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Short Papers 

Estimation of  Traffic Platoon Structure from 
Headway Statistics 

J. S. BARAS, MEMBER, IEEE, A. J. DORSEY, AND W. S. LEVINE, 
MEMBER, IEEE 

Absbaet--This paper deals fm with the modeling of urban lraffic 
headway statistics. It is shown that a composite distnition bafed on the 
convex combination  of a lognormal and a shifted exponential distn’batton 
gives a good fit to observed traffic data. This statistical model is then osed 
to generate a model for the formation and passage of ”platoon9 of 
vehicles. It is shown that the problem of  estimating the time at which a 
“platoon” passes a detector, as well as the number of vebicles in the 
“platoon,” corresponds to the point process disorder problem. An optimal 
estimator for the platoon size and passage time., based on detector data, is 
then derived via known resub for the point p- &der  problem. It is 
shown that the wmputations requid by this estimator can be performed 
in a microprocessor. Forthemre, the estimator is tested against the 
UTCSl traffic simulator and performs very  well. Parameter sensitivity 
analysis of the estimator is presented. Finany, the use of these result0 to 
improve the filter/predictor described in a companion paper, and vice 
versa, is explained. 
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I. INTRODUCTION 

In a  companion paper [ 141  we noted that there is considerable current 
interest in the development of computer-based  systems for the control of 
urban traffic.  In addition, we explained that these  systems  generally do 
not make  much  use of data acquired in real  time  because of difficulties 
in estimating  relevant traffic parameters from such data. Finally, we 
presented t h r e e  procedures for estimating queue length at a  signal  from 
detector data. 

This paper presents  a  procedure for estimating  the  time at which a 
“platoon” of traffic  passes  a detector as well as the  number of vehicles  in 
the  “platoon.”  Roughly,  a “platoon” is a group of vehicles that move 
with  similar  velocities and comparatively s m a l l  spacing.  Although 
platoons of vehicles are observed  in  freeway  traffic as well, this phenom- 
enon is a rather fundamental characteristic of traffic in an urban 
network and is greatly  influenced by the  traffic  signals. Indeed the 
periodic  variation of traffic lights tends to group vehicles into platoons. 
Traffic engineers  have  long  exploited  this  behavior  by  using  the  maxi- 
mum through-band  synchronization  scheme. The technique  consists of 
offsetting the green  phase of successive  traffic  lights,  with  respect to each 
other, to regulate  groups of  moving vehcles at some  desired  speed 
without  stopping. Thus, it is believed that estimates of platoon size and 
passage  time  may  be an especially  relevant  traffic parameter for control 
purposes. 

Furthermore, it was  explained in the companion  paper that it is very 
desirable to  have adaptive queue  estimators.  Such adaptive estimators 
need information about estimation errors that is  largely independent of 
the estimator itself. To clarify  this point and for future references we 
consider  in  Fig. 1 two successive  signalized  traffic  intersections.  Loop 
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I I  I 1  

Fi& 1. Typical succession of traffic lights and detectors in urban  lraffic. 

detectors 4. are typically  located so that d,,d2 are relatively  close to the 
downstream  light  (15-20  vehicle  lengths) and serve as the  observations 
for the queue estimators  [5]; detector d3 can be  located  either  directly 
after traffic  light A to  provide  observations on vechicle  discharge  (depar- 
tures)  from  traffic  light A ,  or near the middle of the link A B  to provide 
observations about the structure of upcoming  traffic flow towards inter- 
section B.  In the  former  case, the platoon estimators  described  here can 
provide an independent,  delayed estimate of the  queue at traffic light A .  
Thus, the platoon estimator also has potential utility as a  device  for 
making  the  queue estimator adaptive (actually a  crude  estimator of this 
sort is currently used  in U T G - I  for exactly the same  reason). In the 
latter case observations  from detector d3 are very important (as well as 
those  from  detector d2) to the traffic controller B .  Indeed a  platoon 
estimator in this case can provide advanced information  to  controller B 
about the structure of the  upcoming  traffic  demand (e.g., platoon size, 
gaps,  etc.)  resulting  in  more  efficient control. 

