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Quantum-Mechanical Linear Filtering of
Random Signal Sequences

JOHN S. BARAS, MEMBER, IEEE, ROBERT O. HARGER, MEMBER, IEEE, AND YOUNG H. PARK

Abstract—The problem of estimating a member of a scalar random
signal sequence with quantum-mechanical measurements is considered.
The minimum variance linear estimator based on an optimal present
quantum measurement and optimal linear processing of past measure-
ments is found. When the average optimal measurement without post-
processing, for a fixed signal, is linear in the random signal and the signal
sequence is pairwise Gaussian, the optimal processing separates: the
optimal measurement is the same as the optimal measurement without
regard to past data, and the past and present data are processed classi-
cally. The results are illustrated by considering the estimator of the
real amplitude of a laser signal received in a single-mode cavity along
with thermal noise; when the random signal sequence satisfies a linear
recursion, the estimate can be computed recursively. For a one-step
memory signal sequence it is shown that the optimal observable generally
differs from the optimal observable disregarding the past; the optimal
measurement can be computed recursively.
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I. INTRODUCTION

ETECTION and estimation problems have recently
D been studied [1]-[3] employing measurement models
correctly incorporating quantum mechanics. Such work
applies directly, e.g., to establishing fundamental limita-
tions in optical communication systems [4]. More recently,
the analog of filtering a random signal sequence has been
considered [5], [6], [13]. Here the problem of estimating
X, a member of a “‘signal” sequence {xq,x;," " *,x;," "} of
scalar random variables, is considered; the parameter & is
conveniently regarded as discrete time. To be chosen are
the optimal measurements at time k& and the optimal linear
combination of present and past measurements at times
j=0,1,--- k — 1. The random sequence so obtained is
defined precisely below, but it is simply described in the
optical communication setting as follows.

At time k a laser signal modulated in some fashion by
X, 1s received in a cavity containing otherwise only an
electromagnetic field due to thermal noise; the total field is
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in a state described by a density operator p(x,) that depends
on x, (but not otherwise on k). If x, is a scalar, the measure-
ment at time k, whose outcome is denoted by v,, will corre-
spond to a self-adjoint operator V, [7, p. 192]. If x, is a
vector the essentially quantum problem of simultaneous
measurement arises, and a more general concept of measure-
ment [1], [2], [8], [9] must be resorted to [14].

By optimal is meant minimum mean-square error; the
implied average is over the classical distributions of
{x,} and the distributions due to quantum-mechanical
measurement.

An .ultimate objective would include efficient computa-
tion; e.g., suppose that x, is a scalar “dynamical state”
generated by the recursive equation

Xer1 = QX + Wy ()]

where {¢,} is a sequence of scalars and {w,} is a sequence
of independent Gaussian random variables with zero mean
and variance Q,. Solutions in a form that recursively com-
pute the optimal estimate and measurement at time k
would be highly desirable. In specific situations below, this
is achieved.

II. FILTERING PROBLEM

The customary formulation of quantum mechanics [10,
sec. 8.5] associates a self-adjoint operator ¥ on a Hilbert
space # with each measurement and incorporates a priori
statistical information with a density operator p on # (p a
self-adjoint, positive semidefinite operator with unit trace).
The measurement represented by J produces a real number
v (the outcome) whose expectation is

E{v} = tr {pV}

where tr {-} denotes trace.! In case the density operator p
depends on a random variable x with distribution function
F,, E, should be replaced with the conditional expectation
E, .. The unconditional expectation is then

B} = f tr {p() V) Fofd). 2)

Here the following sequence of measurements is of in-

terest. At each time j, j = 0,1, -+, a measurement repre-

sented by the self-adjoint operator V; is made, with outcome
v;. The state of the system prior to the measurement is
described by p(x;). The outcomes v; are classical random
variables which, conditioned upon a fixed signal sequence
{x;}, are independent.? This conditional independence of

L 1t is worthwhile to note the distribution function F, of the classical
random variable v. The spectral theorem [7, p. 249] associates with
cach self-adjoint operator V on .# a unique spectral mcasure M, a
mapping of Borel sets of the real line into projection operators on .
Then the distribution function is Fy(v) = tr {pM,(— oo ,v]}. The
spectral theorem also yields the moments of the random variable v via
E@™) =tr{pV™"}, m=12---.

