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Discrete-Time  Point Processes in Urban  Traffic 
Queue Estimation 

Abstruc-Thk research was motivated  by the belief  that  it is possible to 
develop  improved algoritbms for the  computer control of urban traffic 
Previous  research  suggested that the computer software,  and  especially the 
filtering  and  prediction  algorithms, is the limiting factor in computerized 
traffic control. Since the  modern  approach to fiitering  and  prediction 
begins with the development of models for the generation of the data and 
since these models  are also nseful in the control problem, tbis paper deals 
with  the modeling of traffic queues and  filtering  and  prediction. 

It is shown that  the data received  from  vehicle detectors is a  discrete- 
time  point  process. The formation  and dispersion of queues at a  traffic 
signal is then  modeled by  a  discrete-time time-varying Markov chain which 
is related to the observation point process Three such models of increasing 
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complexity  are  given.  Recent dts in  the  theory of point-process f i i  
and  prediction  are then used to derive  the nonlinear minimum error 
variance  fdters/predictors corresponding to these models. It is then shown 
that these optimal estimators are computationally feasible in a micro- 
processor. AU three algorithm were  tested against the UTCS-1 traffic 
simulator  and,  in  one case, against an algorithm in current use called 
ASCOT. Some r d t s  of these ta t s  are shown. ’Ihey  indicate gaad perfor- 
mance in every case and  better  performance than ASCOT in tfie compar- 
able case. 

I. INTRODUCTION 

T HERE IS considerable current interest in the develop- 
ment of computer-based systems for the control of 

urban traffic. Over 25 such systems  have been installed 
within the United States and approximately 125 others are 
in various stages of implementation [ 11. Such  systems have 
the potential to reduce traffic delay, fuel consumption, air 
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pollution, and accidents. It has  been estimated that im- 
proved traffic signal  systems could save 800 million 
gallons  of fuel annually in the United States [2]. 

Generally, these computer-based systems  consist of a 
collection of conventional looking traffic lights, a collec- 
tion of vehicle detectors (usually inductive loops), and a 
computer  that adjusts the traffic lights  based to  some 
extent on the signals from the detectors. However, the 
systems that are in  use today are, from the control en- 
gineer's  viewpoint, rather crude. The Federal Highway 
Administration recently built a system (the Urban Traffic 
Control System or UTCS) in Washington, DC to serve as 
a test of more advanced control procedures [3]. The 
UTCS was built in three versions. The first generation was 
a conventional system in which the computer was used to 
detect traffic patterns based on detector data.  The com- 
puter then chose one of six previously determined timing 
patterns and set the traffic lights accordingly. The timing 
pattern in  use could be  changed, at most,  every  15 
minutes. It should be apparent that this is basically an 
open-loop  system. Consequently, it should  not be surpris- 
ing that the  first generation system produced only  slight 
improvement  over a completely open-loop system in 
which  signal  timing patterns were  chosen according to 
time of day. The  second and third generations of UTCS 
were  designed to be successively more traffic responsive 
and to rely more heavily on the detector data  and on-line 
signal optimization. The  second and third generation sys- 
tems performed worse than the first generation [4], the 
costs of data transmission escalated, and UTCS was shut 
down in the fall of  1976. Tarnoff [4]  argues that this 
degradation in performance was due  to errors in surveil- 
lance and prediction of traffic. 

As control engineers, we could find several other rea- 
sons for the poor  performance of the second and third 
generation systems but we also felt that the filtering and 
prediction could  be substantially improved. Furthermore, 
since the models  developed to solve the filtering and 
prediction problem  could then be used  in the control 
problem, we felt that filtering and prediction was a good 
starting point. 

We have  since  developed four filters/predictors for 
various aspects of urban traffic. Three of these, all used 
for estimation of queues at traffic signals, are described in 
this paper. A companion  paper describes the fourth which 
is  used for estimating the size of platoons of vehicles in 
the  network. In order to keep the length of these papers 
reasonable most of the details of our work  have  been 
omitted. The interested reader can  find  a much more 
detailed treatment in [5]. 

11. DISCRETE TIME POINT PROCESSES AND TRAFFIC 
QUEUING MODELS 

The modeling, and with it the filtering and prediction, 
of signals that  are indirectly observed via a point process 
has progressed considerably in the past few  years thanks 
to the efforts of Bremaud [6],  Boel, Varaiya, and Wong 
[7],  [8], Snyder [9],  Segall,  Davis, and Kailath [lo], Davis 

[ I  11, and many others. In applications, modeling is the 
fundamental  problem since  some  models lead directly to 
finite dimensional realizations of the optimal filter/pre- 
dictor while other models do not. We present here a brief 
summary of results on the modeling of discrete-time point 
processes  following  Segall [ 121. 

Consider a sequence of observations { n(f)}y' with 
n( t )  =O or n(r) = 1 being  the  only  possibilities for each f .  
Suppose the probability that n(r)= 1 is influenced by 
previous occurrences as well as by  some other related 
sequence { x(r)}y= (x(r)  may be vector-valued). The fac- 
tors that may affect the occurrence probability at time t 
are the past observations denoted 

and the past and present of the related sequence 

x'= {X(l),X(2),.. * , x ( t ) } .  (2.2) 

The information carried by  these  signals is as usual de- 
noted by the o-algebra generated by them, 

We then define a( .) by 

Then 

Est-l{n(r)} P E { n ( t ) ~ ~ f - , } = a ( r , n ' - ' , x ' ) ,  (2.5) 

where E s ~ - ~ { z } = E { z ~ ~ f ~ l }  is the conditional expecta- 
tion of z given If we define 

w ( r )  9 n ( r ) - a ( t , n f - ' , x f )  (2.6) 

then 

which  says,  roughly, that w(f )  is unpredictable given the 
information represented by af - '. 

Similarly, if we write 

x ( t +  l ) = E B - l { x ( r +  I)} 
+ [ ~ ( t + l ) - E ' ~ - ~ { x ( r + l ) } ]  (2.8) 

and define 

f T t , ~ f - l , x t ) = E ~ ~ - ~ { x ( r + l ) }  (2.9) 
U ( t ) = X ( t + 1 ) - E ~ l - l { x ( r + l ) }  (2.10) 

we obtain 

Assembling all of the above gives 

(2.1 1 )  

We  emphasize that this  is nor a "signal  plus  noise" 
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model and that this  model applies to any discrete-time 
point process that is related to  another time-varying quan- 
tity. The equations simply  reflect the fact that any ob- 
servation sequence can be divided into the sum of a 
predictable part  and  an unpredictable part. Thus, the mod- 
eling problem reduces to finding the functional form of 
a( t ,n ' - ' ,x ' )  andAt,n'-',x'). 

We now apply the above modeling procedure to pro- 
duce models for traffic queues. 