In Section I1  we present  the  models for platoon formation and flow.  It 
is  shown that vehicle  headway statistics form  the  basis  for the develop 
ment. Furthermore, it is shown that two different interpretations of the 
same  simple  stochastic  model  lead to a  model  for urban traffic on one 
hand and to a  model  for  freeway traffic on the other. In Section I11 we 
show that estimation of platoon passage  time  corresponds to the  point 
process  “disorder”  problem. The solution to this problem is then given 
and means  whereby the required calculations can be  performed  in  a 
microprocessor  are  explained.  The  test and evaluation of the  resulting 
estimator  using  the  UTCS-1  simulation are briefly  discussed  in  Section 
IV. In Section V results pertaining to the  parameter  sensitivity of the 
proposed  estimator are presented.  Finally,  in  Section VI a brief descrip 
tion of our current research on alternative solutions to this estimation 
problem and on adaptive urban traffic control is  given. For more 
detailed  descriptions of the results  presented here we refer  the  reader  to 
[51, ~ 9 1 .  

11. MODELS FOR HEADWAY STATISTICS AND RESULTING  TRAFFIC 
MODELS 

It has been  recognized that one of the most important components  in 
the description of traffic flow  is the distribution of headways.  Although 
several  definitions of headway  exist, we will always  mean  the  time 
difference  between the passage of the leading  edges of successive 
vehicles. The statistical distribution of headways  has  been studied exten- 
sively since  the  early  days of traffic control. It is natural for our work for 
two reasons. 

1) It is relatively  easy  to  collect  headway data from  the  existing 
detectors. 

2) The statistical  desription of headways  (interarrival  times  in  the 
point process jargon) is the  essential part in modeling  the  underlying 
point process and is the  point of departure for the  modem  theory of 
estimation for point  processes [ 11-[4]. 

For a  complete  description of the  traffic  process we need to include 
the speed  measurements  provided  by the detectors [5]. This is the  mark 
(in  point  process jargon [13D of the point  process  that  characterizes 
traffic detector output. Such  measurements and a  model  similar to ours 
have been effectively utilized in [20],  [21]  to describe  freeway  traffic.  It is 
worth  emphasizing that [20]  provides  a substantial validation of the 
aforementioned  model. In this paper, due to simplifying  considerations, 
we consider  only  headway  statistics.  Speed  statistics and a more  com- 
plete  development  based on a mixed  headway-@  model will be given 
elsewhere. 

Most of the prior  work on headway statistics was concerned ody with 
the probability  density for headways. We include  here  a  very  brief 
survey of this work. Our reports in [5] and 1191 contain a  considerably 
more  detailed  survey. 

In one of the earlier studies A b  [6] proposed  a  negative  exponen- 
tial  headway  probability  density. The model  broke  down  when  traffic 
was no longer  freely  flowing (e.g., due to traffic lights  or  difficulty in 
passing). O n e  of the shortcomings of the negative exponential density 
occurs at very short headways. This can be rather easily corrected with a 
displaced  negative  exponential  density. A more fundamental limitation 
of this density,  however, is its failure to describe  the  smaller  variability in 
the headways  observed in groups of vehicles that follow each other (i.e., 
platoons). As a  result, although the -laced  negative exponential  den- 
sity is universally accepted [6]-[12],  [20],  [21] as a  very  good  model for 
relatively  long  headways  (i.e.,  corresponding to freely  flowing and non- 
following  vehicles) different types of densities were proposed for short 
headways.  Such  models  include  Erlang,  gamma, and lognormal  densities. 
From these  so-called  single  density  models the lognormal  density 

(where p,a2 are the  mean and variance of lnh), or shifted lognormal 
density  gave  the  best  results  in fitting observed data from platooning 
vehicles 181, [9]. There are various justifications for  these  findings about 
the lognormal  density. The primary reason is that multiplicative, inde- 
penden& identically distributed errors by various  drivers attempting to 
follow  each  other  combine to give a  lognormal  density. 

The implicit  concern about the  different  statistical  behavior of short 
and long  headways  eventually  leads to the  so-called  composite  density 
models  which give better fits  to  observed data than single  density  models 
[ I  I],  [20],  [21]. This type of model assumes a structure of traffic  consist- 
ing of  two subpopulations:  one corresponding to following  traffic  (i.e., 
traffic grouped in platoons) and one corresponding to nodollowing 
traffic (i.e.,  freely  flowing  vehicles or leaders of platoons). The headway 
probability  density  assumes  then  the form 

P ( ~ ) = I ) P ~ ~ ) + ( ~ - I ) I P ~ ~ ~ )  (2.2) 

where 

p,= following  headway  probability  density function (short  headways). 
pn,= nonfollowing  headway probability density function (longer head- 

ways). It is usually  a  displaced  negative  exponential  density. 
I) = degree of interaction. 