2 In the optical communication example cited above, this conditional
independence corresponds to “clearing” the receiver cavity prior to
each reception.
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the measurement outcomes implies® that for any multi-
nomial of {vgy," -0}

Eu|x{vom' ol =t {p(xp) Vo™ - tr {p(x )V}

for any integers m, - -,n. The unconditional expectation is
then

E{Uom' . 'Uk"} — Jtr {P(Xo)Vom}

Ctr {p(X IV F o o(dXo, udxy). (3)

The linear filtering problem is the following. At time k,
k = 0,1, -, the previous outcomes {v;, j=0,1,---,
k — 1} and the present measurement outcome v, are used
to form a linear estimate

k

=Y ¢k

j=0

“4)

of x,. Then the {c,(k),j = 0,- - ,k} and the present measure-
ment represented by V) are to be chosen to minimize the
mean-square error £{&*}, where &, = x, — £, and the
expectation is as in (3). Clearly one may set ¢ (k) = 1.

Explicitly writing out that part of E,, for the kth stage
yields

k—1 2
E{6°} = E.E, tr {p(xk) [xkl -V, =1 ZO cj(k)vj] ;
~

&)

where 7 is the identity operator on 4. It is also convenient
to note that

E{6*} = E{x,*} — 2 é c (k) tr (8,;V))
i=o

+ i ci(kye(k) tr {LV5Y (6)
=0
where
5kj = Ex{xkp(xj)} @)
M = E{p(x)} ®)
and
C" — Ex{(tr p(xj)l/l)p(xz)}’ ] # .],
YAV, i=J )

In the seqilel, ¥, will denote the optimal observable and
{ék), j=10,---,k — 1} the optimal processing coeffi-
cients at the kth stage. Applying the calculus of the vari-
ations argument of [12] to [V, + I 3% ¢ ¢;(k)v;] in (5)
formally gives a necessary condition for V, to minimize
separately E{&,%)

k—1
Vi + Vi = 20 — 2 'Zo ¢k (10)
=
Simple differentiation on (6) shows that a necessary and
sufficient condition that the {¢;(k)}%Z{ minimize separately

3 The conditional independence assumed here is best described by
stating that the joint distribution function Fyx is the product
F, - Fug |z, Where each F, ;. has already been described.

o|xo0"
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E{62} is
k—1

Y eiky tr {{V;} = tr {03} — tr {CV),

j=0

i=0,1,,k—1 (1)

It is important for the subsequent results of this paper to
establish necessary and sufficient conditions for ¥, and
{¢;(k), j = 0,--+, k — 1} to minimize jointly E{&,%}. This
is done in the following theorem which employs the projec-
tion theorem [11, p. 49]. It also settles the question of the
existence of optimal V, and {c;(k)}.

Theorem 1: There exists an optimum observable ¥, and
optimal processing coefficients ¢;(k), j = 0,1,-, k — 1,
if and only if there exists a solution to (10) and (11).

Proof: Let % be the set of operator-valued functions
of the form

k—1
f(x) = BxI + 1 'ZO ap; + ¥
=

where x is a random variable, f and {«,} are real scalars,
and ¥, is a self-adjoint operator on . With the ordinary
addition of scalars and operators and the multiplication by
scalars, % is seen to be a linear space. For f,g € &, define
the form

(£.9) = EE . tr{p(x)  [f(x)g(x) + g(x)f(x)]}

Let £’ < % be the subspace of elements f such that (£,f)
is finite. Then (-,-) is a degenerate inner product on .%”’ in
the sense that ||-|| = (-,)"/* is a seminorm [11, p. 45]. It
is not a norm since ||f|| = 0 does not imply /' = 0.
Let " < %’ be the subspace of operator-valued func-
tions of the form
k-1

h=1Y% ov + D,
j=o

Then (see (5)) the problem of minimizing the mean-square
error is a minimum norm problem, and the projection
theorem [11, p. 44] provides necessary and sufficient con-
ditions for a solution. {¢;k), j=0,1,---,k — 1} and
Vi are the solution if and only if, for any real scalars «;,
Jj=0,--,k — 1, and self-adjoint operator D, on 3,

k—1
0= EE,,tr [p(xk)' {[xkl -1 ZO ¢(ky; — Vk]
=

k—1 k—1
-[1 Y oo+ Dk] + [I Y ap; + Dk]
=0 =0

. [xkz - IIEI é(kyw; — Vk]”.