A.  A Simple Queuing Model  (Model A )  

The simplest practical traffic flow estimation problem 
occurs in the case of the single, isolated, intersection of 
two  one-way, single-lane streets. In  order  to adjust the 
traffic light to optimize, in some  sense, (or even  improve) 
the flow of traffic it is  necessary to obtain fairly good 
estimates of the traffic queues upstream from the intersec- 
tion. In practical systems the estimate needs to be based 
on a minimal amount of historical data  and  on the signals 
from one or more detectors positioned as shown in Fig. 1. 
Assume, for simplicity, that the light operates on a simple, 
known, red-green  cycle (no amber), that there is  only one 
detector, and that the detector is located N car lengths 
from the stop line. 

The observed signal from the detector will be denoted 
by n"(t), 

n"( t )  = 0, if no vehicle is over the detector 
1, if a vehicle  is  over the detector. 

(2.12) 

In practice, time  is  discretized  with a small enough discre- 
tization interval (1/32 s in UTCS) for each vehicle to be 
over the detector for several samples. For simplicity,  it  is 
assumed here that  the  data  are sampled so that each 
vehicle produces exactly one pulse (one 1). 

There are many factors which affect the rate process 
associated with n"(t). We  believe that two of the most 
important are the upstream traffic signal and the number 
of vehicles in the queue. Thus, in this simplest  model  we 
let 

h(k,t)=rate  at which  vehicles arrive at the detec- 
tor given that the queue length  is k. 

z ( t )  = queue length at time r . 
Equivalently, 

A ( k , t ) = P r [ n ( t ) = l / z ( t ) = k , t ]  

h ( N , t ) = P r [ n ( t ) = l I z ( t ) = N , t ] = O .  (2.13) 

Also 

{ 
X,, when upstream traffic light is red 
Xkg, when upstream traffic light  is  green. X (  k,  t )  = 

(2.14) 

Although we do  not  do so, one  can account for the delay 
between the time traffic departs from the upstream signal 
and the time it arrives at the detector by appropriately 
adjusting the "phase" of h(t) with respect to the upstream 
traffic signal. 

Fig. 1. Detector location. 

Similarly, there is an unobserved point process nd( t )  at 
the stop line 

if a vehicle departs at time t (2.15) 
0, otherwise. 

We assume that the rate process corresponding to nd(t) is 
dominated by the downstream traffic signal and by the 
number of vehicles in the queue. Then, 

y(k, t )= rate at which  vehicles depart from the 
queue given that the queue length is k. 

SO, 

y(k,t)=Pr [ 1 departurelz(t)=k,t] (2.16) 

p(0, 5) = 0, for all t 

and 

Pr [more than 1 departure] =O 

p(k, I )  = { pkr, when downstream traffic light  is red 
pkg, when downstream traffic light  is  green. 

(2.17) 

Furthermore, assume that arrivals and departures, condi- 
tioned on knowledge of the queue, are independent. 

Examination of real traffic data shows that the assump- 
tion of conditionally inhomogeneous Poisson amvals  and 
departures is not strictly correct. It is also obvious that the 
coarse time discretization is throwing away useful infor- 
mation about the velocity  with  which  vehicles  cross the 
detector. There are three very good reasons for making 
these assumptions despite the inaccuracies they introduce. 
First, it  will be  seen that the filter/predictor based on 
these assumptions tends to ignore the extra randomness 
inherent in the conditionally Poisson assumption. Second, 
examination of real traffic data shows that the time de- 
pendence of vehicle arrivals caused by upstream traffic 
signals  is a dominant effect and this  is accurately mod- 
eled. Finally, the filter/predictor based on these assump- 
tions  is  easily implemented in a microprocessor, and can 
easily  be made adaptive. 

It should also be noted that the assumption of a single- 
lane street is inessential. 

This actually completes the construction of a model for 
the point process na(t). To see this, and  to put the model 
in the form of  (2.1 I),  define 

Q:(t) = Pr[queue at time t + 1 contains i vehic- 
leslqueue at time t containsj vehicles]. 

(2.18) 

At this point we make the approximation that a vehicle 
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joins the queue the instant that it crosses the detector. 
Thus, strictly speaking, our "queue"  is the number of 
vehicles  between  the detector and the stopline. With this 
approximation, it is elementary  that 

Q.? = 0, elsewhere, J 
(2.19) 

where the argument t has been  suppressed in both X and 
p .  Introduce the row  vector 

XT(I)= [X(O,t),X(l,t),. * - ,A (N-  l,t),O] (2.20) 

and following  Segall [ 121, define r 1, if there are k vehicles 

0, otherwise 
Xk(t)= inthe"queue"k=O,l,--.,N (2.21) 

x'(t)=[xg(t),x1(t) , . . . , X  N ( t ) ] .  

It is  now straightforward to establish that 

x( t+l)=QT(t)x( t )+u(t)  (2.22) 
n( t )=XT( t )x ( t )+w( t )  

where u(t) and w ( t )  are "noise"  processes. More precisely, 
u(t) and w ( t )  are martingale difference sequences  with 
respect to the a-algebra generated by  the  sequences 
{n(O),n(l),..-,n(t-l>}  and  {x(O),x(l),.-.,x(t)}. 

B. More Detailed Single Detector  Queue Model (Model  B) 

There are two changes that, on theoretical grounds, 
ought to improve the above model of traffic queuing at a 
signal. The first arises because many detectors give  veloc- 
ity  (or a signal related to velocity) in addition to oc- 
currence time for each vehicle that crosses the detector. 
The  second involves defining the queue  more accurately 
as the number of vehicles that are actually stopped at the 
traffic signal. The model described here incorporates both 
of these  improvements. 

It is convenient to think of the queue  and the detector 
as characterized by three point processes (two of which 
are not observed). 

The first is the observed arrival process at the detector, 
denoted by 

0, if no vehicle  crosses the detector 
at time t 

Y "(1) = 
4, if a vehicle  crosses the detector 

at time t with  velocity 4. 
(2.23) 

Note  that 1)  we discretize  velocity  with a fairly coarse 
discretization so that j =  1,2; - - , J (J  small, around 5); 
and 2) this model applies to the detector model incorpo- 

rated in the UTCS-1  simulation. It needs to be  modified 
slightly for a real detector. It is convenient to represent 
y "(t)  as the sum of J point processes denoted  by 

' 0, if no vehicle  crosses the detector 
at time t 

nj"(t> = I  1, if a vehicle  crosses the detector 
at time t with  velocity 4, 
j =  1,2; . - , J .  

(2.24) 
Obviously, 

- - 
n"O> 

n"(t)= . contains the exact same 
information as y "( t). 

n,a(t> 

The  second is the unobserved arrival process at the tail of 
the queue, denoted by 

[ 0, if no vehicle joins  the  queue 

n'(t)= 
at time t 

(2.25) 
1, if a vehicle joins the queue 

at t h e  t .  ~ 

The third is the unobserved departure process at the head 
of the queue, denoted by 

I 0, if no vehicle  leaves the queue 

1, if a vehicle  leaves the queue 
n h ( t ) =  

at time t 
(2.26) 

at time t. 

We are most interested in the number of vehicles in the 
queue at each instant of time. To keep track of this 
number we again define r 1, if there are k vehicles  in the 

Xk(t)= queue at time t, k=O, 1;. - , N  (2.27) 
0, otherwise. 

If the street segment of interest fills we activate a similar 
scheme for the street segment upstream  from the detector. 