Since  headway is dependent on traffic flow,  the  degree of interaction 
incorporates this dependency. For light traffic, for example, I) equals 
zero  yielding  a  composite  density that is a -laced negative  exponen- 
tial.  There are several interpretations one can give to I) and we shall 
return to this point  later. It has  been found [IO],  [20] that p, does not 
depend on the  position of the  vehicle within the  platoon  or on the size of 
the platoon. 

Such a composite  type  model has been  recently  described  by Branston 
[ I  I]. This model  provided  excellent fit to data from  various  traffic flow 
situations [ I  I]. It utilizes  a  lognormal  density (2.1) for  following  head- 
ways and the  random platoon assumption of Miller  [7] (that is, the gaps 
between  platoons  follow an exponential  density).  The  resulting  probabil- 
ity  density for headways has the  form 

where g is the  lognormal  density (2.1). 
There are several reasons that make t h i s  model attractive: 1) the 

parameters introduced by the  model are natural and are important 
parameters  for filter/prediction and (or) control, 2) the model can 
accommodate all traffic conditions (light,  moderate,  heavy) and is valid 
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for practically all ranges of traffic flow and speed (a property that has 
been verified  from  real data  and which is not true for simple  models), 3) 
the distributions involved  imply  underlying stochastic processes that can 
be completely d e s c r i i  by a finite number of moments (at most two), 
an important fact for the development of simple but effective 
filter/predictors, and 4) the two basic assumptions of the  model are the 
lognormal following  headway distribution and the exponential inter- 
platoon gap which as we discussed earlier are very  well documented and 
validated. 

A computational drawback of this model is the rather complicated 
expression for the  nonfollowing  headway  density (2.3). Our results in [SI, 
[19] indicate that an equally  valid  model is obtained if a  displaced 
negative  exponential is used to model  nonfollowing  headways. This is 
further supported by the wide acceptance of this density as an ap- 
propriate model for longer  headways. As a  result of these  considerations 
the model adopted for the first-order  headway  density  is  given by  (2.2) 
wherep,  is as in (2.1)  andp,, has the form 

We  would  like to emphasize that Breiman et ul. in [20L  [21] arrived at 
a  similar  model for freeway  traffic. Their model, although not explicitly 
specifying the following  headway density as lognormal,  was  carefully 
validated  with  a  sizable data base. As discussed  earlier there are very 
good reasons for our proposal of the lognormal density and furthermore, 
our results can be easily  modified to accommodate other densities. It is 
then apparent that our proposed  model applies equally well to urban and 
freeway  traffic. 

The model requires five parameters for the headway  density: J , , A , T , ~ ,  

and (I. To completely  specify the model for a particular link or section of 
a link in a  traffic  network, it is important to understand the variation of 
these  parameters with respect to traffic flow and speed. Both  Branston 
[Ill and Breiman et ul. [20l,  [21] report that p,u are fairly  insensitive to 
traffic  flow  level  while  varying  from lane to lane and link to link. The 
parameters J, and h depend on traffic flow and are rather easily esti- 
mated [ll], [20],  [21] if one utilizes velocity (speed) statistics as well. 
Finally, T varies  between 0.25 and 4.00 s and can be  easily estimated [20]. 

The probability density  given  does not provide in general  a  complete 
description of the  headway stochastic process at a particular point in a 
traffic network.  Higher order probability density functions are also 
needed  because  there  may  exist  a correlation between  successive  head- 
ways. On the other hand, we  know from point process  theory that 
interarrival time  statistics  completely characterize the'process and, in 
particular, can be used to determine  the  "rate" of the process [4],  [13]. 
This rate plays  a  central  role in estimation. In [5],  [19]  we have  developed 
a  model that utilizes correlated following  headways as observed by 
Buckley [ 121. To simplify computations and based on evidence  provided 
in [20]  we analyze for the balance of this paper a  model  which  employs 
uncorrelated following  headways.  We are currently  investigating the 
effects of this approximation  which appear to be  insigtuficant. Since 
nonfollowing  headways are clearly  independent, the resulting  model 
assumes independent successive  headways. So we have  a  self-exciting 
process  with  memory 1 [13]. As a  result of these  simplifications the 
headway  process is characterized by the first-order  density (2.2). 

We  developed  two interpretations for the  mixed  headway  model. The 
first  model  is  intended for use in estimating gross traffic patterns for the 
slow updating of traffic  flow parameters (both in urban and in particular 
freeway  traffic). In such  a  case 4, which  should be interpreted as the 
probability that a particular headway is a  following  headway,  should  be 
constant for long  time  intervals. The second  model is intended for use in 
urban nets with small  average link lengths and traffic signals. In such 
cases it is  crucial to model the periodic  formulation and propagation of 
platoons or queues as modulated by traffic lights. Then J, is modeled as a 
time function with  values  1, corresponding to passing of a platoon or a 
queue  discharge, and 0 corresponding to nonfollowing  freely  flowing 
traffic. 

