommutative probability
models and their basic constructs that we believe are common in
modelling quantum systems and certain multi-agent stochastic control
systems. We have provided no proofs, only plausibility arguments. More
remains to be done in evaluating the ideas presented here. A concrete
suggestion is to try to identify the basic constructs used in quantum
communication (rigorously) in the language of stochastic control. Recently,
this was done for classical communication systems with promising
results. It would be interesting to know if the Naimark construction
has an interpretation in stochastic control. What additional postulates
will permit concrete representations of the algebraic objects intrcduced
here? Is there a classification theory? If the present paper stimulated
some thoughts along these lines we would feel that it fulfilled its purpose.
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