As explained earlier, we  now have to characterize each 
of these point processes  by  writing  explicit  expressions for 
the dependence of their  "rates" on the observed sample 
paths of n"(t), n'(t), n"(t), and x'. We begin  with the rate 
processes associated with each of the components of n"(t). 
Thus, 



A;(i, t)= Pr {a vehicle  crosses the detector with 
velocity z;, given that there are i 
vehicles  in the queue at time f}. 

Next, we assume 

A;(i,t)=q;A"(i,t) (2.29) 

where 

qi = Pr {vehicle  crosses detector with  velocity u,la 
vehicle  crosses the detector and x;( [ )  = 1 } 

A"(i, t )  is identical to the A(i, t )  used in model A ,  
(2.13), (2.14). 

We are aware of, and use  elsewhere  [5], [13], the fact 
that vehicles tend to arrive in platoons so that X,. depends 
on n " . r - l  as  well as on x([) and t .  However,  this assump- 
tion  greatly  simplifies the model.  Since the platoon 
arrivals are highly correlated with the upstream traffic 
signal, the approximation introduces only a small error. 

We still  have to specify the matrix V whosejith compo- 
nent is qi above. A relation between the velocity  over the 
detector and the queue length  is known to exist, has been 
experimentally measured, and has been used before  to 
help estimate the queue [ 141, [ 151. In the report [5]  we  give 
a derivation for the matrix V based on some  (widely 
accepted [15]) assumptions about the way drivers decel- 
erate to  join a queue. The estimator based on this V 
performs fairly well  (see Section  IV)  suggesting that crude 
estimates of V are sufficient. 

Next, we construct a model for the arrival process n'(t)  
at the tail of the queue. As before,  this  really means 
modeling the rate 

hr(x ( t ) ,na . r - ' ,nh* ' - l ,nr~r - ' , t )  Pr{n'(t)= liar-,}. 
Since n h  and n' are not observed, the fundamental prob- 
lem  is to model the dependence of A' on x(t),  t ,  and 

. It is obvious that there is a delay between the 
appearance of a vehicle  with  velocity 4 at the detector 
and the time that vehicle joins the queue. This delay 
clearly depends on the number of vehicles in the queue 
(x ( t ) )  and the velocity  with  which the vehicle  crossed the 
detector. In the report [5],  we  give a detailed derivation 
for this delay based on reasonable assumptions about the 
way  vehicles decelerate to join a queue. In any case, for 
each vehicle that crosses the detector (say  vehicle k) we 
define a deterministic vector that corresponds to the ex- 
pected  time at which that vehicle joins the queue. We 
denote this vector by 

I 

T 
Tk = [ rkO, rk;, * ' . , r k N ]  (2.30) 

where 7k; =expected time that kth vehicle joins the queue 
given that the queue contained i vehicles  when the kth 
vehicle  passed the detector. Note  that T~ is  only defined 
after the kth vehicle  crosses the detector. The only  values 
of T/, that  are of interest correspond to vehicles that have 
crossed the detector but have not yet joined the queue. To 

keep track of these values of rk, we define 

q i  = the smallest known value of rki satisfying A 

the inequality t - T~ < 1 s; 

u2; the smallest known value of 7; satisfying the 
inequalities 7i >a,, and t - T~~ < 1 s; 

u3; = the smallest known value of rmi satisfying 
the inequalities rmi >a2; and t - rmi < 1 ; 

a 

UP [ul :u* . u3 . : I  
(2.3 1)  

Finally, we assume that 
h r ( x t , n u , r - l , n h , r - l  n r , z - l  

9 , t )=A' (x ( t ) , t ,u ) .  (2.32) 
But 

A'(x(t), t,u) = Pr {a vehicle joins the queue at time 
t given u and x ( t ) }  

= ~ r [ n ' ( t ) = l I x ~ ( t ) = l , ( r ] .  

Thus, to complete the model, one has to explicitly  specify 
the above probability for each value of i and u. We make 
the approximation that 

Pr [ n'(r)= llxi(t)=  l,uk] 

0, i = N  
0.4, i < N ,  t = cs, 
0.29, i < N ,  It - 0,,1= 1 =I (2.33) 

0.02, otherwise 

where k =  1,2,3. We also assume that the above arrival 
probabilities are conditionally independent for different 
values of k. Thus, we have that 

Pr[n'(t)=llx,(t)=l,o] 

3 
= 2 Pr[n'(t)=llx;(t)=l,uk]. (2.34) 

k = l  

The choice of distribution is,  obviously, arbitrary. The 
parameter given as 0.02 is intended to reflect the probabil- 
ity that a vehicle joins the queue without crossing the 
detector. If there was an entrance to a parking garage 
between the detector and the stop line, that number would 
need to be larger. The assumption that the vehicle joins 
the queue at its estimated arrival time 2 1 s is also ad hoc 
but is reasonable. In principle, the probability in (2.33) 
could be measured. Such a measurement would require a 
great deal of work, but since the results should not depend 
too  heavily on  the specific street, a few such measure- 
ments would probably suffice for the entire country. Fur- 
thermore, our results suggest that it may be adequate  to 
use a guessed distribution. This completes the model of 
the arrival process at the tail of the queue. 



BARAS et id.: URBAN TRAFFIC QUEUE ESMATION 17 

We  next  model the departure process at the head of the 
queue by 

Ah(x(t),t,etc.)= 
( t:(t),  if xo(t) =O 

if xo(t) = 1 
(2.35) 

where 

X h ( t )  = 
signal is red { ?h, signal is green. 

(2.36) 

This is a  relatively crude approximation. We  know the 
departure rate changes  slightly at the time the signal 
changes and we know the departure rate is  larger for 
moving traffic than it is for stopped traffic.  However, this 
model  is  simple and, we hope, reasonably accurate. 

Now, it is a straightforward matter to place this  model 
in the form of  (2.1  1). Specifically, 

Q;T(t,u)=(l  -A'(i,t,u))(l -A"i,t)) 

+A'(i,t,o)A"(i,t) 

Q;;-,(t,u)=A'(i,t- l,u)(l --Ah(i,t- 1)) 

Q i ~ + I ( t , u ) = ( l - A ' ( i , t + l , u ) ) A h ( i , t + l )  
. (2.37) 

Q;(t,u)=O, i#j , i+l#j , i - l#j .  - 

Thus 

x ( t +  1)= Q*(t,u)x(t)+u(t) 

N 
ny( t )=  x z+"(t,i)x,(t)+wj(t), j =  1,2; . - ,J 

i = O  

(2.38) 

completes the model  with u(t) and w(t )  having similar 
properties as for model A .  It is  slightly more convenient to 
write the second  part of (2.38) as 

n'(t)= Vx( t )xT( t )XQ(t )+a( t )  (2.39) 

where 

C. Two Detector  Queue  Model  (Model C) 

In this subsection we develop  a queue model  utilizing 
an additional detector located at the stop line. 

