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SHIP RCS SCINTILLATION SIMULATION
[Unclassified Title]

1. INTRODUCTION

(U) Reflectivity characteristics and fluctuations of targets have been recognized as
important factors in the design and performance evaluation of radar systems since the
early days of radar. Reflectivity fluctuations may be due to a variety of reasons: (a) en- -
vironmental conditions, (b) geometric configuration, (c) target complexity, and (d) relative
motion between radar and target. In each case a “noise’ process is generated that inter--
feres with the operation of the radar system. »

(U) Simulation models of radar systems have now become an important and indis-
pensable part in various fypes of radar studies and design: (a) effective implementation of
new concepts, (b) design of advanced radar systems, (c) performance evaluation of exist-
ing radar systems, and (d) analysis of electronic countermeasures (ECM) for radar systemas.
The work to be described here is primarily intended for use in conjunction with (d), where
the necessity of simulation is more dramatic. However, it can easily be modified for appli-
cation to any one of the other areas. e . N

(U) One of the most pressing requirements in EW and ECM simulation is the realistic
modeling of reflectivity fluctuations. The basic reason is that for some ECM techniques
these fluctuations would actually improve the effectiveness of the technique [1], while
for others severe deterioration may accur in the presence of certain types of fluctuations
{21, [3]. In studying the effectiveness of a specific ECM technique, not only an evalua-
tion under realistic environmental and radar-target descriptions must be provided, but in
addition, all possible causes for deterioration of performance should be identified. and
analyzed i dependently of each other, as well as simultaneously. Since the nature and
specific characteristics of the various “noise” fluctuations depend heavily on the generating
~ mechanism, a crude “white noise type” fluctuations model would provide little if any in-
formation in ECM effectiveness evaluation. Therefore, a realistic model of each mecha-
.nism generating reflectivity fluctuations is needed and the appropriate parameters that

characterize the phenomenan should be identified and analyzed. , :

(U) Fortunately, the major causes of reflectivity fluctuations in radar systems are
well known and have been analyzed in depth, both theoretically and experimentally
[4-7]. They are ([7], Ch. 28) ' : C )

(1) Radar Cross Section (RCS) scintillation (fading) of targets,
(2) angle noise (glint) of targets, '

(3) fluctuations due to multipath, and
(4) fluctuations due to reflections from irregular terrain.

(U) The complexity of the phenomena mentioned above is well known and the de-
velopment of a realistic simulation model becomes feasible only by resorting to statistical
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simulation methods. Furthermore, the intended use of the work described here dictates
several “hard” constraints on the allowed complexity of the model that will be taken
into account. Additions to the final models to improve realism and detail will also be
presented where it is felt necessary. These latter are 1mportant for (2) usg of the simula-
tion models (to be described here) in other areas and (b) use in analyses of a more con-
centrated and restricted scope.

(U) The simulation models developed under this work, although of general use in
ECM simulation for radar systems, were primarily developed for use as part of the NRL
antiship cruise missile simulations package. As a result we are primarily interested in -

_ naval applications: the targets in (1) and (2) above are ships, multipath in (3) is over sea,
and in (4) the terrain is sea. The importance of providing realistic models for (1)-(4) .
above, for the overall quality of a missile simulation package, is most easily demonstrated
if we. think of the overall missile simulation model as a problem in system identification
[8-10]. The general problem in system identification is described in Fig. 1 below. The
“real system” usually represents a very complex technological system whick may be
totally or partially unknown, or it may be known but impossible to model in a way lead- .
ing to further analysis. The model usually assumes a structure and certain parameteriza-
tion. K, and K, ate memoryless processors. The objective is to match the input-output
performance of the “real system’ by choosing the structure and parameter values of the
model (which is usually much simpler) so that a certain function of the error history is
minimized. Some examples where such a formulation and the associated methodology
and technology would be a fruitful approach for missile simulation problems are (a) “fine-
tuning” of an existing simulation model to a new missile threat with only limited output
data available, (b) test and validation of an existing simulation model, using data devel-
oped by available analog simulators or otherwise, and (c) sensitivity analysis for missile
parameters and establishment of confidence limits for the overall model or parts of it.
There is an important difficulty, however. System identification usually assumes u, u,,,-
-y, and y,s are known. This is certainly not the case here, since part of u consists of
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(U) Fig. 1—General system identification problem
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highly complex phenomena such as target characteristics, environmental effects, and
_complex and varying geometxies. It is also well known that input matching would gen-
erally enhance the identification (modeling) procedure. These considerations make the
inclusion of models of the environment, target reflectivity scintillation, and other inter-
ference in up, an indispensable part of any wo"rthwhile missile simulation package.

(U) In this and companion reports [11,12] we will develop simulation models for
target RCS scintillation, angle noise, multipath effects, and sea clutter. The requirements
imposed on this input simulation model by the particular application intended are

. (A) The underdying mathematical models should be relatively simple, so that
the overall run time can be kept within reasonable limits. This is extremely important -
because pulse-by-pulse simulation runs are required for many ECM effectiveness evaluations.

(B) There should be a compromise between simplicity of the model and abi]itf
to. represent effectively the major statistical characteristics of the “noise” processes that
are simulated. - - - . .

.. (C) The model should be adaptive, in the sense that the basic information
peeded for the operation of the model should consist of a small number of parameters
for which available data bases exist or which can be easily measured experimentally. This
latter is extremely important, for it allows diversified use of the model, and enables simu-
lation results to generate suggestions for future experimental work intended to improve
input matching and reliability of results obtained by the overzll missile simulation package.

(D) The model shoula be suppbrted by a complete list of stativtical diagnosﬁé R
software for validation and experimentation purposes. oo :

(U) Most of the studies on reflectivity fluctuations are concemed with analyzing
experimental data in order to identify the various *“‘noise” processes and their most im-
portant statistical characteristics. Others develop. theoretical explanations of experimental
findings by utilizing scattering theory. There appears to be a lack of efforts to use this
 wealth of knowledge in developing simple, albeit realistic, simulation models for these
“noise” processes. . : : '

(U) In this first of a series of reports, we analyze target RCS fluctuations and d
velop a simulation model by following the above principles. ) .

.

2. RADAR CROSS SECTION OF SHIPS

(U) Complex targets (like ships) provide a variety of reflecting surfaces. A radar
tracking a complex target responds to the total echo signal (skin return). Due to the
complexity of shape and motion of a complex target like 2 ship, the total return is the
vector sum of the individual returns from various parts of the target. The amplitude and
phase of each individual return varies, resulting in a variation or scintillation of the overall
return. These fluctuations due to the target alone are the subject of this report and partly
of the companion report {11].
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. where G is the mean of o. This is by far the most commonly used model for radar sys-
tems design, and agrees well with experimental evidence from small targets and, in partic-
ular, aircraft [4,7]. It has been found, however, unsatisfactory for many problems in-’
volving ships [15-24]. Asa result, various other probability density functions have been
proposed. Swerling [15,16] proposed the family of chi-square with 2m degrees of free-
dom and demonstrated that a large class of targets could be aequately modeled by this

- family:
rﬁ 'mam 1\ _‘!r_xa_
(m—I)!'&( 7 )e"p( 3)’ =0,
p(o) =. o . _ (2.5)
: 0 : ‘ : , o<0, -

. From this family, Swerﬁng emphasized the two-degrees-of-freedom case (his cases 1 and 2,
exponential or Rayleigh power, cf. Eq. (2.4)) for reasons explained above, and the four-
degrees-of-freedom case (his cases 3 and 4):

f.ﬂexp.(-g_‘l), c>0 o

. . 02_ o ) B

- plo) = T (2.6)
- , 0<G0.

" The importance of the latter stems from the fact that it leads to detection statistics in
close agreement with those derived when a steady reflection is combined with an assembly

" of many small reflectors. For small ships it is easy to argue that usually the total retum
is the sum of many independent returns, with no one dominating, resulting thus in an
exponential distributicn for the power return. For moderate-size and large ships, howaever,
large reflectors exist which can dominate the return if luminated from appropriate direc-
tions. The resulting density for the amplitude of the received field is the well-known Rice
amplitude probability density function [25,26]:

e (5) (&)
—— - Ijt=}, r=>20
a2 =P ( 2c2 \a2
plg) =N (2.7)
. c . : . -, -r<0

where I is the modified Bessel function of the first kind and order zero, ¢ is the ampli-
tude of the steady component, and 9242 is the average random power (i.e., the expected
value of the square of the total amplitude of the random components). This results in a
Rice-power probability density for the target RCS ([4], p. 150): '
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1—.1'3—""— exp \:—m2 - 1+m? -j::] I, [Zm ,/(1 +m2) %] a> 0

p(o) = ' ' (2.8)
A 0 : , 0<0

..

where m?2 is the ratio of the RCS of the steady component to the average total RCS of :
the random components (i.e., the ratio of the steady power td the average random powér).
This is the exact RCS probability density in this case, but it is seldom used because it
leads to cumbersome formulas. It has been shown [18] that detection statistics based on
the chi-square density with four degrees of freedom (2:6) closely approximate those based
on density (2.8) with m2 = 1. Therefore, Eq. (2.6) represents a good model for the RCS
prabability density for the case of a dominant reflector with an RCS of the same magni-
tude as the average sum of the RCS’s of all other random components. Consequently, .
Eq. (2.6) can be employed in modeling small or medium-size ships. Beckner [23] arrives .
at this probability density from experimental observations. Finally, due to experimental
evidence from large and very large ships [16,17,19, 24], the lognormal probability density
for ship RCS has been considered: _ ' '

1 exp[—(m————--a_-m2 o> 0
osV2rn . 2s2 {1

0 : . ,.a<0

plo) = @9

where s and g are the standard deviation and mean of In 6. The lognormal density differs-
from the chi-square family of densities in that it gives higher probabilities for large values
of RCS; that is, it has a higher tail. Experimentally, lognormal statistics occur whenever
we have occasional very strong specular reflections, as those from flat surfaces. Large
ships with large dominant scatterers produce returns at appropriate angles that often dis-
play large spikes due to the specular retum from these dominant scatterers. This behavior,
which results in an RCS density with higher tails, leads to the lognormal model. A pos-
sible explanation for lognormal statistics has been described in Ref. 17. It is based on
the fact that the effect of surface roughness on the specular retumn from 2 flat plate is to
reduce the cross section relative to that of 2 smooth plate by a factor of exp (—¥), where
y is proportional to the mean square surface depth fluctuations. If the radar return at
any aspect angle is that from 2 surface selected from an ensemble having a normally dis-
tributed degree of roughness, lognormal statistics result. Since the return from a ship at
some aspect angles is largely due to a single predominant cormner, the lognormal character
of ship returns could thus be explained. ‘ ' ,