We  call the first  model  the umruge mixed heudwgv model. The point 
process it characterizes has rate 

where p is given  by  (2.2), N, =the accumulated detector counts up to 
time t ,  T, =the time  of the nth detector activation, and AI = the rate of 
the detector point  process at time t (see Section III). 

is sometimes  referred to as the hazard function in birth or renewal 
process jargon. Our  results indicate that filters/predictors behave well if 
the hazard function is chosen appropriately. This suggests  the alterna- 
tive: derive filter/predictors by appropriate choice of the hazard func- 
tion and make them adaptive by tuning the hazard function to the traffic 
flow pattern. 

We call the second  model the switching rate mixed headway model. 
This model is based on the switching of J ,  between 0 and 1. As a  result 
the point process will have two  rates. The following  headway rate is 

A,(N,=n,T,)= g(t -  T n )  

ln(t- TJ- p 1 
for t 2 T, (2.7) 

where g is the lognormal  density (2.1). For the nonfollowing  headway 
process the rate is given  by  [using (2.4)] 

h,f( N, = n, T,) = 
h i f t - T , > ~  
0 i f t -T,<T.  

Typical hazard functions for the following and nonfollowing  headway 
process are shown in Fig. 2.  Some  of these computations are used later 
in the disorder  problem for point processes. These computations com- 
plete the description of the headway  process modeL 

A model can now  be  developed for urban traffic  flows  based on the 
headway  model adopted. Each link is divided in sections in accordance 
with  the  detectorization of the link. For each  section of the link the input 
and output traffic  flows will have headway distributions as described 
above. Notice that the headway distriiution model can vary (and it 
should)  from lane to lane [20],  [21]. The required parameters of the 
model will be estimated at appropriate intervals from actual data, or 
from  historical data as required. The effect of the link on the flow of 
traffic will be  modeled  by  altering the parameter values of the model as 
we move from section to section. 

111. PLATOON STRUCIWRE -TION 

The filter/predictors developed in this section are based on some 
fundamental recent  results in point processes as developed  by Boel, 
Varaiya, and Wong [I], [2],  Segall,  Davis, and Kailath [3], and Davis [4]. 
The approach we have  taken in Section I1 is motivated by the work of 
Davis  who demonstrated in  [4] that a  complete statistical description of 
interarrival times is adequate for filtering/prediction problems  based on 
point process  observations. This has both a  theoretical appeal and is 
significant  for  practical applications where interarrival time statistics 
(i.e., headway  statistics in the  traffic context) are rather readily  available 
from  experiments. 

A setting for continuous-time  filtering  based on point process  observa- 
tions  is as follows. The signal  process is modeled  by the stochastic 
differential equation 

dx, =f,dr + dq 
x(0) = x, 

where q is a  martingale  with  respect to the u-algebra J, which  is 
generated  by  the past sample paths (i.e., s < t )  of the  signal and point 
observation  processes (the analog of 9,- in our companion  paper [14D. 
Usually f, is a function of the past of the signal and point observation 
processes. Furthermore, the observation point  process is modeled by 
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Fig. 2. Typical hazard function for fouowing and nonfollowing headways. 

where w, is also a  martingale  with  respect to 3, and A, is the  "rate" of 
the process.  Usually A, is a function of the past of the  signal and point 
observation  process.  Let F, be  the  o-algebra  generated by the past of the 
point observation  process  (i.e., Ns,s G t ) .  Then the minimum error vari- 
ance estimate of the  signal x, given the past of the  point  observation 
process is 

it E{Xf19,} (3.3) 

and is given  by 

io= E (  x ( 0 ) )  

where ''-n denotes conditional expectation  with  respect to "J,, and 

d u , = d N , - c d t  (3.5) 

is the so-called innovation process of the observation  process. This is a 
general  result and for a particular problem the various terms have to be 
computed and substituted in (3.4),  which is not recursive  in  general. 