Fortunately, we have done all the hard work in develop- 
ing Model B. The only problem involved in augmenting 
Model B to utilize the information available from the 
additional detector is to characterize the point process at 
the new detector. We  assume the new detector provides 
only occurrence times (no velocity data), since there is 
relatively little information in the velocity at the stop line. 
Proceeding, let 

1, if a  vehicle  crosses the stop 
line detector at time t 

0, otherwise. 

We assume the associated rate 

A"( t ,~ ' - , )=hh(X( t ) , t )  

0, if signal  is red 
Ad,  if signal is green and xo( r )  = 0 
0, if xo(t)= 1. 

(2.40) 

This is obviously an approximation  to the reality but we 
believe it is an adequate approximation. The model now 
becomes 

x(t+l)=QT(t,u)x(t)+u(t)  (2.41) 

where Q(t,u) is as in (2.37) (the corresponding equation in 
Model B )  and 

- -  
0 

A d  
A"(t) = , if signal  is  green  (2.43) : 

A d  

Ad( t )  = 0, if signal is red. 

We note that we have also obtained simpler  two detector 
models. The simplest is described by replacing A'(i,t,u) in 
(2.37)  with A( i , t )  as in model A and using the second of 
(2.22) in place of the first of  (2.42). An intermediate 
complexity  model  is obtained by replacing A'(i, f ,  a) in 
(2.37)  with A"(i,t) from (2.29) and using the same  (2.42). 

In  summary, it should be clear that  many other similar, 
queuing  models could  be constructed. In fact, it is hoped 
that the ones constructed here demonstrate the technique 
so that the reader can, if he wishes, construct a  model of 
his own. 

111. FILTER/PREDICTORS BASED ON @UMG 
MODELS 

All of the filter/predictors developed in this section are 
based on the following  result from Segall  [12]:  given an 
observed point process n( t )  that is related to a  "signal" 
process x(?) via (see also (2.1 1)) 

x ( t + l ) = ~ t , n ' - l , x ' ) + u ( t ) ; ~ ( l ) = ~ ,  (3.1) 

n( t )=a ( t ,n r - ' ,X ' )+O( t )  ( 3 4  

where { u(t)}  and {o(t)} are martingale difference 
sequences  with  respect to {at- }. Then 2(t + 1 It), the 
minimum square error estimate of x(? + 1)  given the ob- 



s , ( t ) = ~ [ x , ( t + l ) = l , n ( t ) = l ~ x j ( t ) = ~ ] .  (3.11) 

It is  easily  shown that 

Sii(t)=A(i,t)p(i,t) 
s,,,+,(t)=h(i,t)(l - p ( & t ) )  (3.12) 
S,(t)=O, j # i , j # i+  1. 

On the other hand, the filter (i.e., the minimum square 
error estimate of x( t )  given the observations Tl) is  given 
[I21 by 

- (n ( t ) -AXT( t ) i ! ( t l t -  1 ) )  (3.13) 

where diag{i( t~t-1)}=diag{i2,( t~t-1) , .~ . ,~~(t~t-1)}.  
We can now combine (3.8)-(3.13) to provide a realiza- 

tion of the optimal filter/predictor. 
A straightforward calculation shows that (3.13) reduces 

v( t )=n( t ) -$( t l t - l )  (3.7) 

is the innovations process. All that remains is to compute 
explicit formulas for the expectations contained in (3.3)- 

to 

(3.7). ij( tl t )  = 

A .  FiIter/Predictor Using  Occurrence Times On& 
(Model A )  

It is a straightforward calculation, which can be found 

( l - A ( i , t ) ) i ? i ( t l t - l )  

2 (1 -X(i , t ) ) i j ( t l t -  1) 
N , if n(t)=O 

i = O  

X(i, t)2;( tl t - 1 )  

2 X(i,t)gj(rlt- 1) 
N 9 if n( t )  = 1 

i = O  

(3.14) 
in  Segall [12], to show that the optimal one-step predictor 
based on Model A is  where  use has been made of the easily demonstrated fact 

that 
i ( t +  llt)=QT(t)i!(tlt- 1)  N 

[ S T ( t ) i ( t l t -  1 ) -  Q'( t )E( t )A( t ) ]  2 i i ( t l t -  I ) =  1. + 
[ X ' ( r ) f ( t l t - l ) - ( X T ( t ) 3 ( t l r -  I ) ) * ]  

i = O  

Similarly,  some algebraic manipulations (see [51) give 
.(n(t)-A*(t)i(tlt- 1 ) )  (3.8) z(r + 1lt )  

i( 110) =s(O) = a priori probability distribution of 
queue length at t = 0 1 M T ( t ) W ) ,  if n( t )  = 1 

(3.9) I [ Q'( t ) -MT( t ) ]2 ( r~ t - -1 )  

x (1 -A(i,t))i;(tlt- I )  
= M T ( t ) i ( t l r ) +  , i fn( t )=O 

where 

~ ( t ) = f ( t l t - ~ ) f T ( t l t - l )  (3.10) i = O  

and S(t) is defined by 
(3.15) 

where 

M T ( t )  = 

0 0 ... 

0 
0 

P(3) 

0 
0 
0 
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1 

Fig. 2. Block diagram of  optimal filter/predictor for Model A .  

It should  be  apparent  that (3.14) and (3.15), coupled A similar derivation gives the filter as 
with  (3.9) for initialization, represent an algorithm for the 
minimum error variance filter/predictor which can  be f ( t l t ) = f ( t l t - ~ ) + ( [ d i a g { f ( t l t - l ) } ]  
easily  realized  in  a  microprocessor,  see  Fig. 2. This is -f(tlt-l)fT(tlt-l))[diag{A'(t)}] VTx 
especially so since A(t), QT(t) and MT(t )  are all piecewise 
constant and periodic. . ~ - ' ( f ( t l t -  l))(n"(t)-  V[diag{A"(t)}]f(tlt-1)) 

B. Single  Detector Filter/Predictor Using  Velocity and 
Occurrence  Time  where  we have defined 

(3.21) 

This filter/predictor is  based on Model B. Thus, the ~ ( f ( t l t -  I))= [diag{&(tlt- I)}] -&(tlt- I ) & T ( t l t -  1) 
basic problem is to derive the optimal filter/predictor for 
a  system that is  modeled  by and 

x(t+l)=Q'(t,u)x(t)+u(t> (3.17) d(tl t- l)=  ~diag{A"(t)}]f(t l t-  1). 
n"(t)= qdiag{A"(t)}]x(t)+w(t) (3.18) 

where it is easy to see that (3.18)  is identical to (2.39). This 
is again in the form of  (3.1)-(3.2). Thus, the minimum 
square error estimate of x(t + 1)  given the observations 

%, = ~ { n " ( l ) , -  ,n"(t)}  

satisfies the recursive formula given  by  (3.3)-(3.7). Thus, 
the derivation of the filter/predictor reduces to finding 
explicit  expressions for the several conditional expecta- 
tions in (3.3)-(3.7). The first problem  that occurs, if one 
attempts to simply parallel Segall's calculations [12],  is  in 
the calculation of f i t l t -  1): 

f i t l t -  l ) = E {  Q T ( t , ~ ) x ( t ) l n a ( t -  l>,n"(t-2);*. 1. 