Two necessary conditions, which together are sufficient,
may be obtained from (12), the first by setting the ;) =0
and the second by setting D, = 0.

Setting the {«;} = 0 and interchanging the trace over #
with expectation E.E,., one obtains

(12)

1

P
0=tr {Dk [25kk -2 'Zo ek — mVi — Vk’?k:”
i=
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for any self-adjoint operator D,. The arbitrariness of D,
implies this last equality holds if and only if

k-1
Vi + Ve = 264 — 2 _ZO (k)
=

Setting D, = 0, one is similarly led to the condition

k-1

ZO k) tr GV} = tr {8V} — tr {CuVids
=
i=01,---,k — 1.
QE.D.

Equations (I1) are the normal equations [11, p. 56]
for the {¢;(k)}. A redundant equation may be obtained from
(10) by multiplying through by V, and tracing; adding it to
the above set, one has the complete set of normal equations.
It is special in that necessarily ¢,(k) = 1

k

Z éj(k)E{Uin} = E{Uixk}a

i=0

i=01, -k (lla)

where the expectation is as in (3) and v, = 9, the outcome
of the optimal measurement. The equations (10) and (11)
can be cast in a more convenient form.

Corollary 1: The optimal observable V, and processing
coeflicients {¢;(k)} satisfy the equations

k—1

17k =T, — ‘Zo 6j(k)o-kj (13)
i<
and
k—1
Z 6,’(1‘) tr {CjiVj - Ckio'kj} = tr {6,;V; — CkiT;(}s
j=o
i=0,1,,k—1 (14)
where T, and o,; are such that
M T, + T = 26, (15)
and
MOy; + Oxithe = 2ij‘ (16)

Proof: Substituting (15) and (16) into (10) immediately
yields (13). Multiplying (13) on the right by {,;, i = 0, 1, - -,
k — 1, tracing over #, and substituting for tr {{,;V,} in
(11) yields (14). Q.E.D.

Equations (13) and (14) are “decoupled” in the sense
that, after solving (15) and (16), the {¢;(k)} are found via
(14); then V, is found via (13). Note also that conditions
for existence of solutions in (10) imply existence of solutions
for (15) and (16), and conversely.

It is remarked that (13) and (14) apply for any set of
k + 1 jointly distributed random variables {xg,x;," " *,x;}
and for any set of k& prior measurements represented by
Vo,Vio -, Vi— 1} If, additionally, the {x;} satisfy a recur-
sion such as (1) there is the hope that a recursive determina-
tion of V, and, at least implicitly, of the {¢;(k)} could be
obtained, especially if the {V;} are chosen optimally at each
time j. This would avoid a calculation of growing com-
plexity at each time k. It is also of interest to know when
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P, depends in a significant structural way, on k—for then
a new measuring device is required at each time k! We now
turn to examples that partially answer such questions.

III. FILTER SEPARATION

Assume the {x; j = 0,1,--- k} are pairwise Gaussian
random variables and that the observables {V,, j = 0,1

-,k} have each been chosen optimally according to (13)
and (14); suppose further

tr {p(x)T}} = (a7

where I'; is a scalar, that is, the average optimal measure-
ment without postprocessing (see [12]), for a fixed signal,
is proportional to said signal.