: U) All types of probability densities discussed above have been observed experi-

" mentally [19-24] for the same ship under the same environmental conditions. The type
of distribution changes due primarily to different aspect angles. As a result it becomes
obvious that a simple model using one type of density only will be unrealistic, and there-
fore a model that combines various RCS probability densities is required for the statistical
description of ship RCS. In order to display the difference between these densities, and

in order to provide a model with meaningful transition mechanisms from one distribution

6
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that it is very easy to obtain a compromise in most cases studied. When one determines
from experiments means, variances, and autacovariance functions, the hope is that these
second-order moments will be sufficient in determining a good and realistic approximation
to second-order statistics. This is the case for ship RCS fluctuations.. The reason is, as
we shall discuss in detail in a later section, that all probability densities we are interested
in can be generated from one to four Gaussian densities by nonlinear transformations;
therefore, if we can determine the appropriate second-order statistics of the underlying
Gaussian pracesses, we will abtain a very good and realistic approximation to the second-
order statistics of g,. In particular, we will be able to maich the first-order density and
the autocovariance (or autocorrelation) function, which are the usual outcomes of data
processing from experimental observation of ship RCS. ‘ :

(U) We now turn to a more detailed discussion of these boints, which will be given -
in the following sections. . E : . ,

3. DEPENDENCE OF PARAMETERS OF RCS PROBABILITY DISTRIBUTIONS .
ON GEOMETRY, RADAR FREQUENCY, ETC. | _

(U) The first parametef we aﬁalyze is the median RCS, which 2s was mentioned in
the previous section is widely accepted as the crucial parameter for target RCS fluctua
tion statistics. The median for a given target depends on the following: L

»

(1) aspect angle between radar and target,
(2) range, and . .
(3) depression angle.

(U) As was explained in previous sections (we emphasize it again here), given a
complex target, it is impossible to arrive at exact quantitative descriptions of these de- -
pendencies. The ideal situation from the simulation point of view is to make appropriate
experiments to generate from the target enough data on which our statistical simulation
model could be confidently based. Moreover, extrapolations and interpolations to other

" targets and geometries (the real challenge for simulation models) should be always based

‘on adequate data. As our fundamental reference for the analysis and modeling of the
dependencies above, we used the data base generated by Daley, et al. at NRL and their
results as reported in Ref. 19. Additional supporting experimental evidence can be found
in the reports by Beckner, et al. [20-23]. '

(U) First we discuss variation of the median target RCS with respect to aspect ,
. angle. Our convention for aspect angle measurement is illustrated in Fig. 8. Daley, et al-
[19] collected many samples from different targets, and from different aspect angles for
the same target. As part of their data processing they computed the median from sam-
ples for certain values of aspect angle and displayed the results in polar diagrams. These
diagrams provide a complete description of the varation of the median RCS as a function
of aspect angle. As a single number representing the target, the median of these medians
was suggested. Figures 9-11 are representative polar diagrams from this work [19].

14
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(U) If such information (ie., such a polar diagram) is available for a péri’:icu]#r slnp’ C

" it can be employed by our simulation model whenever the simulated scenario includes
this particular ship or a ship with the same characteristics. However, quite often much,
less information is available for a particular ship. So we need a substitute for the polar
diagram which should involve a small number of parameters. To that end we summarize
below the most important conclusions that can be derived from the data in Ref. 19. .
First, the suggested parameter, median of medians, is accepted as a representative of ship
size. Next, the polar diagrams are roughly of the form shown-in Fig. 12, that is, an
ellipse with two peaks superimposed at starboard and port, as in Fig. 12a. In certain _
cases an obvious depression of the polar curve at bow aspect is observed, as in Fig. 12b. -

(U) For small ships, having a median-of medians roughly between 12 and 23 dB
over m2, the ellipse is kind of flat (i.e., the two axes differ considerably), the relative
size of peaks is small (at the level of 4 dB), and the variation between max and min of
the median RCS is roughly at the level of 10 dB (i.e., rather sizable compared to the
median of medians). Furthermore, the depression around the bow aspect is more pro-
found. For medium-size ships, median of medians roughly 25-35 dB over m2, the ellipse
is of the same type, with large relative size of peaks (at the level of 10 dB) and variation be-
tween max and min at the level of 20 dB (again considerable compared to the median of
medians). In this case the change of polarization to VV or VH tends to make the ellipse --
more circular (i.e., equalize the two axes) and to localize the peaks very much. The depres-
sion around the bow aspect is less profound than in small ships. For large ships, having a
median of medians roughly larger than 40 dB, the ellipse becomes very much like a circle
(i.e., two axes almost equal), relative size of peaks is at the level of 10 dB, and variation of
max to min is now at the level of 14 dB. Again, change of polarization to HV, VH, or VV )
reduces the relative size of peaks and also reduces the bow return to produce an asymmetry

15
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in the polar diagram. The depression around the bow aspect is negligible. On the basis '
of the above, we propose two simplified polar diagrams for the variation of median RCS
as function of aspect angle. The first consists of two superimposed ellipses, as shown in
Fig. 13a. The parameters needed for this diagram are - . .

@ the median RCS at starboard and stern, Omp and Gms r&specﬁvelj,. .
~ in dB over m2 (if given in m2, then 101ogyg Opp and 10 log;g Opms
should be used), o . '

(&) the relative size of the peaks AR in dB, and
(iii) the angle € where the two ellipses intersect.

Let g; and b; be the two axes, p; = b;/a; the eccentricity of the inner ellipse, and ;ze, bes
.and p, the corresponding parameters of the other ellipse. Then

8 = Opp -~ AR |

: om,'

P;=—;x.—

8 = Omp+ G2

The equations of the two elhpsa are

2
20 a;
piz r2(6)

2 .
cos28 _ Ge . (3.3)

: 28 + .
s oz r2(6)

For @ = € the two amplitudes are the sa.fne, or

19 .
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ulate the parameters for the two ellipses. -

) and (3.4) we calc
the median (in dB over m?2) by

(U) From Egs. (3.2
3.3), we determine

Then, given 8, using Eq. (

- - -z y c
9‘.[}_4-(__1.5.)@129] s -e<8<e md

2
Pi Pi 180° — € < 6 < 180° + €,
0@ =4 | | - S @8)
| L, -1/2 L ST
a,{—%+(——}§)sin29} , e<6<180°-¢ and
Pe . Pl 180° + € < 8.< 360° —e.. .

© (U) The second model is identical with the first, excepf for the replacement of the
ellipse by a straight line around the bow aspect, as shown in Fig. 13b. S

(18)) The paﬁﬁeters needed for this diagram are the same a3 for the previous one
with the addition of the median RCS at bow, 0,3~ Then, to determine the angle g, we

have from Eq. (3.3)

.3_-2(83) = a? [1. - (1 - -1'5-) COSZGB] o
o - Pi

and - _
'ag,b =.r2(8g) cos? (65) -
Therefore, )
cosZfp
Omb = i 1 4
1- (1 - —5) cos26p
Pi
a
R
P; cos pB Ombd
0-2 1 ~-1/2
cosfg =\— * 172 _ (3.6)

So Egs. (3.5) are modified to
ST 20



(U) Fig. 13b—Proposed simplified polar diagram with depression around bow aspect.

(U) Fig. 13a—Proposed simplified polar diagram for
- the variation of the median RCS (in dB over m?) vs
angle . :

—OB<0<GB

360° - € < 8 < 360° — 6
GB<8<€

and 180°—e<6<}80°+e

e< 0 <180° —-¢
and 180° +e< 6 < 360° — €.
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The selection of one of the two models depends on the size of the ship as explained above
and the availability of separate data for bow and stern aspects. The graphs in Figs. 16
and 17 from Ref. 19 can also be used. This model of median RCS variation with respect
to aspect angle is included in the subroutine AMERCS. The required input is described
by Eq. (3.1). In cases where more accurate diagrams exist based on a detailed data base,

these diagrams can be substituted in the program in lieu of the subroutine AMERCS.

(U) The dependence of redian RCS on range is characterized by two phenomena. -
First, multipath effects produce a different value after a certain range. This results from
the R~% dependence of the. return up to certain range, and R~8 dependence after certain
critical range. Since most measurements are made in the R4 region, we usually interpret
available data as referring to this region. The multipath model in Ref. 12 will produce -

. this change in dependence on R automatically. Second, at very close ranges when the

radar beam subtends part of the ship, the values for Oms, Omp» a0d Omp Will decrease. )

. This change could be input o the model from available data. However, since this happens
" at close range only, it can be safely ignored for the purposes of the missile simulation
package. ‘ . o - ’ T

(U) When data are available, Grmbs Oms> Omp»> AR, and € can be rather easily com-~
puted or estimated. If data are not available, then these target parameters should be
estimated by other target parameters (such as target geometries, radar environment, ete.).
In Ref. 19 various curves are given that display the dependence of median of medians on
vessel length and radar frequency, ete. These curves should be used with caution to pro-

~ vide appropriate input to the model when data are not available. )




(U) The dependence of median RCS on elevation angle becomes important at idw '
grazing angles, and has been experimentally studied in Ref. 22, where tables with values of

measured and averaged over the number of samples obtained and the maximum of the aver-
ages was selected) as a function of depression angle for various ships can be found. The -
typical behavior is an increase in maximum average Cross section with decreasing depression
angle once it has fallen below about 4.0°. This increase at low depression angles is ob-

viously due to the vertical surfaces of the ship being almost perpendicular to the radar

24



beam. In more detail, observations show that the maximum average cross section de-
creases as elevation increases from 0° to about 3.5°, then stabilizes, and then increases
slightly again when elevation exceeds 9°-10° as returns from the deck influence the total
return. Since for low elevation angles multipath effects are present, the separation of the
two phenomena becomes extremely difficult. Qur primary interest is for elevation angles -~
- from 0° to 10°. In Table 1, examples of this variation are given from Ref. 22. -

- (U) Removing fades that are obviously due to multipath, we see that a linear de-
crease of maximum average RCS (in dB over m2) as a function of elevation angle between
0.5° and 3.5° fits these data rather well, as shown in Fig. 19. Below 0.5°% a flattening of
the cuxve is observed from USS Norton Sound data. This is expected because at very low
grazing angles the radar beam is perpendicular to the flat vertical scatterers, causing the
phenomenon, and further increase of the RCS should not be observed as the elevation
decreases even further. As a result of these observations, a flat, decreasing parabola with
maximum at zero is proposed as an appropriate curve to fit the limited data base available.
The flatness of the parabola depends on the structure of the ship; in particular, on the ‘
existence of dominant scatterers of the large flat vertical plate type. The more and larger .-
scatterers of this type exist, the more profound the increase due to decrease in elevation
angle must be, resulting in a less flat parabola. Indeed, from photographs in Ref. 22 we
cbserve that USS Norton Sound, a guided-missile ship, displays large and high flat plates
~ on its sides, while USS Southerland is a typical destroyer with fewer and smaller reflectors
of this type. From Fig. 19 we see that the parabola for USS Southerland is flatter than
the parabola for USS Nortorn Sound. The flatness of the parabola depends also on the-
wavelength of the radar, because the smaller the wavelength, the larger the apparent
dimensions of the flat scatterer. = ~ - - S '
(U) On the basis of the above, we propose the following model for the variation of
median RCS as a function of elevation angle. If we express the median in dB over m2,
its variation with respect to elevation angle is parabolic, as shown in Fig. 20 below.. Here,
0, is the value associated with the ship at the particular aspect angle we are considering,
as discussed earlier in this section. The value of k depends on the proportion and orienta-
tion of large flat plate-type scatterers that a particular ship has, and therefore depends on
" aspect angle. It is expected that, typically, ¥ has its maximum value at port and starboard
and is monotonically decreasing as we move away from these aspect angles. - Furthermore,
it is believed that ¥ depends primarily on the height of flat perpendicular plates as seen
from various aspect angles. Clearly, if appropriate data are available, the value of k and
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{U) Fig. 20—Proposed simplified variation of median RCS with respect to elevation angle
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the angle where the median becomes constant (see Fig. 20) can be determined as functions
of aspect angle. Care should be exercised at very low depression angles to avoid fadings
due to multipath effects. This is obviously a crude model based on the limited data avail-
able for this phenomenon. Further data will certainly provide for improvements. The
recommended value for &, is 3.5°.