We  remark that (3.20) and (3.21) are only valid under the 
simplifying assumption  that 

E'f-l{ u ( t ) d ( t ) )  =O.  

We make  this assumption even  though, strictly speaking, 
it is  only accurate when the end of the queue is not near 
the detector (unsaturated section). This inaccuracy for 
long  queues is unimportant since the model breaks down 
for long queues anyway. 

Finally, (3.20) and (3.21) appear to be  too  complicated 
to implement  in  a  small computer. However, one can 
derive  a formula for A that requires the inversion of 
only six scalars [5]. Then, the calculations can  be  reduced 
still further to 

If one refers  back to the derivation of this  model (and f ( t +  Ill)= QT(t ,u)f( t l t )  (3.22) 
specifically a) it is  seen that u and hence QT(t,u) is a and 
deterministic function of past observations. This is, of 
course,  only an approximation  to reality.  However, once 
the  model incorporates this approximation, it is  rigorously (l-A'(i7f))zi(tlt-l) if np(t)=o, 
correct that q t / t > =  

2 (1  - A " ( j , t ) ) q t l t -  1) 
' 1=1, .*-5  

f i r l t -  l)=E'~-I{QT(t,u)x(t)} j = O  

= Q ' ( t , ~ ) E " ~ - ~ { x ( t ) }  

= Q ' ( t , ~ ) f ( t l t -  1).  (3.19) &(tIt)= N 7 for some 
urjX"(i,t)ij(tlt- 1) if np( t )  = 1 

Once (3.19)  is  established it is easy to show that the 
one-step predictor is  given  by 

2 u,A"(j,t)zj(tlt- 1) 1 € [ 1 , - . * 5 ] .  
j = O  

/? 3) (5.2: 
f(t+lI~)=QT('~~)f(tI'-1)+QT(',~)([diag{f('I'-')}] By c o m p ~ g  these  equations to (3.14) and (3.15) 

- n(tlt- 1)fT(tlt- 1)) which describe the  simpler filter/predictor it is seen that 

-[diag{A"(t)}] VTA-'(R(tl t-  l))(n"(t) the numerical complexity of the second filter/predictor is 
similar to that of the first filter predictor. Thus, a  micro- 

- qdiag{A"(t)}]f(tlt- 1)). (3.20)  processor realization is feasible again. 
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C. Two Detector Filter/ Predictor 

This filter/predictor is based on Model C. Since Model 
C is so similar to Model B, it is quite straightforward to 
derive the new filter/predictor. 

The only complication is that it is possible to have 
nd(t)  = 1 and one of the components of n"(t) also equal to 
one. However, it is reasonable to assume n"(t) and n"(t) 
are uncorrelated whenever the queue is not empty. When 
the queue is empty there is sone relation between the two 
measurements, which  is  very difficult to describe and 
model. Thus, we make the simplifying assumption that 
n "( t )  and n "( t )  are uncorrelated. 

Once this assumption is made, the derivation of the new 
filter/predictor goes through easily [5]. The most con- 
venient way to express the result is in terms of a correc- 
tion to (3.22) and (3.23). That is,  (see (3.23)), 

(1 -A"{i,t))Zi(tlt- 1) if np( t )  = 0, 

2 (l-A'(j,t))Z,(tlr- 1) 
1 = 1 , . . - 5  

aj(tlt)= + f C i ,  

j=O 

uJ'( i , t )2 j ( t ] t -  1) if np( t )  = 1 
aj( t l t )= +fc j ,  for some 

2 g A " ( j ,  t ) q  tl t - 1) ZE[1,--5] 
j=O 

(3.24) 

where 

fCi = 
n d ( t ) = O  

Ad( i , t ) i i ( t l t -  I )  
- i ; ( t l t -  1)+ 3 

2 A q j , t ) 2 j ( t p -  1) 
i = O  

n d ( t ) =  1. 

(3.25) 

Similarly, (see (3.22)) 

a(t- t1l t )=QT(t ,u)X(t l t )+Pc (3.26) 

where 

=(QT( t ,u ) -QT( t ,n ) ) ( f c+f ( t l t -  l)), if n d ( t ) = l  

=(QT(t ,u) -QT( t ,c ) ) ( fc+i ( t l t -  1)) 
[ Q ' ( t , ~ ) - - ~ ( t , ~ ) ] f ( t l t -  1) 

+ N  
, if nd( t )  = 0 

2 (l-A"(j,t))i$tp- 1)  
j = O  

i 
(3.27) 

wherefc is  given by (3.25),pc denotes predictor-correction 
and 

This shows that the filter/predictor can be imple- 
mented modularly by adding a processor module with the 
additional detector. 

IV. TEST AND EVALUATION 

A. introduction 

The ultimate test of an algorithm for estimating traffic 
flow parameters is to include it in the software for an 
operating computer-controlled traffic network. If, under 
those circumstances, the filter/predictor algorithm per- 
forms well then it is a good algorithm regardless of its 
performance on  any other tests. Unfortunately, we do  not 
have an operational computer-controlled traffic network 
for use as a test.  However, the Urban Traffic Control 
System Number One (UTCS-1) simulation model pro- 
vides a reasonable and comparatively inexpensive means 
to test our filter/predictors. 

The UTCS-1 simulation model is a very detailed simu- 
lation of urban traffic, developed under the auspices of 
the Federal Highway Administration. It is  believed to be a 
fairly accurate simulation of urban traffic [16]. Further- 
more,  it is based on a model of traffic flow that is  very 
different from any of our models [li']. For our tests, we 
simulated two simple urban networks, of which  only d e  
simplest  is included in this paper. This network  is shown 
in  Fig. 3, where all streets are single-lane streets on which 
traffic flows in the arrow direction. The rectangles repre- 
sent detectors which  give occurrence time and correct 
velocity for each vehicle crossing the detector. 

The following assumptions (actually inputs to the simu- 
lation) are held constant throughout all the tests: 

1)  All streets are 500 ft long from node to node and 

2) The detectors are 210 f t  from the downstream stop- 

3) The traffic signals are: 
Left-most intersection: 

80 s cycle  time; 
40 s r e d 4 0  s green-0 s amber. 

Center intersection: 
80 s cycle  time; 
40 s red-40 s green-0 s amber; 
20 s offset from signal at node 5. 

80 s cycle time; 
40 s r e d 4  s green-0 s amber; 
40 s offset from signal at node 5. 

have zero grade. 

line. 

Right-most intersection: 

Other parameters of the simulation are given  in the report 
[5]  but are not essential in the following. 
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Fig. 3. Street configuration Test Network #I. Nodes are 5,6,7 in the 
direction of flow. 

Four tests  were run using the above network. Test I 
corresponded  to  “moderate” traffic flow on which the 
traffic signals dominate  the traffic. Test 2 is again mod- 
erate traffic but is more  “random”  than Test 1. Test 3 
corresponds to  moderate to heavy traffic while Test 4 
corresponds to heavy  traffic. 