Although  several filtering/prediction problems of relevance to urban 
traffic control problems can be formulated in the above  framework, we 
concentrate on the estimation of traffic patterns (i.e.,  passage  time of 
platoon or queue). From Section I1 the point process  observed by a 
traffic detector is a  mixture of two point processes  each with a  different 
rate process;  one  associated  with  following  vehicles (i.e., in platoons  or 
queues) (2.7) and a different one associated  with  nonfollowing  vehicles 
(2.8). The rate of the overall  process  switches  between  these two rates 
(switching rate mixed headway  model).  Estimates of the  switching times 
can be  very  useful  for the following  reasons (see Section I): 1)  they 
determine the traffic flow pattern, and if transmitted to  downstream 
detectors and traffic  light  controllers, will lead to improvement  in 
filtering/prediction and control of subsequent links; and 2)  a  common 
problem  with  queue estimators is the errors from traffic  cycle to traffic 
cycle due to vehicles trapped by  the red light or vehicles  passing during 
the amber  to  red  transition. By effectively  estimating  from  the  first 
downstream  detector  (i.e.,  the  one  immediately  after  the traffic light in 
Fig. 1) the time  when the last queuing  vehicle has passed that detector a 
reinitialization of the upstream  queue estimator can be implemented  to 
correct, cycle to cycle, propagation of cumulative  errors. 

In a  different, traffic oriented  problem, we are often  interested in 
estimating or detecting the times  when  large  changes  in  the rate process 
occur. This is often  related to an incident in a  freeway (or urban traffic 
link). This is  the incident detection problem and will be treated 
elsewhere. 

All the above  problems can be formulated in the context of the 
so-called point process  "disorder"  problem.  Namely, we  observe a point 
process N, which is governed  by  a rate process A,' until some  random 
time T (called  the  "disorder"  time), and by a  different rate A,I after  this 
time.  The  problem is then to estimate the  switching  time T from  the 
observations of N, only. This problem  has  been  studied  by Shqaev [ 15L 
Galchuk and Rozovsky  [16],  Davis  [17], and in complete  generality by 
Wan and Davis [18].  We  follow the last two references in the develop 
ment presented  here. 

We first need to establish the structure of the problem as in (3.1),  (3.2). 
Let us define 

x,=Z[I>T) (3.6) 

where Z{,> is the characteristic function of the set ( t  > T } .  So x, 
indicates by switching from 0 to 1 the "disorder"  time. Of the several 
cases considered in the literature, the appropriate one for the traffic 
problems  discussed  earlier is the following: the switching  time T coin- 
cides  with one of the detector activation times, T (occurrence  times). In 
general, and in particular for  traffic  problems,  the  events ( T =  T }  may 
not be independent from the  underlying point process N,. Let 

p i=&{  T= T } ;  q= - (3.7) 
Pi 

Z P k  
k > i  

qr= qiZ[c- l<t<c) .  (3.8) 
I 

By some  calculations  which can be found in [18] or [19], one can then 
show that 

dX,=(l-x,)q~O+du, (3.9) 

and 

dN,=((l-x,)A,o+x,&')dr+dv, (3.10) 

which are of the same  form as (3.1) and (3.2). The filter (3.4) now 
becomes 

&,=-(A,'-~)i,(l-i,)dr 

i o = E ( x o } = p , .  (3.1  1) 

Note that 

x , = E ( x , ~ ~ , } = E { z , , , , ) ~ 9 , } = ~ ( T ~ ~ ~ ~ )  (3.12) 

so that (3.1 1) computes  the probability that the switch has occurred prior 
to time t given the detector data up to time t .  When  there is dependence 
between the events ( T= T i }  and ( N,) some  simple  arguments [ 181, [ 191 
lead  to  (3.1 1) with the  exception that 

4 , = ~ . i ( t . T l . T 2   , . . . . T i - I ) Z ~ c . , < f < ~ ) .  (3.13) 
I 

Thus, the  only change needed to accommodate dependence between 
( N,}  and ( T =  T ]  is to let be a function of t and the prior Ti. Given 
explicit  expressions for the two  rates then (3.11) is an implement- 
able, nonlinear filter.  Using  expressions (2.7), (2.8)  we proceed to derive 
explicit  equations for the filter.  Between detector activations (dN, =0) 

This equation can be solved  explicity [5], [19] to give 

where u is  the  unit step function. On the other hand,  when t = T. (i.e., at 
detector  activation  times)  the estimate has  a jump discontinuity with size 
equal to the coefficients of dN, in  (3.11) 
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Thus, the filter is actually implemented as follows: 1) between  detector 
activation times (3.15) is used, 2) at detector activation  times the jump 
discontinuity  is  computed  from (3.16), and 3) the error function appear- 
ing in (3.15) is computed  by  a  five term series  expansion. 