(U) From the theoretical point of view, one can resort to approximate calculations due
to scattering from a flat plate. If we consider a flat plate as shown in Fig. 21, the field pat-
tern, based on far-field approximations, is given by [7,9-71]



‘“.

Pix,y,2}

4%
A

' (U) Fig. 21—Flat plate scattering geometry

sin [(ma/)) sind cos$]  sin [(ubm'sinssnm B
o[ sndcosp  (@b/N)smdsing T . 7 (3.8).

F(O,9) =

Therefare, the far-field power pattem is proportional to (siﬁ. ufu)2, u = (7a/N) siﬁ 5, for h
the pri;xcipal plane xz. For small elevation angles 3, the resulting power pattemn has the .
form (using a Taylor series expansion) in dB over the maximum (for 6 = 0): '

P(3) = —const == 5%, - N
i sz : . e T
This implies a variation of the median of the form (in dB over m2)
0. (6) = 0E2= e ey
m m . 2 ’ - *

where C is a constant. Therefore these approximate calcuiaﬁons Suppor(: the béhavior '
observed from the data. Indeed, since : .

’ ax | a? 2'
am(ﬁ,)=am=oﬁ —c;?&,,

we can rewrite this approximate theoretical model in exactly the form that was s{xggated,
from the data: -

-, ‘
0, (5) = O + c%(ag—az). - (10

In Eq. (3.10),.0 (a2/22) corresponds to the parameter k of Fig. 20 and should by no means
be interpreted as implying a 1/ 32 dependence of G,, (the constant C may as well depend
on A). Whenever data are not available, Eq. (3.10) can be used to provide a reasonable
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model. The angle 5, should be selected typically between 3% and 4°. The parametera
should represent a characteristic height of the ship for this aspect angle (e.g., height of
the hull). Finally, C should be estimated on the basis of the proportion of large flat
scatterers that exist in this aspect angle. "This model of median RCS variation with respect
to elevation angle is included in the subroutine EMERCS. '

(U) For the two parameter densities, i.e., Rice power and lognormal, we peed to
specify another parameter. We choose m2 (the ratio of steady to average random power)
or variance for Rice power, and p (mean to median ratio) or variance for lognormal. When
data are available, the most reliable procedure is to determine the variance of RCS varia-
tion with respect to aspect angle and input it to the model. . When data are not available,
an estimate of m2 or p should be computed from considering the shape of the target,
aspect angle, etc. (see also section 2). . - :

(U) To satisfy our constraint of a piecewise wide-sense stationary statistical model,
care should be exercised in simulation so that these parameters are updated at appropri-
ate intervals only. : o : S

4. SPECTRAL DENSITY OF SHIP RCS FLUCTUATIONS

(U) As was explained in section 2, the power retun fluctuations are due to'the
change in relative phase of the individual returns. The power-spectral density is therefore
related to the rate of change of the relative phase. To see this, consider the simple case
of an oriented beam with two reflectors separated by distance L, which is rotating around.
its center (see Fig. 22a). Let us suppose that the two reflectors are identical spheres.
Then the amplitude of the combined return will be :

L A(t) = Clexp Lidy ()] + exp Lig2(0)1}, @4
where C is the amplitude return when one sphere is located at the center of the Beam, ‘
and ¢, (t) and ¢5(t) are the relative phases of the amplitude returns from the two reflec-

tors with respect to the return from a sphere located at the center of the beam. There-
fore the power return has the form ' ’ '

P(t) = Cy[1 +cosp(®)]. - (42)
Here ¢(t) is the relative phase between the two reflectors and is given by

o) = —i’{é cos(8), | 2.3)

where A is the wavelength of the transmitted radiation. It is obvious that the harmonic
content of the power return is related to the rate of change of the relative phase ¢(t). If
the beam is not moving, the return will not fluctuate. On the other hand, if the motion
is such that ¢(2) is of the form ta*t, then the spectral deosity for Eq. (4.2) will be

% Crsw-w*) + §(w+w™)],
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. where §(+) is a delta function. Although not precisely correct, w™® = d¢(t)/dt can be

considered in this case the “bandwidth’ of the spectral density of Eq. (4.2). Next con-
sider the same beam, but with a number of such pairs of spheres symmetrically located
about its center at distances L;, as shown in Fig. 22b. Suppose that the motion is such

that cos8(t) = w*t. Then for each pair of spheres the previous discussion apphes and
the power due to this pair will be

Py(t) = G;[1 +cosgy(t)] -  (a4)
where '
. 4L - ' -
%)= et o (4.5)
In addltmn, if we have chosen L; such that - -

- 4nL; . - , _ o '
B T

thenEq.(4.sjresu1tsin '-' o L v =
- :,";.¢,‘(t)_

—iw*t. ‘_ S .(4.7)

{
‘ RADAR AT RANGE R>» L,

(U) Fig. 22b—mustratu:g approximate
derivation of bandwidth
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As a result, the power spectral density of the power return from the beam will show peaks
at the frequencies jw*, i=1, ..., n,a0d will drop considerably for w > nw*. Again,if
we assume that all spheres have the same RCS, nw® = dp(t)/dt is a reasonable approxima-
tion to the “handwidth” of the spectral density of the total power return. As a result of
such typical arguments, 2 usual approximation is to conclude that for distributed scat-
terers on such a beam with symmetxry around its center, the half-power bandwidth is
dosely approximated by the average value of : '

L . .
Lin-% I

 where 1 is the length of the projection of the rotating beam on’ the direction of the radar
beam. Depending on the distribution of targets on the beam, ! may be the projection of
that certain portion of the beam which contains the most significant scatterers.

(U) Fora complex target like 2 ship, the situation is more complicated due to the
dJifferent rates of change of relative phase between the various reflectors of the distributed
target. Experiments indicate ([41], P- 173-183), (I5], p- 82 and p. 323) that the power
spectral density of the ship RCS fluctuations due to deterministic and random azimuth
(aspect), pitch, and roll motion can be very well approximated by a power spectral den-
sity of the form : S

S = ’ o o
D g+ ﬁﬂg?

where fg is the half-power bandwidth in Hz and f is the frequency in Hz. Further experi-
_ mental evidence for this form of power spectral density is provided in Refs. 20-23.
(U) The following arguments provide theoretical support for the proposed spectral

density type. Typically, samplitude noise” (i.e., the RCS fluctuations) from complex
targets falls in two categories: low-frequency -and high-frequency noise ([71, 28-3)..The
low-frequency portion of the noise is due to small changes in the relative phases of the
returns from various reflectors as the target moves in a deterministic and/or random
fashion in yaw, pitch, and roll. Typicaly, and this is particularly true for ships, this

" motion creates only small aspect changes and therefore the amplitudes of the returns
vary little over 2 period of seconds, leaving the change in relative phase as the major
reason for the fluctuating return ([71, 28-3)- On the other hand, the high-frequency
portion of the noise contains random noise and periodic modulation. The random noise
is due to vibrating parts of the target, while periodic components are introduced by ro-
tating parts. Both motions appear usually in aircrafts, while ships do not usually display
vibrating or rotating parts. As a result, high-frequency “zmplitude noise™ is primardly
associated with aircraft, and the corresponding components have been experimentally
observed in power spectral densities of aircraft RCS fluctuations (171, 28-7)- Since our
interest lies in ships, we see that only low-frequency “amplitude noise” appears. The
shape of the spectral density reflects the distribution of scatterers from the target. Fur-
thermore, the deterministic motion of a ship in azimuth and its random motion in azi-
muth, pitch, and roll are slow phenomena. As a result, most of the harmonic components
should be concentrated at low frequencies. Indeed, experimental evidence [20-23] estab-~
lishes that the typical half-power pandwidth is at the level of 10-15 Hz or less. 1If the
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spectral density has a peak at a frequency f* > 0, this will indicate a periodic compo-
pent due to the change in relative phase of the amplitude returns from two dominant
symmetrically located scatterers on the ship. This is not the case for ships for the fol-
lowing reasons: (a) the major portion of the fluctuations is due to the random motion

of dominant scatterers (such as large plates), and it is very improbable that there can be
an almost periodic motion between two such scatterers, and (b) the ship’s random motion
in pitch and roll due to sea waves provides a large portion (as compared to yaw motion) .
of the change in relative phase between reflectors, and this motion is not perodic and is .
not compatible with the ship’s major symmetxies. Furthermore, due to the usual struc-
ture of ships, dominant scatterers undergo slower and smaller displacements than smaller
scatterers. Therefore, a2 bell-shaped power spectral density with mazimum at zero fre-
quency is expected for ship RCS fluctuations.

(U) The autocovariance function corresponding to the spec&al density (4.9) is

R(t) = Rexp(-tit), .. @10y "
where _ T
'i.’c - 1

is the correlation time and R is‘ the variance of the RCS fluctuations. Since R is ééter- -
mined by the distribution of RCS (see section 2), we only need specify ¢, (or fg)- In " '

general, the bandwidth fp will depend on

(i) aspect angle,
(ii) distribution of dominant scatterers on ship,

(iii) radar frequency; and 2
(iv) rate of éhange of aspect, elefaﬁoﬁ, and roll angle (an average rai‘.e);.-deter;-
ministic and random. : : : A

The reason for (iii) is obvious: 2 given change in relative range between two scatterers on
the target will subtend more wavelengths for shorter wavelengths, causing 2 higher phase
rate and thus higher frequency components. From experimental evidence ([7], 28-5), the
dependence of bandwidth fp on RF is linear. Beckner et al. [20] studied experimentally
the dependence of spectral bandwidth on aspect angle. Figure 23 shows a histogram for
this dependence. From the histogram a sinusoidal dependence on aspect angle can be
detected. : : .