B. FiIter/Predictor Using Occurrence Times Only 

The first queue estimation scheme that we tested was 
based on Model A .  This filter/predictor, hereinafter de- 
noted F /  P I, depends  only  on two functions, A(i , r )  and 
p(i , t) ,  where i expresses the dependence  on queue length 
and t the dependence  on time. For simplicity, we 
eliminated the dependence  on i in  the actual  implementa- 
tion of F / P  I. Thus, F / P  I depends only on three 
parameters: 

X,, upstream traffic signal green 
i=O, 1; - - , N -  1 

A(i’ t ,  ={ &, upstream traffic signal red 

i 
[ i=o,I , - . . ,N-l  

p, downstream traffic signal 

0, otherwise i=O, 1,2; - * ,  N .  

In all of the tests, the detector was 210 ft from  the 
stopline so N =  10  was the value  used. It will be seen that, 
once or twice, there were actually 11 vehicles in the 
segment  between detector and stopline. The value for A, 
was estimated by  averaging the number of vehicles  cross- 
ing  the detector during the upstream green over the up- 
stream green  time. & was estimated similarly. The results 
are fairly  insensitive to the values for A, and &. On the 
other hand, p is  very important. Thus, several different 
values of p were  tried for each simulation. We  expect that, 
because of this  sensitivity to p, it will be possible to use an 
adaptive procedure  to  compute it in an actual implemen- 
tation of F / P  I. The  performance evaluation needed for 
adaptivity would  be based on data from  downstream 
detectors and the correlation between queues  and  down- 
stream platoons discussed at length in [13]. We  have not 
had sufficient  time to do this as yet. 

This dependence of p is  well illustrated in a  number of 
our tests. For example,  see  Figs. 4 and 5. Both figures 
refer to tests  using F / P  I and Test 3. In both figures F / P  
I is implemented  using X, =0.25 and h, =0.08. In Fig. 4, 
p = 0.50 and the estimate is off by  slightly more than two 

p( i ,   t )  = green for 5 s or more i = 1 , 2 , - - - , N  

vehicles from t = 360 to almost 400. There  are even larger 
errors at approximately 260 and 340 s. The errors at 260 
and 340 s are not as serious  as the other error because 
they occur during rapidly changing  queues and it is al- 
most  impossible to track such rapid changes accurately. 
However,  in  Fig.  5, p =0.45  and the estimate is almost 
always  within one vehicle of the correct value. There  are 
some brief large errors but these  occur during rapid 
changes and the errors are quickly eliminated. 

In Figs. 4 and 5, the estimate given is the minimum 
error variance estimate or, equivalently, the conditional 
mean. In fact, the estimation procedure used  gives  much 
more information than this. This is demonstrated in Table 
I which corresponds to Fig. 5 exactly. Notice  that the 
conditional probability of a  queue of one vehicle, two 
vehicles,  etc. is given. To see  what  this  means,  take T=50 
s. Note  that Pr[x l ( t )=  11Tt]=0.40 and Pr[x2(t)= l\Tt]= 
0.52. In fact, there is one vehicle in the queue  and the 
estimator assigns almost all the probability to there being 
either one  or  two vehicles in the queue. Thus, although the 
conditional mean estimate is about 0.7 vehicles too large, 
the estimator “knows” that there are one or two  vehicles. 

Similarly, at T=260, the estimator assigns  sigmficant 
probability to every queue length from  one  to six vehicles. 
The actual number is either five or six and the conditional 
mean  is 3.8. The point is that the filter/predictor “tells” 
us that it is not very sure of itself. This information is 
available and may be used to greatly  improve the control 
algorithm. 

The test  involving  heavy  traffic, Test 4, is  shown in Fig. 
6. This figure  shows  fairly  good performance of the 
filter/predictor. The steep increases in the estimate that 
one sees, for example, in Fig. 6 at t = 210-240 s demon- 
strate why F / P  I performs as it  does. If no vehicle arrives 
during a time that F / P  I expects the queue  to grow, then 
F / P  I assumes  this  is  because the queue has extended to 
the detector and  no more  vehicles can cross  the detector. 
Thus, whenever there is a “long” gap between arriving 
vehicles,  the estimated queue length increases. This occa- 
sionally (as at t =240 s in Fig. 6 )  causes  large errors but 
usually it eliminates errors. It should also be noted that, 
when a vehicle  crosses the detector after a long delay the 
estimated queue decreases instantaneously and then in- 
creases again. This reflects  the fact that, if a vehicle 
arrives,  the queue could not have  been ten prior to the 
arrival. This causes i?,,(t)= Pr[queue= 1OI%] to drop  to 
zero. A moment later, probability increases from zero 
because one  more vehicle, the new arrival, has been added 
to the  queue. 

In the heavy traffic case,  the actual queue extends 
beyond the detector. Thus, we would  have to use a similar 
estimator to estimate the number of vehicles that are 
“stored” upstream from  the detector. We have not done 
this as yet. 

In addition, we compared the performance of F / P  I 
with ASCOT 1141, [18], one of the  “queue” estimators cur- 
rently  in  use. ASCOT is regarded as one of the  best  single- 
detector queue estimators [15]. However, it uses  the  veloc- 
ity data  from the detector, it gives  only a single number as 
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c 
Fig. 4. Performance of F / P  I. The data are from Test 3, link 5-6.  The dotted line  indicates  the minimum error  variance 

estimate of the  queue.  The solid line  is  the true  value.  The  parameters of F / P  I are %=0.25, &=0.08, p=0.50. 

L I 

Fig. 5. Performance of F / P  I. The data are from Test 3, link 5-6. The dotted line  indicates  the minimum error  variance 
estimate of the queue. The  solid  line is the true  value.  The  parameters of F/  P I are % = 0 . 2 5 , b  =0.08, p = 0.45. 
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t   n ( t )  ;o(t) x^l(t) ;3(t) G4(t) g5(tl ;6(t) <(t)  ;,(t) G9(t) <o(t) ML(g(t))   E(g( t ) )  

38 0 0.83  0.09  0.05  0.02  0.01 0.00 0.00 0.00 0.00 0.00 0.00 0 
39 1  0.87  0.07  0.04  0.02  0.01 0.00 0.00 0.00 0.00 0.00 0.00 0 

0.3 

40 0 0.00 0.90  0.05  0.03  0.01  0.01 0.00 0.00 0.00 0.00 0.00 1 
0.2 

41 0 0.40  0.52  0.04  0.02  0.01 0.00 0.00 0.00 0.00 0.00 0.00 1 
1.2 

42 0 0.40  0.52  0.04  0.02  0.01 0.00  0.00 0.00 0.00 0.00 0.00 1 
0.7 

43 0 0.40  0.52 0.04 0.02  0.01 0.00  0.00 0.00 0.00 0.00 0.00 1 
0.7 

44 0 0.40  0.52  0.04  0.02  0.01 0.00 0.00 0.00 0.00 0.00 0.00 1 
0.7 

45 0 0.40 0.52  0.04  0.02  0.01 0.00 0.00 0.00 0.00 0.00  0.00 1 
0.7 

46 0 0.40 0.52  0.04  0.02  0.01 0.00 0.00 0.00 0.00 0.00 0.00 1 
0.7 

47 1  0.40  0.52  0.04  0.02  0.01 0.00 0.00 0.00 0.00 0.00 0.00 1 0.7 
0. 7 

49 0 0.00 0.40  0.52  0.04  0.02  0.01 0.00  0.00 0.00 0.00 0.00 2 
48 0 0.00 0.40  0.52  0.04  0.02  0.01 0.00 0.00 0.00 0.00 0.00 2  1.7 