Theorem 2: If {x;,j = 0,1,---

1_‘jxj: .I = Oal,'.';k

,k} are pairwise Gaussian

random variables, if measurements {Vj, Jj=0,1,---k} are
optimally chosen (according to (13) and (14)), if {T,,
j = 0,1, -k} are given by (15), and if (17) holds, then
Ve = BT, (18)
where
k—1
= 1 - 2 j(k)B Jj _]’(’ B(O) = (19)

=
and 4 is such that E(x; | x,) = 4%,

Proof: Trivially, (18) holds at k = 0. At time k = 1,
Vi =T, — ¢,(1)6,0; to find a,, by (16) note that (using
amnm

{10 = EL{tr {p(xo)To} - p(x1)}

E{Toxop(x1)}
FoE{p(x)E(xo | x1)}.
Since x, and x; are jointly Gaussian random variables

there exists a constant 44, such that E(xy | x;) = A4yx,,
therefore,

]

{10 = Todo Ex{p(xy)x,}
= I'gA0104;.
Using this result in (16) and comparing to (15), one sees
that 0,4 = I'gA4q,T;. So (13) yields
I71 = BT,
where
B, =1 — 2,(1)B,IyA4g,-

Assuming (18) and (19) hold at time k& — 1, again one
finds

ij E{tr {p(xj)Vj} * p(x)}
E {tr {p(x))B;T;} - p(x)}
using the induction hypothesis,

‘:kj = BjrjAjkékk

where E(x;|x;) = A;x,. Using this result in (16) and
comparing to (15), one sees o,; = B;I';T;, thus (13) gives

Vk = BT,
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Fig. 1. Separation of optimal filter when signal sequence is pairwise

Gaussian and average optimal measurement without postprocessing,
for fixed signal, is linear in signal.

where
k—1
B, =1-— ZO ¢i(k)B,I ;A
=

Q.E.D.

Note that the observable ¥, of (18) is proportional to T;,
the optimal measurement if the past measurements are dis-
regarded (proof: set k = 0). This ¥, is greatly simpler than
that of (13) and yields the following ‘‘separation.” The
optimal quantum observables are chosen separately from the
optimal classical postprocessing of the measurement out-
comes. This is illustrated in Fig. 1.

Note that the left side of (17) is E(t; | x;), where 1; is
the outcome of the measurement represented by T;, which
is, therefore, linear in x;,—as is true if 7; and x; are jointly
Gaussian when necessarily I'; = E(t;x)/E(x ).

Lemma I: If (17) holds then i) I'; = E(rjxj)/E(sz) and
o<T; <l

Proof: Multiplying (17) through by x; and taking
E.{-}, one finds E(x;t;) = I';E(x;?) establishing i). How-
ever, E(x;1;) = tr {6,,T;}, Wthh by (15) is tr {n;T;*} =
E{‘rj"'}, thus

o E(x;1)) _
! E(sz)

However, [E(x;7,)]?

E(sz)
E(sz) B
< E(x;*)E(1}?) so that

E(z; 2)
i E(x, 2)

Q.E.D.

In view of (18) the optimal estimate is

k—1
2= B + ZO &Ky,
“

k—1
= Ba + Y Bk, (20)
j=0
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The normal equations (11a) become

k
B; Y B(K)E{rz;} = BE{tx}, i =01,k
i=o

Without loss of generality one can assume each B; # 0,
for if B; = 0, for any j, £;(k) is indeterminate but does not
affect £(k); thus the jth equation can be deleted along with
the jth column of the matrix of elements B;B;E(7;7;), and
this reduced matrix equation can be solved instead. Dividing
B; out of the jth equation, one has

&
Y BifKE{tz;} = E{tx, i=01---k (2D
=o

Comparing equations (20) and (21), one has the foliowing.

Theorem 3: If {x;,j = 0,1, --,k} are jointly Gaussian
random variables, if measurements {V;, j = 0,1, - -,k} are
optimally chosen (according to (10) and (11)), and if
tr {p(x)T;} = I';x;, j = 0,1,---k, then the {t;,j = 0,1,
-k} are a sufficient statistic for 2.