(U) In Ref. 4, p. 174, the following formula is suggested for the bandwidth: |

e@E) e

where X is a constant of proportionality with typical value 2, Lg is the length of the
target as projected along the radar-target line, \ is the wavelength of the transmitted
radiation, and A@/At is the average rate of change of aspect angle due to systematic and
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random motions. A similar formula was proposed in Ref. 22, p. 108, and calculations on
the basis of the formula were compared with calculations from data. In general, good
agreement was found as shown in Figs. 24, 25, and 26. We note that formula (4.12)
incorporates the expected dependence on geometry, environment (sea condition}, and
radar frequency discussed earlier in this section. - = = : '

(U) In Ref. 22, formula (4.12) was derived by following exactly the kind of ap-
proximation discussed in the beginning of this section, which leads to Eq. (4.8). We give
now a somewhat more detailed calculation. The geometry of the radar engagement is
shown in Fig. 27. The two axes x, and y, are on the surface of the sea and represent
the average horizontal plane; x, is oriented according to the forward motion of the ship.
S, indicates the pitch of the ship due to the sea waves and is a random motion; ¢, sim-

flarly is random and indicates the roll of the ship due to sea waves. & denotes the eleva- L

tion between radar and ship; it has a deterministic component due to the relative sys-
tematic ship-missile motion and a random component due to the random motion of the
ship due to sea waves and to random fluctuations in the missile’s altitude. In accordance
with the approximation discussed above, the ship is modelled by two perpendicular beams
of lengths L and W, respectively. The length L should be chosen according to the longi-
tudinal distribution of scatterers on the ship. For small and medium-size ships, L should
be chosen as the distance between forward and rear gun turrets (or missile-firing turrets).
If no such structure exists (e.g., submarines, auxiliary vessels, etc.), L should be chosen

as the length of the ship. For large and very large ships, L should equal the length of
the ship also. The length W should be chosen according to.the distribution of scatterers
across the ship as viewed from bow or stern beam. Usually, W should be equal to the
width of the ship. According to Eq. (4.8), we need to compute the projection of L or W
onto the radar-ship direction. Let these projections be denoted by I and w. Then -
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(U) Fig. 27—Radar geometry for approximate calculation of
RCS fluctuations bandwidth
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I = L (cosf cosd cosd; +5ind sind,) (4.13)

and

e
- <.

%T= —2%'- (—-sin& cosd cosd, .-‘%-— cos @ sm8 cosd dd

s dt
. ds, . d5
—cosf cosd sm8, % T cosB smﬁ, iz
ds, o _ S o '
~ +sin  cos§, -‘—l-t— . _ . (4.14)

~ Since under the same environmental conditions the avefagé rate, over a relaﬁvely éﬁor!:' o

time interval, should be the same for symmetrical positions of the ship with respect to
the radar-ship direction, and because we actually want to compute an average value for
Eg. (4.14), we propose the following formula for this “average’:

2 L2 e e Ag
Wpy, = (T)aYG = Y [lsm@l 0035 cqum _A—t- .,-f .

+(|cos 8| sin 3 cosd, +cosd s;xn&‘m) —zAk_f: .
e ) T
+(lcosGlcosSsin88m+sin8cosS At - (4a5p)

where 3§, is the rms pltch angle. The rates of change of the various angles represent
averages over appropriate intervals of time. AG6/At consists of two parts: a deterministic
one that can be computed from the motions of the missile and the ship, and a random
one. The same is true for A§/At. The random components of AG/At, AS/At, the rate
A5 /At, and 8, should be estimated from sea condition, ship size, wind speed, and wave

-height (or from existing data). Notice that if we assume that 6 and 8, are very small and
“slowly varying, Eq. (4.14) results in Eq. (4.12).

(U) From Fig. 27 we also find

= W(-sin cosd cos$, +sin b sing,) 4186y
and. : : ,
-2-;3 = -2%? (cosB cosd cos g, %ﬁt + sinf@ sin 3 cos @, %—i'
do,
+sinf cosd sing, — + cosﬁ sin @, ii
dés )
+sind cos @, T (4.17)
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‘ Following similar arguments as those leading to Eq. (4.15), we derive the following
“average” of Eg. (4.17): , :

o[22\ -2 49
.‘"BW = (}\)a“ 3 [Icoselcos.ﬁ cos$m A7

AS

+(|sin 6] sin & cos Py +cos8 sin @) Ar

 +(1sin0] cos5 sin gy +Sin 5 €08 dyn) %‘-],  @as

where Qg is the rms roll angle. The parameters Og, and A¢,/At should be estimated in -
- g similar fashion as 8y, and A8, /At. Finally, our formula for the bandwidth (in rads/s) is

' wp = max (WpL,@BW) - T a9y

Formula (4.19) remedies the disagreement of forﬁmla (4.12) with experimental data f:com

 bow and stem aspect in particular (formula (4.12) predicts zero bandwidth). This dis- .

agreement is due to the fact that for bow and stemn aspects, it is the relative motion of
scatterers distributed across the width of the ship, and nat along the ship, that causes
RCS fluctuations. This is particularly so for low grazing angles. o _

(U) Summarizing, the autocovariance function of ship RCS fluctnations will be j _
modeled by Eg. (4.10). R will be assigned a value as discussed in sections 3 above and 5
following. For the correlation time we have two options: .

. A. If adequate pulse-to-pulse data are available, compute £, for various. aspect and
- elevation angles and input to the simulation model. o

B. If such data are not available, use the f_ollowing procedur;e:

(i) Estimate average random rate of change of aspect angle, elevation angle; |
ship’s pitch, ship’s roll, and rms pitch and roll angles of the ship based on ship size,
wave height, sea state, and wind speed. - ‘

(ii) Compute wp from Egs. (4.15), (4.18), and (4.19). Set

: 1

t, = g " : | .(4.20)
Since option B above provides only an approximate model, some preliminary calculations
are suggested to ensure that the resulting values for the correlation time are reasonable.
A good check is to ascertain that the pandwidth remains below 25 Hz for all values of
the parameters. Obviously, experience in the utilization of the model and comparison
with computations based on the data base in Ref. 19 will provide useful information for
the values of these parameters. Work on this is in progress and the results will be re-
ported elsewhere.
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and a diffuse-type RCS (see Eq. (5.11) following and related discussion). Two aspect
angle ranges where the distribution is clearly of 2 particular type (one of the four used),
but différent in each range, are separated from each other by an angle sector where the
distribution type is undetermined. - - :

(U) Based on the above, we propose the follbwing model for sxmulatmg the varia-
tion of distribution type. .

(1) Decide what distributions to use according to the following:

(a) if extensive pulse-by-pulse data are available for a similar class ship, estizﬁai:e '
probability densities from data at various aspect angles to find the types of densities.

needed. S

(b) -if such data are ndt avaﬂable, then

(i) for small ships (according to our classification in section 3), use exponen-
tial (Rayleigh power) density for all aspect angles. If from known structure of the ship
(or photographs) it is apparent that dominant scatterers exist at starboard and port, use a
also chi-square with four degrees of freedom or Rice power. Chisquare should be pre-
ferred if an appropriate value for the parameter m?2 of the Rice density cannot be . -
determined. : 4 - :

: (ii) For tﬂedium-size ships, use lognormal or chl-square with -f.our degrees of '
freedom or Rice power around starboard and port. Lognormal should be used if flat
dominant scatterers exist and are the usual situation. Use exponential for quarter aspects

_ in most cases. Use of chi-square with four degrees of freedom or Rice power for quarter

aspects is rare and is suggested only if dominant directive scatterers exist in these direc- -

tions. For bow or stern, use any one of exponential, chi-square with four degrees of

. freedom, or Rice power, according to the aforementioned rules. .

(iii) For large ships, use lognormal around major aspect angles (starboard, port,
bow, stern). If major flat scatterers do not exist at bow or stern, use chi-square with
four degrees of freedom or Rice power. Use exponential, chi-square with four degrees of
freedom, or Rice power at quarter aspects according to the rules explained in (ii) above.

(2) Draw a polar diagram indicating the angle sectors where the distribution is to be

" of a particular type, using the results of (1) above, according to the following:

(a) if extensive pulse-by-pulse data are available for a similar class ship, compute
the extent of the various aspect angle sectors from these data.

(b) if such data are not available, then we let ppmg and pgg, denote the probability
density types, selected in (1) above for major aspect and quarter aspect angles, for the
ship under consideration. By careful consideration of the distribution, orientation, and -
type (i.e., flat or not) of dominant scatterers on the ship, and using the results of Table 6
in Ref. 19 for guidance, estimate the percentage of distributions that are of type ppyg OF
Pgg- Let .



(U) Finally, since the primary factor influencing the value of correlation time is
aspect angle, the value of correlation time is changed at intervals determined by change
of aspect angle by a specified predetermined angle. Although the optimal updating should
be determined by “tuning” the model to data, a value of 2° for the necessary change in
aspect angle was found to be more than adequate. This updating is in agreement with our
basic piecewise wide-sense stationary approximation.

5. VARIATION OF PROBABILITY DENSITY OF SHIP RCS FLUCTUATIONS

(U) In section 2 we explained why a statistical model incorporating various prob-
ability densities is necessary for realistic simulation of ship RCS fluctuations. In this sec-
tion we provide a detailed description of the proposed model for the variation of the
probability density type due to ship size, structure, and aspect angle.