50 0 0.00 0.40 0.52  0.04  0.02  0.01 0.00 0 .00  0.00 0.00 0.00 2 
1.7 

51 0 0.00 0.40  0.52  0.04  0.02  0.01 0.00 0.00 0.00 0.00 0.00 2 
1.7 

52 0 0.00 0.40  0.52  0.04  0.02  0.01 0.00 0.00 0.00 0.00 0.00 2 
1.7 

53 0 0.00 0.40 0.52  0.04 0 .02  0.01 0.00 0.00 0.00 0.00 0.00 2 
1.7 

54 0 0.00 0.40  0.52  0.04  0.02  0.01 0.00 0.00 0.00 0.00 0.00 2 
1.7 
1.7 . .  . .  . .  . .  . .  . . .  . .  . .  . .  . . .  . .  

254  1 0.bO 0.bO 0.b2  0.07  0.17  0.26  0.26  0.16 O.b6 0.01 0.00 
255 0 0.00 0.00 0.01  0.04  0.11  0.21  0.26  0.21  0.11  0.04  0.01  6 

5.4 

256 0 0.00 0.00 0.02  0.07  0.16  0.23  0.24  0.17  0.08  0.02  0.01  6 
6.0 

257 0 0.00 0.01  0.05  0.11  0.19  0.23  0.21  0.13  0.05  0.01 0.00 5 
5. 5 

258 0 0.01  0.03  0.08  0.15  0.21  0.22  0.17  0.09  0.04  0.01 0.00 5 
5.1 

259 0 0.02  0.05  0.11  0.18  0.21 0.20 0.140.07  0 .02 0.01 0.00 4 
4.6 

260 0 0.04 0.08 0.14  0.19  0.21  0.17  0.10  0.05  0.02 0.00 0.00 4 
4. 2 

261 0 0.08 0.10 0.16  0.20  0.19  0.14  0.08  0.03  0.01 0.00 0.00 3 
3.8 

262 0 0.12  0.13  0.18  0.20  0.17  0.11  0.06 0.02 0.01 0.00 0.00 3 
3.3 

263 1  0.18  0.15  0.19  0.18  0.14  0.09  0.040.02  0.01 0.00 0.09  2 
2.9 

264 0 0.00 0.25  0.17  0.18  0.16 0. 12  0.07 0 . 0 3  0.01 0.00 0.00 1 
2.5 

265 0 0.11  0.21  0.18  0.18  0.14  0.10  0.05  0.02  0.01 0.00 0.00 1 
3.2 
2.7 

Note: Characters  with  underbars  appear boldface in text. 

Fig. 6.  Performance of F / P  I. The data are from Test 4, link 6-7. The dotted line indicates the minimum error  variance 
estimate of the queue. The solid line is the  true  value. The parameters of F /  P I are = 0.23, A, =O. 12, p = 0.45. 
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TABLE I1 
~ M P m S O N  OF ASCOT WITH F/  P I. DATA ARE FROM TEST 3, 

LINK 5-6. 

Time Actual Queue ASCOT Estimate F I P  I Estimate 

80 2 3 2. i 

I60 2 2 2 

240 5 5 5 

320 5 7 4. 5 

400 5 3 . 8  

its estimate and this estimate is given only at the instant of 
red to green transition of the traffic signal. Thus, F / P  I 
can give  much more information, based on less data 
more computation than ASCOT. The comparisons 
summarized in the Tables I1 and 111. 

but 
are 

C. Single Detector Filter Predictor Using Velocity and 
Occurrence Time 

The second queue estimator that we tested was based 
on Model B. This is a much  more  complex model than 
Model A .  However, the filter/predictor which we denote 
by F /  P 11, depends on the three functions A'(& t,u), 
Ah( i ,  t ) ,  and u,;h"(i, t) .  Of course, u is also a function of the 
input data  and this also affects F / P  11. For simplicity, we 
again eliminated the dependence on i of Ah(i, t)  and 
A"(i, t )  in the actual implementation of F /  P IT. 

Thus, as before: 

%, upstream traffic signal green 
i=O,l ;*- ,N-l  

4, upstream traffic signal red 
( i=O, l , - . . ,N- l  

p, downstream traffic signal 

0, otherwise i=O,1,2,--.,N. 
A h ( i , t ) =  green for 5 s or more i =  1,2; - .  , N  

All of the other assumptions and parameters of Model 
B and F / P  I1 are described in Section I1 of this paper. 
These  values  were  fixed at the values  given  in Section I1 
throughout these  tests. This is because we believe it is 
reasonable to adjust two or three filter/predictor parame- 
ters as a function of time-of-day or adaptively. Further- 
more,  this parameter adjustment can greatly improve the 
performance of any filter/predictor. 

We remark that the parameters A,, A,, and p were 
chosen  by the same technique used for F / P  I. That is, & 
and X, were determined by averaging the number of 
vehicles crossing the detector during the appropriate time 
period. Several different values of p were tried for each 
simulation. In this  case, our definition of the queue corre- 
sponds quite closely to the definition used  in  the  UTCS-1 
simulation. 

Fig. 7 shows the performance of F / P  I1 on link 6-7 

TABLE 111 

LINR 5-6. 
COMPARISON OF ASCOT WITH F / P  I. DATA ARE FROM TEST 4, 

Time Actual (Xleue ASCOT Estm>atc TIP I Estimate 

80 ti 3 5. 8 

I60 9 7 9 

240 10 9.  5 

320 10 I 2  9 . 5  

400 7 9 . 5  

t = 240 s. This is caused by a vehicle  which  "runs" the  red 
light at t =204 s. This sort of thing certainly happens in 
real traffic but is bound to cause filtering and prediction 
errors. It should be noted that the filter/predictor re- 
covers from the error almost immediately. The other large 
error occurs at t = 160 s. This is caused by a combination 
of two factors. A vehicle just beats the signal transition 
from green to red at r = 120 s. The filter/predictor assigns 
some probability to this  vehicle having been caught by  the 
light. This causes the gradual increase in queue estimate 
from t = 120 to t = 158 s. The jump  at t=  160 s is caused 
by a vehicle that crosses the detector 5 s before the signal 
changes to green. Thus, this is a "reasonable" error in that 
a similar traffic situation would  result in  a queue of 1-2 
vehicles  with some probability. The  one vehicle error at 
approximately r = 325 s is not very serious and seems to be 
due to a problem in the simulation. In this simulation, a 
vehicle  crosses the detector at  t=320 s with a velocity of 
34 ft/s. According to the simulation, that vehicle departs 
14 s later without ever joining the queue. This is quite 
unlikely. Thus, F /  P I1 performs extremely  well in Test 1. 