Finally, for the implementation of the filter we need to determine  the 
deterministic  function qr, which in our case is given  by  (3.8) and 
therefore we need to specify the p i s  in (3.7). It is  clear  from  the 
definition of the pi's that the information carried by them is identical to 
the probability  density for queue length. That is, the output of queue 
estimators that compute the probability density for queue  length (see our 
companion  paper [14D can be used to compute the values for pi. For 
simplicity and to obtain a  "worst  case" type evaluation of the  filter 
performance, we used  a  uniform probability density  over the maximum 
possible queue length. That is, 

1 
' N  p .  = - j =  1,. . . ,N (3.17) 

where N was  the  maximum queue length  allowed (i.e., the distance in car 
lengths of the upstream detector from the traffic light). This ignores any 
information that we may  have about the queue from other detectors and 
forces the filter to use only the information available  from  the  detector 
data. On the other hand, if we had an estimate  of the queue size, say 8, 
we could defiie the pi's to be centered around 8, i.e., 

0 i=O,1,2,-.*,6 
(3.18) 

0.975 i=8.  

The result of this more  selective pi will be a bias for the estimate around 
8 if no disturbance (such as queue dispersion or platoons joining the 
queue)  occurs. On the other hand, if a disturbance occurs the output of 
the filter will show  it. 

IV. PLATOON ESTIMATOR EVALUATION 

The estimator  depends on four parameters. The first parameter is A, 
the mean arrival rate for free-flowing  traffic. The second parameter is r, 
the displacement of the negative exponential density. The third and 
fourth parameters, p and o, define the lognormal distribution associated 
with  following  headways. 

In all of the tests, the parameters were  held at A=0.10, T=O.O s, 
p= 1.0, and u2=0.1681. The value of u was chosen to match Branston's 
value 11 11 which  was obtained for freeway  traffic. He showed that u did 
not vary  very  much  over  different traffic flow  levels.  The  value  of p was 
chosen so that the  mean  headway  between  successive  vehicles in a 
platoon, as given  by the lognormal distribution, would be 2.9 s. The 
value of h was chosen so that the mean  headway for nonfollowing 
vehicles  would  be  10 s. 

The estimator,  which we will denote by PE, must  be  given an initial 
estimate of the probability of each  feasible  number of  vehicles in the 
platoon. In other words, the initial condition of the estimator is also an 
input. This initial condition is interpreted as the (2 priori probability 
distribution of the  number of vehicles  in  the  platoon. In the actual 
operation of PE, this a priori probability distribution can come  from any 
one of several  sources. For example, if PE is being used 60 refine the 
estimate of the  queue, then PE can be initialized  with the conditional 
probability of each queue length obtained from  one of the  estimators 
given in our companion  paper [14]. A good  choice of initial condition 
will greatly  enhance  the accuracy of PE. 

In all of our tests PE was  initialized  with  a  uniform probability for 
any number of vehicles  in the platoon up to fifteen. The uniform 
distribution was chosen  because  it  provides  essentially no (I priori infor- 
mation. Thus, the performance of PE in these  tests  depends  only on the 
data from the  detector and is not biased by either accurate or erroneous 
foreknowledge. In a  real application the performance  would  almost 
certainly be better. 

The estimator actually  computes, in real  time,  the probability that the 
platoon has passed,  given the data up to time t .  This is plotted for  the 
first and second  signal  cycles on link 6-7  in  test 1 in Figs.  3 and 4, 
respectively.  These data were obtained from FHWA's UTCSl simula- 

Fig. 3. , l i n k  

0.1 " ' ~ I " ~ " " I ' ~ ~ " " ' ' " " ' " " ' " " '  
115 1 2 0  125 1 3 0  1 3 5  140 145 150 155 

Time 

Fig. 4. Etimate of the conditional probability  that platoon has passed. Data are  from 
test I, link 6-7, midblock  detector, cycle 2. 

tion. A more  detailed  description of the simulation and of test 1 can be 
found in our companion  paper  [14], our report 151 and [19]. For our 
purpose  here, it is  sufficient to note that the detector is 290 ft down- 
stream from  the traffic light that causes  the platoon to form. 

In order to evaluate PE conveniently, the detailed data from the 
figures are reduced to a scalar estimate  in Table I. Two estimates are 
obtained. 

1) The estimate is the number of  vehicles that have  passed the 
detector at the first instant that the estimated probability that the 
platoon has passed  the detector exceeds 0.7. This is called  the threshold 
estimate. 

2) The estimate  is the number of vehicles that have  passed the 
detector at the  time of the largest  increase in the estimated probability 
that the platoon has passed the detector. This is called the maximum 
jump estimate. 