(U) Our prdposed model is based on extensive data analyses results from Daley
et al. [19] and Beckner et al. [20-23]. The following are the major conclusions from
a careful consideration of their results: : S

(i) Lognormal statistics appear at major aspect angles, i.e., starboard, port,
stern, bow. The reason (see also sections 2 and 3) is that lognormal statistics are due to
dominant flat scatterers which appear mainly at these aspects. - '

- (ii) The aspect angle range around starboard or port where lognormal statistics -
occur is larger than the corresponding range around bow or stern. The reason again is ~
rather obvious: more and larger dominant flat scatterers are distributed alongside the
ship than across it. . : : : : - T

(iii) For small ships, according to our classification given in section 3, most of
the observed distributions are Rayleigh power (exponential). A small percentage of dis-
tributions are well approximated by chi-square with four degrees of freedom or Rice
power. For medium-size ships, all four density types proposed in section 2 have been
observed. However, lognormal statistics appear only at starboard and port aspects and
not at bow and stern aspects. For large and very large ships, all four density types have
been observed. Lognormal statistics have been observed at all four major aspect angles
(e.g., aircraft carrier) or at the two major aspect angles (e.g., battleship). In Ref. 19,

p. 45, Table 6 provides the percentages of distributions observed that were shown to
belong to one of these types by statistical tests. : :

(iv) At quarter aspects, statistics are exponential (Rayleigh power) for sinall
ships, chi-square with four degrees of freedom or Rice power or exponential (Rayleigh
power) for medium-size and large ships. ' : . :

(v) There are aspect angle ranges, symmetrically distributed, where the distribu-
tion type cannot be clearly determined according to statistical tests. For these aspect
angles, the distribution is a mixture of two distributions. The reason for this is that at”
these aspect angles, the power retum is partly due to return from dominant scatterers
(such as at major aspect angles) and partly due to diffuse return (such as at quarter aspect
angles). The contribution from each reflection type depends obviously on aspect angle.
This results in an RCS which is a convex combination of a dominant scatterer-type RCS’
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and a diffuse-type RCS (see Eq. (5.11) following and related discussion). Two aspect’
angle ranges where the distribution is clearly of 2 particular type (one of the four used),
put différent in each range, are separated from each other by an angle sector where the
distribution type is undetermined. - -

(L) Based on the above, we propose the follbwing model for snnulatnng the varia-
tion of distribution type. .

(1) Decide what distxibutions to use according to the following:

(a) if extensive pulse-by-pulse data are available for 2 similar class ship, esﬁ:ﬁate )
probability densities from data at various aspect angles to find the types of densities
peeded. L o . : A

(b) -if such data are not aVaﬂable, then

(i) for small ships (according to our classification in section 3), use exponen-
tial (Rayleigh power) density for all aspect angles. If from known structure of the ship
(or photographs) it is apparent that dominant scatterers exist at starboard and port, use a
also chi-square with four degrees of freedom or Rice power. Chi-square should be pre-
ferred if an appropriate value for the parameter m2 of the Rice density cannot be -
determined. ) . , : : .

: (ii) For m ;um-size ships, use lognormal or chisquare with four degrees of '

freedom or Rice power around starboard and port. Lognormal should be used if flat

dominant scatterers exist and are the usual situation. Use exponential for quarter aspects

_ in most cases. Use of chi-square with four degrees of freedom or Rice power for quarter
aspects is rare and is suggested only if dominant directive scatterers exist in these direc- -

tions. For bow or stern, use any oné of exponential, chi-square with four degrees of

" freedom, or Rice power, according to the aforementioned rules. L

(iii) For large ships, use lognormal around major aspect angles (starboard, port,

bow, stern). If major flat scatterers do not exist at bow or ‘stern, use chi-square with

four degrees of freedom or Rice power. Use exponential, chi-square with four degrees of

freedom, or Rice power at quarter aspects according to the rules explained in (ii) above.

_ (2) Draw 2 polar diagram jndicating the angle sectors where the distribution is tobe
of a particular type, using the results of (1) above, according to the following:

(a) if extensive pulse-by-pnﬂse data are available for a similar class ship, compute
the extent of the various aspect angle sectors from these data.

(b) if such data are not available, then we let Pma 204 Pga denote the probability’
density types, selected in (1) above for major aspect and quarter aspect angles, for the
ship under consideration. BY careful consideration of the distxibution, orientation, and -
type (i.e., flat or not) of dominant scatterers on the ship, and using the results of Table 6
in Ref. 19 for guidance, estimate the percentage of distributions that are of type Pma ©OF
Pga+ Let .

28




Tma = fraction of distributions of type Pma »

Tga = fraction of distributions of type p, . : (5.1)
Let ¢, and €, be the aspect angle sectors (in degrees) around stern-bow and starboard-
port where p,,, occurs, as shown in Fig. 28. Let L; and W; be characteristic lengths of
the ship, representing the length of flat dominant scatterers alongside and across the ship,
respectively. Typically, L; will be equal to the length, and W4, to the width of the ship.
Then a rough scattering approximation for ranges much larger than the physical dimen-
sions of the ship indicates that _ ‘ »

tane, L,

Tme,  W;© | - 63

Finally, let

rp = fraction of distributions of undetermined type

=.1"rma—r40 ‘ . : . I (53
and €7 be the aspect angle sector where the distribution is not of a specified type, as

shown in Fig. 28. We wish to compute the angles €p, €5, and € from the parameters
' Tmas Tgas Lig» and Wy. In view of the obvious symmetry of Fig. 28, we have '

g e =90r,, A 7))
0-¢ ~€ =2 =90r,. . (55

Now Egs. (5.2), (5.4), and (5.5) result in

(U) Fig. 28—Aspect angle sectors with distribution type -
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W -
-1 - 'Ifi + S+ WyLy)E + atdag Wy/Ly
€, = arctan ' Ztang Wy/Ly ' ’
where
¢ =90r,,, o . (58
e =90, €, S (5.7)
and ’ . _ , '
€p = 45 (]-.—r,,m-rq,). - (5.8)

(U) From step 1 of our model it follows that r,,, may be zero. Then the polar
- diagram in Fig. 28 becomes trivial: the same distribution type is used for all aspect
angles. If for a particular ship €, = 0 (see (1) (b), (ii) and (iii) above), then we do not
need L; and Wy and the formulas (5.6)~(5.8) are replaced by . o

€ = 0rpe, - o '.':'_'_(5.9)
L e =90 -TmemTde . {5.10)

(U) To conclude the description of the proposed model for the varation of ship
RCS fluctuations probability density at various aspect angles, we need to specify the den-
sity for the angle sector where the type is not “axact.” According to our model (see (v)
above), let 0,4 4, Ogq ¢ be the RCS value according to the RCS fluctuation model at
major aspect and quarter aspect angles, respectively. Then the RCS fluctuation model
. for the considered aspect region is . s

where 4 is a function of aspecf angle. We call this the mixed process model. In this
model, 0p,, ; and 0y 4 are considered independent processes and therefore the proba-
bility density function for RCS fluctuations according to this model is given by _

. 1 -

_1 (7 1 ~(L_, ()dv | ;12
pT(E) = Ti A Pma 75 v g pqa g g. ( .- )
Here # is a quadratic function of aspect angle as shown in Fig. 29.

(U) Obviously, other nonlinearities could have been chosen. The main idea is to
provide for a transition section where the effects of the dominant scatterer (existing in
the p,,, sector) are still visible but are fading rapidly as the aspect angle moves away
from the p,,, sector. The quadratic variation is the simplest curve that will provide the
desired behavior. ‘
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6. GENERATION OF THE NECESSARY STOCHASTIC PROCESSES

(U) We have seen from section 2 that first-order statistics of RCS fluctuations cani
be of the following type: exponential (Rayleigh power), chi-square with four degrees of '
freedom, Rice power, and lognormal. From section 4, the autocovariance function of
g, is a decaying exponential. These are the typical outcomes of experimentdl data proc-
essing.” Our goal, as was explained at the end of section 2, is to generate a piecewise -
wide-sense stationary stochastic process with the above statistical properties. We have a
serious constraint: the generation algorithm is called every pulse by the missile simulation °
package, so it must be fast. The form of the autocovariance function suggests first-order
Gauss-Markov models. The non-Gaussian first-order statistics, however, require nonlinear
transformations of the underlying Gauss-Markov models. In this section we provide the de-
tailed descriptions of the stochastic process generation algorithms necessary for our model.

(U) We first give the algorithms that generate, to a very good approximation, a 3
wide-sense stationary stochastic process with decaying exponential autocovariance func-
tion and with first-order statistics belonging to one of the four types mentioned in the
beginning of the section.

6.1. Expdnential'(or Rayleigh-Power) Process

(U) Let y;, and y,,; be two independent wide-sense stationary, zero-mean, Gaussian
processes with identical autocovariance functions .

E{yy et = ED2e¥2,047} = By(T)

= Ry exp (~o7) . (61)

" The processes ¥y ; and ¥o ¢ are very efficiently generated on the computer by the follow;
ing first-order recursion: :

YievAt = AYip + Buy, i=1,2, (6.2)
where At is the basic time increment, which for us is the pulse-to-pulse time, and
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A = exp (-aAt),

B = VR,(1-4%).

(6.3)

The initialization of Eq. (6.2) is by a Gaussian random variable with mean zero and vad-
ance Rg;. The stochastic process w; is a Gaussian white noise (i.e., uncorrelated) with
zero mean and variance 1. Efficient algorithms for generating Gaussian random variables
can be found in Ref. 29, p. 104-113, and we have adopted the “polar method”” ([29],
p. 104). ' . ) R

(U) LetR, =1 and set
2 2 . :
% = y1,e F Y2t o ~ (64)
‘1t is well known ([29], p. 120, exercise 16) that x, has an exponential probability density
with mean 2. If 0, is the desired median, it follows from section 2 and in particular
Eq. (2.10) that the random variable

14430, o
40t=4‘ 2 .x‘ . "‘ T .(6.5)

~ has’an exponential denﬁty with-the desired median. We need to compute the autoco;
variance of the process g;. From Eq. (6.4), we have - .

Ez}=2

and . _ N ) . _
(s, Elx)(mpey— Bz} = ElEempnrd = 4+ - (68)
Now . I B
E{semr} = Bdohord + EGRAEDLed
+EQR JE{S por) + EDE R0}

2E{y} v3 e} + 21 | - en

1

. Where :we used the properties of the ¥1 ¢ and yg ; processes. From appendix B, Eq. (B3),
we have (see also Ref. 30, p. 264)

E{y%,ty%,tﬂ} = 2R§(7) +1, (6.8)
since we are using R, = 1. From Egs. (6.6-6.8) we obtain
E{(x,—E{x,})(x,,,,—E{xt+,})} = 4R2(r) = R:(7) - (6.9)

From Egs. (6.5) and (6.9),

e



E{o;} = 14430, , | | (6.10)
Rolr) = E(0r- EONOpr~E@nD}

= (1.44;2},,, )2R2(r) |

= (1.4430,,)2 exp (-2a7) . o BNCEL)

From Egs. (6.10) and (6.11), 0, is widesense stationary. Moreover, since yy ; aud ¥o »
obviously are ergodic (see Ref. 31, pp. 147-159 and in particular Ref. 32, pp. 20-21)
and o, is a time invariant memoryless function of ¥, ¢, ¥2,¢» Ot is also ergodic. Finally,
if ¢, is the correlation time of the exponential process ¢;, we obtain, comparing Eq. (4.10)
with Eq. (6.11), : ' _ :

N e
a=3 L | | (6.12)
(U) Summarizing, in order to generate 2 wide-sense stationary process havihg expoQ
nential first-order density with given median 0,, and decaying exponential autocovariance |
function with given correlation time £, (a) compute o from Eq. (6.12), (b) construct two

independent (0,1) Gaussian processes according to Egs. (6.2-6.3), and (c) define 0; via
Egs. (6.4-6.5). o B o

6.2. Chi-Square With Four Degrees of Freedom Process

(U) Since ([29], p. 120, exercise 16) if x; and x4 are two independent random
variables with chi-square. densities having »; and. vy degrees of freedom, respectively, the
random variable x3 = x; + x5 has a chisquare density with v; + v, degrees of freedom,
this case is a direct application of the results in section 6.1. So we generate four inde-
pendent Gaussian processes via Egs. (6.2) and (6.3) with R, = 1. Then

zp =y, 5+ v YE: (6.13)
has a chi-square with four degrees-of-freedom density, with mean 4. So

_ 118

Ot——TU

A (6:14)

has the same type density with the desired mean, as a result of Eq. (2.11). As for the
autocovariance, it is easily computed, as in section 6.1: ' .