Theorem 3 makes it clear that the estimator including the
past measurements will perform at least as well as an
estimator using only the present measurement. Also, if the
measurement outcomes {t;,j = 0,1,---,k} allow a (clas-
sical) recursive estimate of £,, the quantum filtering problem
will have a recursive solution, such an example follows,

Example: Suppose that x, is a Gaussian random variable
and is transmitted as the real amplitude of a laser signal
(assumed monochromatic) and received, along with thermal
noise, in a single-mode cavity upon which an optimal
measurement is to be made. The density operator in the
coherent state or P-representation is then [4]

1 - x|
p(x) = N JCXP (— !X—‘NA—’J) oy (atld 2

and the solution to (15) is known [12] to be

a+a’ 24,
k

T. = D, = Tk
TR T N + 24, + %

here N defines the thermal noise level and 4, = E(x,?). A
measurement of (@ + a™)/2, assuming fixed x,, results in a
Gaussian random variable with mean x, and variance
(N/2 + 1/4) and is realized by homodyning [12].

Thus x, and 7, are jointly Gaussian random variables
and E{t, | x,} = tr {p(x)T,} = Dyx,. Theorem 3 applies
here withI', = D,. Moreover, in this case T} is proportional
to an observable (4, + a,%)/2 that is structurally inde-
pendent of k, only one type of device is required—a simpli-
fication of great practical importance. Clearly the (k + 1)
measurements of Y; = (a; + 4;7)/2 at the times j = 0,1,
“+ -,k gives a sufficient statistic for the optimal estimate 2,.
Now

k-1
2= By + _ZO B;T;e(k)y; (20a)
i=
where the {y;} are the (k + 1) outcomes of the measure-
ments represented by {Y,}, and the normal equations (21)
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Fig. 2. Optimal filter for signal sequence of (1) when received as
amplitude of a laser signal in single-mode cavity along with thermal
noise.

become

] =

PoR [Bie(KE{y:y;} = E{yx, i =

i=

(21a)

Equations (20a) and (2la) describe an equivalent, al-

though fictitious, classical estimation problem. Estimate x,
given a sequence of observations

Vi = X + 1y,

where {u;,j = 0,1, -k} is a sequence of independent
zero-mean identically distributed Gaussian random vari-
ables with variance (N/2 + 1/4).

Furthermore, if the sequence {x; j= 0,1, --k,---}
satisfies the recursion (1), then £, can be recursively cal-
culated by the Kalman-Bucy filtering equations [ 11, p. 96]

R = Op—1Xoy + Ky — b1 Ru-1]

where the so-called Kalman gain is

N\
K =P P+ (= +-
v (543)

and

Pk = ¢£—1{Pk—1[1 - Kk—l]} + Qk»—l

is the error variance based on the past k observations. See
Fig. 2.

IV. FINITE-MEMORY SIGNAL PROCESS

As an example in a different direction, suppose {x;,
j=0,1,---k,---}, a sequence of zero-mean random vari-
ables, is such that x; and x; are independent if |/ — i > 1.
Such a random sequence is said to have a ‘“‘one-step
memory.”

Theorem 4:1f {x;,j=0,---,k,--} has a one-step
memory and each observable ¥, j = 0,1, -k, is chosen
optimally according to (13) and (14), then

V=T — 6 1(K)0xpr, k=1, Vo=T, (22

Proof: For k = 1, trivially, the relation is true. For
time k + 1 > 2, by (13)

k

2 é!(k + 1)Jk+l,j

i=0

I7k+1 = Tiwr — (23)
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where o, ; is determined by (16); in turn, by (9),

Chvr,y = Ef{tr [P(Xj)Vj]/)(XH )

For j < k, using the assumption of pairwise independence,
Geer,y = [trnVing. implying that oy, ; = [tr; V1
However, using the induction hypothesis,

24

tr njVj

I

tr ’7j{Tj - é,'—1(1')0'1',1'—1}
=tro;; — & (N trf -y
(using (15) and (16)); astr 6;; = E(x;) = 0, using (24) gives
trg; V= —¢;, (Nt V|

Iterating this procedure, eventually a product with the
factor trnoVy = tr 8o = E(xo) = 0 appears. Thus (.,
and o, ; =0,/ < k. Q.E.D.

Note (22) may be written (using (9), (15), and (16))
mVi + Vil = 204 — 28 (O E{tr [P(~\'k—1)[7k~1]p(xk)}

which, knowing ¢,_,(k), gives V, recursively in terms of
Vi_ .. Recursive calculations of &,_,(k), the mean-square
error at time k, and &, can also be given, and these results
extend to the “n-step memory” case for n > 1 [15].
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