Of course, reducing the output provided  by PE into a  single, scalar 
estimate throws away  a great deal of information. 

Note the apparent poor performance of the estimator in Cycles 1, 4, 
and 5. In fact, the errors are due to a platoon from  upstream joining the 
end of the platoon formed by the traffic signal and then  the  combined 
platoon crossing  the detector. This is quite apparent in Fig.  3  where the 
largest  headway  among  the  first  ten  vehicles to cross the detector is 3.2 s. 
Thus, the estimator  would  be  exactly  correct if it estimated  a platoon of 
10  vehicles. Thus, the error is only one vehicle. In Cycle  4, the largest 
headway  among the first nine  vehicles is 4.2 s. And, in Cycle  5, the 
largest  headway among the  first  eleven  vehicles is 2.9 s. Thus, there  is 
really  only one vehicle error in the  estimate of platoon  size on Cycle 4 
and no error in Cycle  5. The anomaly in the table is caused by the fact 
that "actual  queue"  means  the  number of stopped vehicles  while, in fact, 
vehicles can join the platoon without  ever coming to a  complete stop. 

Table I1 summarizes the results of a  much  more  favorable traffic 
situation. The upstream traffic signal  is 800 ft away so that there is a 
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TABLE I 
hRFORMANCB OF PLATOON &I”ATQRa 

Cycle Number Threshold  Estimate Maximum Jump Estimate Actual Queue 

1 1 1  
2 3 
3 3 
4 10 
5 0 
6 3 

11 2 
2  2 
3 3 

10  1 
11 1 
3 2 

‘The data are from  test 1, link 6-7. The threshold used was 0.70. 
~ ~ ~ ~~~~~~ ~ ~ 

TABLE II 
hRFORMANCl? OF PLATOON ESTIMATOR‘ 

Cycle Number Threshold  Estimate  Maximum Jump Estimate Actual  Queue 
1  6 
2 6 
3 7 
4 7 
5 9 
6  1 

7 6 
8 8 
7 7 
7 7 
9  9 
6 7 

T h e  data are from test 5, link 6B-5B, lane 2, the stop line  detector. The 
threshold  used was 0.70. 

relatively  large  gap  between  successive  platoons.  Furthermore, the detec- 
tor is located  near the downstream stop line so the flow  over the detector 
is in clearly  defined  platoons. 

These  results  indicate that PE is an accurate estimator of the number 
of vehicles in a  platoon. Furthermore, it accurately  determines  whether 
or not the queue emptied on a  cycle  by  cycle  basis. 

V. PARAMETER sENsrrn?n AND ESTlhiATION 

To complete  the  analysis of the estimators presented we need to 
determine methods  which compute adaptively the filter  parameters, and 
we also need to evaluate the  response  sensitivities to these  parameters. 
These are rather hard analytical problems and some partial results have 
been obtained in [19], where we refer for further details. We present here 
our  most  significant  findings in s u m m a r y .  

The filter parameters are A, T, H and u. In Section I we discussed 
briefly  their  variability  with traffic flow and location [ I  11, [20], [21]. Our 
initial approach to the automatic identification of these  parameters 
centered around outlier  tests [22]. To estimate p and u, for example, we 
used the fact that if we take  the natural logarithm of headway data the 
following  headways will be distributed according to a Gaussian density 
while the nonfollowing ones wiU constitute a contamination with  rela- 
tively  higher  values. The standard outlier  estimation  technique  involves 
the following  steps. 

1) Let k = 1, and compute F, and 5: for the entire sample of headways 
(after  taking natural logarithms). 

2) By a  two-sided  outlier  test, discard those  observations outside the 
2$ neighborhood of js,.  

3) k t  k =   k +  1 and compute Fk and of the remaining  sample. 
4) If IFk-Xk--II<cI and Ii,,-5~-11<cz, then  set p = F k  and u’=S;?. 

Otherwise  go to step 2). 

It is not difficult  to see that the algorithm converges. The resulting  values 
were  satisfactory  only for samples  including  more than 50  percent 
following  headways  [19].  The estimate of p was  always  more accurate 
than that of u. These  findings indicate that if one first  estimates X and T 

and then  applies  the  outlier  method to the low  end  headway data, p and 
u would  be  easily estimated. Fortunately, this can be done by  first fitting 
a  displaced  negative  exponential to the tail of the  observed  headway 
density. This was done, for example in [20], employing the 
Kolmogorov-Smirnov  test  in an iterative way. The  results  were  very 
satisfactory. It appears,  therefore, that the  combination of these two 
techniques  produces  reliable  estimates of X, T ,  p, and u. However, the 
development of on-line or real-time parameter estimation  techniques 
remains an open  problem. 