E{(x; - E{x)(®gsr — E{xpasD} = 8RI(T) = Bx(7) (6.15)
and
Ro(7) = E{(0; - E{0})(Opsr — E{0psr D}

) 2 1.180,,)%
_a 18;,,,) RE(r) = (___zi_)__ exp (-2ar) . (6.16)
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It is now easily established as before that o, is ergodic. Moreover, Eq. (6.12) is again
valid. :

(U) To summarize, the generation algorithm in this case consists of the following
steps: (a) compute « from Eq. (6.12), (b) construct. four independent (0,1) Gaussian
_"processes according to Egs. (6.2-6.3), and (c) define o, via Egs. (613-614). -

6.3. Lognormal Process-' .

(U) Lety bea wide-sense stationary, zero-mean, Gaussian process with autoco-
variance given by Eq. (6.1). 1t is well known [13,29] that the random variable

| x; = exp (4) | ' (621
has a lognormal density (Eq. (2.9)) with median 1 +ad mean to median ratio exp (L/2R;)

(cf. Eq. (2-13)). Since, obviously, the mean to median ratio is invariant under scaling,
the random variable : .o A N

o= oz . 618
has a lognormal glensity with median ¢, and the same',mean‘to median ratio as xpe

Clearly,

Efx) = exp (B/2), S B Soe19)
and from weIl—known properties of the moment-generating function of vector Gaussian
random variables ([30], p. 65) we obtain (see appendix B, Eq. (B4))
|  Besed = Elem ety

= exp [Ry +By(@™1. = T (820)

Therefore, the autocovariance of the g, process is

-

E{(a;—E{o,})(om—E{om})} = R,(7) = 0% exp Rglexp R, (r)—11- L (621

It is easily seen from Eq. (6.21) that Re(7) 2 0, R,4(r) is smooth, and Rg(7) -0 as
7 —> oo, Moreover, since - ' :

2 po(r) = o exp By exp (Rge NN CaRe) or), (622

then dRo('r)/dr < 0 forall 7> 0,and therefore Rg(7) is monotonically decreasing.
Finally,



d2R ,(7)

o2 = oﬁ, exp R, exp (Rge‘“")[azRg exp (—2ar)
+a?Ryexp (-ar)], ' " (6.23)

that is,

"d2R,(7)

>0 forall 72>0.
dr2
From the above properties it is seen that R,(7) resembles a decaying exponential, and
this is supported by computations. In Fig. 30, various plots of R;(7) are shown with
=1,R,=1,and @=1, 0.5, 0.2, 0.1, and 0.05. As a result of these computations,
in order for R,(7) (as given by Eq. (6.21)) to approximate the desired autocovariance
(which is of the form (4.10)), the correlation time of R;(7) (i-e., the time where R, (7)

falls to 1/e of its value for 7 = 0) is equated w1th the desired RCS fluctuations correla-
tion time t.. Thus .

- 1, . '
Rye™™) - 1 =3 (expRy—1)

or

e

| R -1\7] T
@ =?1—{1n1eg - [ln(l + ?15-—)]} (6.24)

In Fig. 30 we also show the decaying exponential curves exp (~2/t.), where {, is computed
from Eq. (6.24) for each value of o. The approximation is very good indeed. Of course,
the value of 2, to be used in Eq. (6.24) is computed according to section 4. Again, since
0, is a time-invariant, memoryless function of an ergodic process, it is also ergodic.

- ’ ‘expR, - 1
Ryexp(-at) = (1 + —=——

(U) To summarize, the algorithm for generating a lognormal process with an almost
decaying exponential autocovariance function consists of the following steps: (2) given
t. and R, compute o from Eq. (6.24), (b) construct a (0, R,) Gaussian random process
by first constructmg a (0,1) Gaussian process according to Egs. (6.2-6.3) and multiplying
the result by \/_— and (c) define 0, via Egs. (6.17-6.18). The parameters 0, and R,
will be computed according to sections 2 and 3. As an additional useful fact we observe

that, usually, expenments provide the standard deviation of 10 log;g 0, in dB over m2.
Then

R, = 0.53019 (standard deviation of 10 log; 0 in dB over m2)”. (625)

We also note that R, corresponds to s2 in Eq. (2.13).
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a=1
EXPONENTIAL 1,=0.7138

a=05
tc=1 4272
EXPONENT!AL

e=0.2

=3.568
EXPONENTIAL 1c=3.5680

a=0.1
1c=7.138

-a=0.05 ] S
1c=14.272 . : DU

EXPONENTIAL
(U) Fig. 30—dompaﬁng the autocovariance of the lognormal
- process (from Eq. (6.21) normalized so that Rg(0) = 1) witha
decaying exponential (¢ is computed from @ using Eq. (6.24))
6.4 Rice-Power Process

(U) Lety; ;and y; ; be as in section 6.1 (Eq. (6.1)). Define xy ¢ %z ¢ Vid

3 =¢F Yt

Yot - (6:26)

i

X2t

If we let

X = N (6.27)

it is known that x, has a Rice amplitude probability density (cf., Eq. (2.7) with: a2 =R,)
© ([30], pp- 150-167) (see also appendix B, Eq. (B5)). Therefore, : )

o, = %7 ' | (6.28)

has a Rice-power probability density (see appendix B, Eq. (B9)). From Eags. (6.26-6.28),

e



0y = c+y1,? + ¥34

. 2 2
Yi,¢ Y2,
=R, ||5= + =] +{==] |. 6.29
gKVRz VR&) (VR)] - G
Let
X1,
Lt = R,
g
Y2,¢ . :
22’t =_\/—_R=. S .' (6.30)
. -4 - : .

Then z; ; and zg ; are wide-sense stationarj Gaussian random processes mth mean zero .
and autocovariance R,(7) = exp (—ar), and c/\/Rg = «/2m. Therefore, if we use the ex-
pression (see Eq. (B8) from appendix B) .

G = Ry(1+m?2)

then the process

o N2 2 T
0, = ——— | (\V2m +z +z - : 6.31
t 2@+ m2) [( 1. f""*] D, ©3n
has the desired probability density. To introduce the median in Eq. (6.31), we use the

results of appendix A, where the mean to median ratio is computed as a function of m2
(Table A1 and Fig. Al). So finally . :

o= o) g oA en e e

For the autocovariance function we have

E{(o;— E{o})(04r — E{0ps D)}

E{0;0447} — G2

= _-6‘2'—'2' E { [(ﬁm +zl,t)2 + zé.t] [(\/—2—”: +21-‘+T)2 + zg'-t”]}
4(1 +m?2) ‘ - .
-0%. ' A ' . | (6.33)

Using

E(z} 23 1es} = 2RZ(M) + RZ(0)
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-(Eq. (BQ), derived in the result of appendix B), we compute the indicated expectation,
which equals

-

E{z{tziﬂ,} + 2VZmE {z1,tz§,t+r} + 2m?E{z} tsr}
wE(3 YR e} + 2VEMEL, oy e}
+8m2E{z; 121,001} * 4 VEm®E{zy ter}
v2vEmEGE JE ) + 2Bl ) ¥ 4 VI E G}
sam? + 2m2E(z3 por} + E{2L,e28 000} o
vaEmE{e, JEE e} + 2B or) + B er}
= 2[2é§(r) +R§(6)] v 4md & s}nz + 2+ 8m2Rz(r). | '(6.34)'

Using Eq. (6.34) in Eq. (6.33), we obtain

-

. -2 '
Ry(7) = ———— [4(m® +1)% + 4R2(r) + BmZR(T)] — a2
‘ 4(1 +m2) . ) : ‘
=— {exp (—2ar) * 2m?2 exp (—a7)} - - (6.35)
 @+m?) o

It thus follows that 04 is wide-sense stationary, and because 21 3, Z2,¢ 2T€ ergodic and 0,
_is (via Eq. (6.31)) 2 time-invariant memoryless function of ergodic processes, it is also
- ergodic. ‘ : ‘ '

(U) To compare Ry(7) with 2 decaying exponential, we normalize so that Rg(0)=1.

Rg(r) 1 | om? . o o
= -207y * — 5 exp (—a7) . i 6.36
R,(0) 1 + 2m? exp ( )P Ty 2m? P (~em) . (6.:56)

Since this function is a convex combination of two decaying exponentials, it can be very
well approximated by 2 decaying exponential if we match the correlation times. Indeed,
for small values of m2, Eq. (6.36) is very well approximated by exp (-2ar), while for
large values of m2 it reduces to exp (~ar). So.we obtain the relation between « and

t. via

exp (—2at;) + 2m2 (exp — ;)
1 + 2m?

=1
=2

+ 2m?
exp (—atc) = —m2 + \/;4 + -]-.—‘E—"n_', (6.37)
Continued
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Pad

2
In (_mz . \/m4 . 11_3_"1_) (637)

These considerations are supported with the results of computations, comparing the nor-
malized autocovariance function (6.36), with o obtained through Eq. (6.37), with the
"single decaying exponential exp (~tft,), as shown in Fig. 31. The approximation is
excellent. A ‘

(U) To summarize, the algorithm for generating a Rice-power process with an almost
decaying exponential autocovariance function consists of the following steps: (a) given
t. and m2, compute a from Eq. (6.37), (b) construct two (0,1) Gaussian random processes
23 p» 29, ¢ 2ccording to Egs. (6.2-6.3), (c) given m2, compute p (m2) from Fig. Al, and
(d) given 6,,, define 0, via Eq. (6.32). The parameters 0,, and m? will be computed ac- .
cording to sections 2 and 3. _ : o :

(U) This concludes the description of the algorithms generating wide-sense sf:ationa:y
stochastic processes with decaying exponential autocovariance function and first-order sta-
tistics of the desired type. These are all incorporated in the subroutines RAPR1~-RAPRA4.