We did many other tests on F/ P I1 with results that  are 
similar to the above. To summarize these results, F / P  I1 
performs very  well in light to moderate traffic and should 
not be  used in heavy traffic. In this case we were unable 
to get ASCOT to work in a satisfactory manner so we have 
not compared F / P  I1  with ASCOT. We  would  expect the 
comparison to be similar to that for F / P  I and ASCOT. 

We did very little adjustment of the filter/predictor 
parameters for this  model. In a few  cases,  two  values of Ad 
were tried. The figures  show the results for the best choice 
of A d .  In every case, we set A'(O,t)=O when the down- 
stream traffic signal  was  green. This is slightly different 
from the value  given  in the model. However, the change 
results in an improvement in performance and so, should 
be incorporated in any implementation of F / P  11. 

D. Tnlo-Detector Filter Predictor 

The third queue estimator that we tested  was based on 
Model C and is denoted F / P  111. Since we assume 
A d( i ,  t )  =Ah( i, r )  there are not more parameters in F /  P 111 
than there were in F / P  11. In fact, the parameter values 
used  in the tests of F / P  I11 are identical to those used in 

during Test 1. There is an error of almost two  vehicles at F/ P I1  with  two  exceptions. In F/ P I11 
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Fig. 7. Performance of F/P 11. The data are  from  Test 1, link 6-7. The dotted line indicates the minimum error variance 
estimate of the queue. The solid line is the  true value.  The  parameters of F / P  I1 are % =0.22, A,=O.OS, p=O.75. 

X “(0, t )  = v, when the downstream traffic signal  is green 

I 0.02, i = 0,1, - . , N when the downstream 

Ab(  i, t),  i = I, 2, - - , N when the downstream 
traffic signal  is red 

X“( i ,  t )  = 

traffic signal  is green. 

These two changes reflect the facts that 1) departures 
occur even when the queue is empty at approximately the 
free flow rate, and 2) departures occur even though the 
traffic signal is red. It is necessary to model  these depar- 
tures more carefully for F/  P I11 because the filter/predic- 
tor can be badly “confused” when its observation, nd(t) ,  is 
allegedly  impossible. That is, if X “(i, t )  = 0 when the traffic 
signal is red and nd( t )  = 1 then F /  P I11 concludes that an 
impossible event has occurred. 

In  any case, F / P  I11 then depends on three variable 
parameters &, A,, and p. These parameters are identical to 
the parameters of F / P  I1 and they are given the same 
values  they  were  given in the tests of F / P  11. 

Some  test results are exhibited in Fig. 8. Since the data 
input to F / P  111 is identical to the data input to F / P  I1 it 
is  easiest to simply re-read the discussion of the results for 
F/ P 11. There are two points that should be noted: 

1) F / P  I11 appears to perform slightly worse than F / P  
11; 

2) F/  P I11  is much more oscillatory than F/  P 11. 
The  apparent degradation in performance is caused by the 
“rolling queue” effect that we described earlier. In many 
of these simulations, a platoon of traffic arrives at the 
queuing area just  as the original queue departs. When this 

happens, the simulation usually reports that the queue is 
empty. However, there are usually several vehicles that 
have been forced to decelerate or, in effect, to queue even 
though they do not stop. The filter/predictor tends to 
include these  vehicles in its estimate of the queue. In 
practical applications, this may  well be better than an 
exact estimate of the number of stopped vehicles. 

The oscillations in the  output from F / P  I11 are unim- 
portant from a practical viewpoint since a simple low-pass 
filter will remove them. They are caused by the fact that 
the filter tends to increase its estimate of the queue at the 
time a departure occurs. This is because departures are 
more probable when there is a queue. Immediately after 
the departure the filter decreases its estimate of the queue 
by approximately one vehicle. This is for the obvious 
reason that a vehicle  is known to have departed. 

We  believe that these simulation results have implica- 
tions concerning the value of different measurements, 
which parameters of traffic are easiest to estimate, as well 
as the potential value of these filter/predictors. 

V. CONCLUSIONS 

At first glance it appears  that F / P  I, the simplest 
estimator, performs best. It should be noted that this is 
not our intended conclusion. F / P  I estimates the number 
of vehicles  between the detector and the stopline. F / P  I1 
and F / P  111 estimate the number of stopped vehicles. It is 
much harder to correctly estimate the number of stopped 
vehicles. It is also true that F / P  I1 and F / P  I11 depend 
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Fig.  8. Performance of F / P  111. The data are From Test 1, link 6-7. The dotted line indicates the minimum error variance 
estimate of the queue. The solid  line is the true value. The parameters of F / P  111 are %=0.22, X, =0.08, p=O.75. 

on several more parameters than F / P  I, and no effort was 
devoted to optimizing any of these parameters other than 
\, 4, and p. It was  felt that this  was a more  realistic  test 
since  in actual practice tuning many parameters is too 
expensive  to  be practical. 

In the light of the above caveat, all three of the queue 
estimators described in  this paper appear to perform well. 
Of course, their performance on  a real street might not be 
as good. However, the fundamental test of these estima- 
tors is to incorporate them in a closed-loop (or traffic-re- 
sponsive) traffic control system. If the control based on 
these queue estimates is an improvement over current 
controls, then these estimators are useful. Our current 
research is devoted to  the  closed-loop control of urban 
traffic. 

Another important, and not fully explored question 
concerning these estimators is how to make them adap- 
tive.  Some preliminary results along this  line are presented 
along with another estimator for a relevant urban traffic 
parameter in a companion paper [ 131. 
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A Methodology for Auto/Manual Logic 
in a Computer  Controlled Process 

ROBERT G.  WILHELM, JR., MEMBER, IEEE 

Abstmct-The usual methods: of  implementing the auto/manual logic in 
complex  process c o n t r o l  systems hamper moanlarity and often laek a 
W~ed structure. In this paper we develop a language for describing the 
required l o g i c a l  p r o e e d v  based on the natore  of the interdependencies 
which can exist between  different cootrof loops or functiom in a system. A 
software structure is presented which implements the anto logic while 
retaining the autonomy and modularity of the control functions, and a 
simple  example of its application is discussed. 

I. INTRODUCTION 

I N THE DESIGN of complex, multiloop, continuous 
process control systems,  relatively little attention has 

been paid to the area of auto/manual  and mode-switch- 
ing  logic. In the applications literature we find some 
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Systems Evaluation, and Components Comttee. 
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articles describing mode-switching techniques for analog 
control systems, but the matter seems  trivial in the design 
of digital computer-based control systems because of their 
superior logic handling capabilities. The result has been a 
generally haphazard treatment of the problem, and little 
formal definition of the  logic to  be used. In this paper we 
attempt to present a suitable language for defining auto/ 
manual logic and describe how it has been implemented 
in a real-time  process control system. 

Due to the lack of precedent, the language for discuss- 
ing auto/manual logic  is  very  fuzzy. Hereafter in our 
discussion we shall use the abbreviated term “auto logic,” 
and we choose to define it as: 

Auto logic: that logic  which determines whether a 
particular control function is to  be active. 

This deceptively  simple concept is fraught with  unex- 
pected complications in all but the simplest control sys- 
tems. The status of any control function may depend 
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