Fig. 5. Variation of conditional variance with respect to X v m u s  time The dashed line 
curve  corresponds to A-0.15. all other parametas are the  same. 

Fig. 6. Variation of conditional variance with respect to p velsus time. The dashed line 
curve corresponds to p a  1.5, all other parameters are the same. 

To analyze the  filter  sensitivity to parameter variations we examined 
the  variables of the filter output (i.e., the conditional distribution of the 
switching time). Our computations demonstrate negligible  variations 
with  large  variations in the filter parameters A, cr, u (we  tried  variations 
as large as 50  percent!) and almost no sensitivity  to T. Furthermore, since 
the quality of the estimator is judged by the conditional error variance 

~ = E { ( ~ ~ - ~ , ) z l ~ r } = ~ r ( l - ~ ~ )  (5.1) 

we studied  also variations in V ,  under similar  variations in the parame- 
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Fig.  7. 

Fig 8. 

Variation of conditional variance  with  respect to o versus  time. The dashed tine 
curve corresponds to a*-02521, all other parameters are the  same. 

1.0 I I I , I  I I , 
: 

I 
I 
I - 
I 
I 
I 
I 
I 
I 
I - , , 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

0.0 - 

0.6 - 

0.4 - - 

0.2 - - 

0.0 ' ( ' I ' " ' "  
0 20 40 60 80 100 120 

Variation of conditional mean  with  respect to p versus  time. The dashed l i e  
curve corresponds t o p -  1.5, all other parameters are the same. 

ters.  Again, the  observed  variations in VI were  minute. In particular, the 
result of the maximum jump estimator was almost  unaffected. Repre 
sentative  results are shown  in  Figs. 5-8. 

The filter appears to be  most  sensitive to variations in p .  Several 
bounds and analytical  expressions of the sensitivity of VI with  respect to 
A, p, (I, can be found in [ 191. In conclusion, the filter appears to be very 
robust, although we have  not as yet obtained a  complete  mathematical 
proof of this. 

VI. CONCLUSIONS 

The estimator for platoon passage  time  developed in this paper ap- 
pears to be effective,  based on our simulation results. This estimator 
would  also  provide  good  delayed estimates of the  queue at upstream 
traffic  signals,  provided  the street configuration is  favorable. Further- 
more, the model  developed for headway statistics has potential value in 
other traffic  situations,  such as incident detection. 

Traffic estimates of this type are most useful if they can be used to 
improve  traffic control. Our current research Centers on the use of the 
models  described in this and its companion  paper to develop  improved 
closed-loop  traffic controls for single  intersections and to coordinate 
groups of intersections and large  networks for improved  operation. In 
closing,  we mention that similar  problems appear in other types of 
queuing  networks  (such as computer or communication networks)  where 
similar  techniques can be fruitfully applied. 
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Generalized Quadratic  Weights for Asymptotic 
Regulator  Properties 

G. STEIN, MEMBER, IEEE 

Absm--This paper desuibes a generalized quadratic  weight selection 
pmcedure based on asymptotic modal properties of linearquadratic regula- 
tors as control weights  tend to zero. Explicit formulas are developed for 
weishting matrices which produce an asymptotic  eigenstmcture conristing 
of p < n - m f i t e  modes, with the rest  tending to infinity in selectable 
Butterworth patterns or determined by other secondary design amidera- 
tiOU9. 

I. INTRODUCTION 

While it is often said that the lineaxquadratic regulator  problem is 
"solved" from the point of  view  of theory, there still seem to be t h i n g s  to 
learn from the point of  view  of serious application. Probably the most 
important area about which better understanding is  needed is the rela- 
tionship  between  the  weighting parameters selected for the basic scalar 
performance  index and the resulting regulator properties.  Practitioners 
have  wrestled  with this relationship for nearly two decades, trying 
various intuitive ways to select  a "good  set of weights" to satisfy  their 
various  design  specifications. These ways  range from diagonal  inverse- 
square weighting [I], to local quadratic equivalence [2], to several ver- 
sions of model  following [3]-[5]. 

In a  recent  publication [6], Harvey and Stein  suggested  yet another 
scheme  for  approaching  the  weight  selection  problem. This new a p  
proach makes use of  known relationships  between the weighting  parame- 
ters and the resulting asymptotic eigenstructure of the  regulator as 
control weights  tend to zero. Simple,  explicit  formulas  were  given  for 
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