6.5. Model Completion S

(U) Severat remarks are now in order. First observe that we succeeded in providing
algorithms that use at most four first-order linear Gauss-Markov models followed by
memoryless nonlinearities. This approach makes our algorithms very fast compared to
other algorithms (see Ref. 33, ch. 8), for example, those based on independence of spec~
tral samples which use a much larger number of simple random process generators [33].
As we explained in the beginning of this section, the development of fast algorithms was
an essential constraint for the simulation model. Next, notice that the proposed model
specifies all finite-order statistics of the generated stochastic process, since we essentially
give a dynamic system realization of the process. The model matches the first- and
second-order statistics as derived from experimental data. This, recall, was our goal (see
section 2). It will be interesting to test whether the higher order statistics, as generated
by the model, are in agreement with experimental data. For the latter, however, new
data bases have to be created. In view of the total reliance of radar design and evaluation
methods on second-order statistics, the value of such an investigation toward improved
quality of simulation is doubtful. ’ .

(U) We now proceed to describe the necessary algorithms for the completion of the
model. To make the model piecewise wide-sense stationary, the parameters of the sto-
chastic process generation algorithms should all be updated at the same time, and at ap-
propriate intervals. These parameters are the correlation time t., the median RCS (for
exponential and chi-square with four degrees of freedom), and in addition, the mean to
median ratio (for lognormal) or m?2 (for Rice power). As we noted in sections 2 and 3,
the two latter parameters can be deduced from the variance of RCS fluctuations. Since,
from sections 3 and 4, the major factor in the variation of these parameters for ships is
the variation of aspect angle, we update all these parameters whenever a change in aspect
angle of a predetermined size has occurred (we currently use 2°). The parameters remain
constant between these changes. This, obviously, makes the model piecewise wide-sense
stationary.
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(U) We recall from section 5 (cf. (v.) and Eq. (5.11)) that there are aspect angle
sectors where a mixed process (e.g., Eq. (5.11)) is required by the model. Therefore, a
different random process generation algorithm is required for these cases. An algorithm
which consists of a minor madification of the above four basic algorithms is highly ‘de-
sirable due to considerations of complexity and computation time of the overall model.
Fortunately, the algorithm for the mixed process is straightforward:.

(2) generate two independent, wide-sense stationary stochastic processes, with de-
caying exponential autocovariance function 61 ; and g2 ¢ ‘and first-order probability den-
Sity Pmq and Pgas respectively, employing the appropriate algorithms in sections 6.1-64. -

(t;) given the mixture parameter v € [0,1], set
0, = 70y, + L-"N02. . .(638)

Then the ﬁrst-b:der density function of the random process is given by Eq. (5.13). For
the autocovariance, let G; and G, be the constant means and Rg, (7) and Rg,(7) theauto-
covariances of 01 ¢ and 02, ¢. By the independence of 01+ and 02, ¢ )

= Blod =% +0-VE 6

Ry(r) = E{04044r} — @2

T e R+ A-1PRe). T a0

From Egs. (6.39) and (6.40), the new process 0 is a2lso wide-sense stationary. Since, as -
we noted in sections 6.1-6.4, 07 ¢ and 02 ¢ are ergodic, and 0; is a time-invariant mem-
oryless function of ergodic process, it is also ergodic. So the use of time averages for
. valid ¢ in this portion of the model is also justified. .

(U) By construction, Rg,(7) and Rg,(7) are &ecaying exponentials. Since we want .

Ry(7) to be also a decaying exponential, we must construct in'(2) (above) 61 ¢ and 02, ¢
to have the same correlation time ¢.. Then :

Rg,(r) = Ry exp (-7/tc) s | |
Rg(7) = RpexpTlts), . (64D

snd theretors |
Ry(7) = [721%1 +(1- 7)2R2]exp (-7lt;) - (6.42)

That is, o, will have an autocovariance function of the de§ired form. Itis importa.nb to
realize that @; # 04 and Ry # R,, since the two underlying processes will have different
mean to median ratios (due to their different types) and different variances (e.g-, 01,¢
being lognormal, g2, ; being exponential). To complete this part of the algorithm we
must choose Ry and Ry approximately (recall that the variation of + is described at the
end of section 5). This will be required only in cases where the corresponding probability
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density has two parameters (i.e., it is lognormal or Rice power). In such cases, the ap-
propriate value for R; or Ry will be selected according to our discussion in sections 2
and 3. To be consistent with our piecewise widesense stationary approximation, the
mixture parameter 7 is updated at the same time as the other parameters (i.e., every time
_ jnterval that a change in aspect angle of 2° has occwred). The mixed process model is in
subroutine RAPR5. The selection of the appropriate stochastic process generatar, includ-
ing the mixed process, is performed by the subroutine TARDEN. : '

(U) The final point of this section concerns the reduction of random-number gen-
erators needed and the procedures for safeguarding their independence, as called for by
_the analysis underlying the model. The method employed to resolve these questions will
. " have important consequences on the overall complexity and quality of implementation
. (i.e., coding) of the proposed model. Recall that we need to generate per ship, in the
simulation scenario, up to four independent Gaussian (0,1) processes with decaying :
exponential autocovariance functions: one for lognormal, two for exponential, two for
Rice power, and four for chi-square with four degrees of freedom. The Gaussian processes
used for different ships must be independent. The employed ‘“polar method™ ([29], p. 104)
for generating Gaussian random variables requires two independent random-number genera-
tors and generates two independent (0,1) Gaussian random variables. Therefore, a “naive”
implementation will require eighteen independent random-number generators and nine
arrays per ship to store the Gaussian processes.. Using the redundancy of Gaussian random
variables generated by pairs of random-number generators (see “polar method” ([29],
p. 104)), we can reduce the requirements to ten independent random-number generators
and nine memory arrays per ship. In addition to introducing an undesirable increase in
the complexity and size of the simulation code (and necessary memory), this *“naive”
_approach to these problems creates severe bookkeeping problems for the switching from
one stochastic process generator to another, and raises serious questions about the smooth-
ness of the parameter updating procedure. Moreover, since all independent random-number
generators will be implemented via random initialization of the-basic random generator
resident in the computer system, large numbers “of random-number generators are unde-
sirable since their independence can be severely impaired. Our solution to these problems -
relies on the fact that the model needs at most four independent Gaussian processes for
aspect angle regions with fixed density and six for aspect angle regions with mixed density.
The value of 0, is given at any time by an appropriate nonlinear function of the values of
these underlying Gaussian processes. Therefore, we need to run at most six independent
Gaussian process generators. Employing a random shuffling algorithm (Ref. 29, p. 125),
we can generate the necessary six random numbers emplaying only two random-number
generators per ship. Moreover, we only run the number of Gaussian process generators
necessary in each case (depending on aspect angle), the rest remaining idle. At time
instances where the crossing of the boundary between aspect angle sectors with different
probability density types (see Fig. 28) requires switching to 2 different stochastic process
generator, the appropriate initializations of the Gaussian arrays are performed by the sub-
routine DNINTF. This subroutine utilizes the final values of the Gaussian arrays from the
previous aspect sector, and if necessary creates additional Gaussian (0,1) random variables,
to provide the necessary number of (0,1) Gaussian random variables to initialize the
process generator for the new aspect-angle sector. Therefore, our solution requires two
independent random-number generators and six memory aIrays pex ship (a considerable
reduction from ten and nine), and employs a very simple interfacing procedure.
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(U) Fig. 36—O0utput from the rmxed process generator (here, exponenhal and lognormal). £, = 0.100s,
interpulse time = 0.0005 s, median RCS =1m?2 mean-to-medxan ratio 1.8, 7= 0.5.

INTSC (INTERACTIVE INITIALIZATION, OFF LINE)
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) !
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1{ GENERATORS DENSITIES TIME :
| 1
! '
! !
1
(| 1 A NV e e e Y e e NY___ 1

INITIALIZATION DATAFILE

(U) Fig. 37—Flow chart for initialization program
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(U) Fig. 38—Comprehensive flowchart of RCS scintillation program
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(U) From the description of the model, it should be apparent that several param-
eters are required as input for a particular simulation scenario. To facilitate injtialization
and to guarantee a systematic way for inputing all of the required parameters in the model
initialization is done off-line and prior to executing the main scintillation program SCINT é.
Tk}is is achieved by the interactive program INTSC, which automatically requests appro-
priate input from the user, provides necessary sources, displays appropriate charts, and
outputs the selected values to a data file, after the user has selected the appropriate values
for the parameters and is satisfied with the various diagnostic charts. This data file serves

then as input file to the main program SCINT 2. The functions performed by INTSC are »
- summarized below (see Fig. 37). -

(2) Generate pairs of integers which are used for initialization of the random-
number generators required in the model (two per ship). For obvious reasons, this is
~ done in a random fashion tied to the time of day the program is called. : '

(b) Select, as described in section 5, the probability densities for each ship at major
aspect and quarter aspect angles. Input the percentage of densities that are to be of each
of these two types according to section 5. Input values for the characteristic length L;
and characteristic width W; (see section 5). . B

(c) Select one of the two models for variation of median RCS as function of aspect .
angle (see section 3). Input values for median RCS at the bow if a depression at the bow
is desired (see section 3). This is done for each ship. ) S

(d) Input values for the ship’s hull height as a function of aspect angle; quantize to
ten distinct values at most. Input values for the depression angle where an increase in
median is observed (see section 3). Input values for the constant used in the elevation
dependence of median RCS (see section 3) as function of aspect angle; quantize to ten
distinct values at most. This is done for each ship. ’ .

(e) If lognormal or Rice power is selected in (b) above, input values for the mearr
to median ratio (for lognormal) or ratio of steady power to average random power (for
Rice) as functions of aspect angle; quantize to ten and twenty distinct values at most,
respectively. This is also done for each ship. _ o

(f) Input, for each ship, values for average random rate of change of aspect angle,

elevation angle, ship’s pitch, ship’s roll, and rms pitch and roll angles, according to
section 4. : ‘
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Appendix A

COMPUTATION OF PARAMETERS FOR SOME OF
THE PROBABILITY DENSITIES USED -
- [Unclassified Title]

VARIANCE OF THE RICE-POWER DISTRIBUTION

(U) We have from Eq. (2.8)

E{d2}

=2
= e"mz _—g_——-—-—
@A +m2)?
;.2 o

= e-m’ o

a+m2? Y%

2 f Me-XJy(2imA) dA .

Using formula (11.4.28) from p. 486 of Ref. 34, we have

f We-XJy(2imN) dX =
1]

Ir'(3)

2

— = M(3, 1, m2) = M(3,1,m2).

r'a)

From (13.1.27), p. 505, and (13.6.9), p. 509, of Ref. 34,

M3, 1, m2) = e M(=2, 1, -m?) = e L) (-m2) o

From (22.3.9), p. 775, of Ref. 34,

LO¢m2) = 1 + 2m? + 3 mt.

Using Egs. (A1-A4), we obtain

2

E{(c—G)%} =™

.02

(2 +4m2 + m4)em® — G2

Q@ +m2)?

'&2

S @+m?)?

1 +2m?2).
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r o2 1 +_m2 exp (-m2) exp [—(1 +m2) —g]lo (Zm 1+m2) 2} do
b c G V » a>
f 72 exp (-7) Jp(2im V7) dT
0 _ . . -

@y

(A2)

(A3)

(A4)

(A5)
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MEDIAN OF THE RICE-POWER DISTRIBUTION

(U) The median is by definition the solution of

1 * 1 + m2 2 2, O ( | [ ‘a)
3 ]; = exp[m ( m)OT o |2m (1+m)°_da'

(1+m2)>
g

= 27 exp (-m2 - 12)Ij(2m7) dT. (A6)
A :

So to find the median we first solve
1 y ' . ' )
z= j; 27 exp (~m2 — 72)I3(2m7) dT L . (A7)
to obtain y, and then the mean to median. ratio is given by
1+ m2

p(_m2)-—-;a-%= Rk "_ :-_.(A8)'

First we obtain the mean to median ratio as a function of m2 using the tabulation in
Ref. 26, which permits computation of y. In Ref. 26, the values of y; which solve

Y1 o ‘ .
_ -%— = j; 2m2r exp [fm?(l +r2)] Iy(2m2r) dr (A9) .
are given.’ If we let mr = 7 in Eq. (A9), we obtain
1 my; - ' ‘ .
5= f 27 exp (-m2 ~ 72)I;(2m7)dT. (A10) -
0

Comparing Egs. (A7) and (A10), we see that

y =my. (A11)

Table A1l gives the neéessary computations. The first three columns are from Ref. 26.
In Fig. Al, the mean to median ratio as a function of m?2 is plotted.
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" (U) Table A1—Values of Mean to Median Ratio for the Rice-Power
Density as Function of m?2

m? (dB) m2 vy |y p(m?) = G/o,,
20 100.00 1.0025 10.025 1.005
18 63.096 1.004 7.9751 1.0078
16 39.811 1.0063 6.3493 1.0123-
14 25.119 1.0099 5.0615 1.0195
12 15.849 1.0157 4.0436 1.0305
10 10.00 1.0249 3.2410 1.0472
8 6.3096 1.039%4 2.6109 1.0723 -
6 3.9811 1.0622 21194 . 1.1089
4 2.5112 1.0981 1.7401 1.1596
2 1.5849 1.1546 1.4536 1.2234.
0 1.000 1.2437 1.2437 1.2930 .
-2 0.63096 1.3817 1.0975 1.3540
-4 0.39811 1.5860 1.0007 1.3962
-6 0.25119 1.8724 0.93843 1.4208
.. -8 0.15849 |  2.2586 0.89917 1.4329
—oo 0.00 0.83255 1.4427
/P med — T T T T T T T T T T T T T

1.4

1.3

12

1.

1.0

0.9~

o.eq

0.7~

0.6

1 3 1. 3 (] 1

BN Y RN IS O 1 2 | S T
-0 10 .8 6 4 -2 0 2 4 6 8 10 12 14 18 18 20

o
m? (dB)
(U) Fig. A1l—Mean to median ratio p(m?) as a function of m?2
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(U) We now give some analytical results related to the median of this probability
density function. Using a series expansion of I in Eq. (A7), we obtain

2k
k=0 R
o 1 y2
= exp (-m -";T- BT f exp (-7)7* d7
- - mzk : kg2
= exp (-m?) Z 5 | e %) Z T
’ o k=0 . £=0
k| m2ky22 L ‘
=1- exp (_mz) exp (_yz) Z Z —gigr o ) ~ (A12)

k=0 2=0

Therefore, y, m are related imp_licitly via the equaﬁon

1 y22 m2k ' L,
'gexp(mz)exp(yz)- Z Z T ",f,, . : (A13)
- k=0 2=0 - .
.For m = 0, Eq. (A13) gwa exp (yz) 1, and therefore the pair
 m=0, y=\[_‘;- 0.83255 . | (A14)

is an initial val;ze for the functional relationship y (m) we w15h to compute. Let

Fly,m) = & exp (n?) exp 4%) = 0> m) )
29 2k : o
fo. m) = Z Z T E (A16)
. k=0 £=0 o _
We want to solve

Fiy,m) = 0 : (A17)

to obtain y as a function of m. Now
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r [ -
v g RO LGE G-uw

kol 20,2k
AR

it

N

<
[Ms

k=1 2=0

2y1f(y, m) - Io(2my)] ; : ' (A18)

and

I

3fy, m) y222km2* -1 o o y2omAR)
am Z Z I =2m ) ) Tm=rT
k=1 2=0 _ : k=1 2=0 : .
=, k1 29,9k

1Rl
Fror O LER!

2m

o 2(k+1)m2k

2mfly,m) + 2m ) l@—;—l—)-@—
k=0

ft

2mf(y, m) + 2yI;(2my). L | N (Alg)"

Therefore, since Eq. (A17) holds for the correct functional relationship y, m, we obtain

| 3F(y, ' ' 2y
_,__%ﬂ = y exp (m2) exp (y2) ~ 2yf(, m) + 2yIo(2ym)
= 2yIy(2ym) - . ‘(A20)
and
a——F(a::.;zm) = m exp (m2) exp (v2) - 2mf(y, m) —~ 2yI; (2my)

~2y1,(2my). - . (a21)

From the implicit functxon theorem [35], there exists acontmuously differentiable function
y(m) which solves Eq. (A17) and

d ; : L
Ip@2my) 32, = L(2my) .  (az2)

To obtain the functional relationship between y and m, we have to integrate the differen-
tial Eq. (A22) with initial condition (A14). Next, observe that
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f(0,m) = exp (m2);

therefore, solving the initial value problem (A18) and (A23), we obtain

. Yy :
f(y, m) = exp (y2) exp (m2) - f exp (y2 - 02)201,(2mo) do .
(1

Since
10 =1,
we ‘can solve the initial-value problem (A19) and (A25) to obtain

f(y, m) = exp (m2) + f i exp (m?2 —'02)2y11(290') do

0

m ‘ :
Iy(2ym) + f 20 exp (m2 - 02)I4(2y0) do .
0 .
Comparing (A24) and (A26), we obtain the identity

y } ‘
exp(y2) exp (m2) - f 20 exp (y2 - 02)I(2mo) do
T 0

= Iy(2my) + f 20 exp (m2 - 02)Iy(2y0)da -
0 : .
'If we now define the probé.bility distribution function
¥y 0
P(m, y) = f 2\ exp (—\° — m2)I0(2m?\) dA,
0

we can rewrite Eq. (A27) as

exp (y2) exp (m2)[1 - P(m, y)]
or

1 - exp(-y2- m2) Iy(2ym) .

P(m,y) + P(y, m)

Io(2ym) + exp (2) exp (m2)P(y, m}

(A23)
(A24)

(a25)

 (a26) -

(A27)

(A28)

(A29)

(A30)

We can apply the implicit function theorem. again to P(m, y) =1/2 to venfy the differen-

tial Eq. (A22) obtained earlier.
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- Appendix B

BACKGROUND AND COMPUTATIONS RELATED TO THE STOCHASTIC

PROCESS GENERATION ALGORITHMS
[Unclassified Title]

COMPUTATION OF THE AUTOCORRELATION OF yZ ,

(U) By construction (Egs. (6.2), (6.3)), the joint probability density of Y100 Y1 t4r -
is, 4 ¢ ?

P (0s. 4 .) 1 ( 11y, I[R’(‘O) Rym]‘[ﬁlD -
Y12 V2) = €Xp {—5 LV1V2 » -
T¥1,6Y1,¢ X 21r(1—R32,(T)) 2 . Ry(7) R,(0)}V¥o .

ey .

and the moment-generating function is . .1 - _ i

- L [BO B,@[m]
M(vy,vq) = exp |5 [vy vl - - (B2)
| Ry(r) R, (0)]] v B

Therefore, we compute

34M(v1 ’ 02)

2 2
0%vy 0%vy vy =0
vy=0

E{y},e93 00} = = 2R}(-) + R3(0). - (B3).
COMPUTATION OF THE AUTOCORRELATION OF A LOGNORMAL PROCESS

(U) The second-order probability density of y, is given by Eq. (B1). Then from
Eq. (B2) and the definition of the moment-generating function, we have

: ,
E{exp (y; +¥447)} = E{exp| [1 1] D
' ) _yt-f--r

1 [0 R,@][1T) - ‘
= exp |5 [1 1] = exp [R (0) + R, (r)] - (B4)
R,(r) Ry(0)] |1 .

69



JOHN S. BARAS
COMPUTATION OF THE PROBABILITY DENSITY OF x, IN EQ. (6.27)

(U) If we let B, = arctan (xp /7 ¢), then the joint density of x, and ®, is

| P a5 9) = \/217 exp[—z—}‘,;; (scos¢—c)2]
(4 co.

1 -1 o0
o

£

27ng _

exp [- E}i; (£2 +¢2 — 2k cos 45)] ]

Therefore,

' : 2 2 i 7 :
P, () = z,,i% exp (— Fre 2; c ) j: i} exp (CEIC:S ¢) dé

2 '
_ £ | £ + c? cE :
"5 e )lR)

which is the same as Eq. (2.7) with ¢2 = R,.

_ COMPUTATION OF THE PROBABILITY DENSITY OF xf IN EQ. (6.28)
) | | )
} _ 1 _ 1 _ 6 + c2 cVo
Pol® = 2ol 32 oo (255 ) (3 )

Let

c2 steady power

2 = .
m2 =
2R, average random power’

we compute

Ql
]

f Upat(O')dO,

0 ' :

' c2 b ?, _ g cVvV2 o

o (i) [ oy o ( o) G )

4 ‘ 2
4Rg exp (— -;—;Z;) f 73 exp (—'12)10 (i/\é;_ 1') dr,

1]

i

{(using (11.4.28) from Ref.'34; p. 486)
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=2Rg

(using (13.1.27) from Ref. 34, p.

]

2 2 2
e (i) oo () + )
g 2R, 2R, 2R,

2R, (1 +m2).

. 2 2
exp (— -251!7) M (2, 1, -;—R—),

505, and (13.6.9) from Ref. 34, p. 509) .

In view of Eq. (B8), we rewrite Eq. (B6) as

1 + m?
Pg,(0) = == exp

which is the same as Eq. (2.8).
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