
. State-Space Models for Infinite-Dimensional Systems 

Abstract-Distributed  effects are  present in almost all  physical 
systems. In some  cases  these  can  be  safely ignored but  there  are 
many  interesting  problems  where  these effects must  be  taken  into 
account. Most infinite dimensional  systems which are  important 
in control theory  are specifiable in  terms of a h i t e  number of pa- 
rameters  and  hence  are, in principle, amenable  to identification. 
The  state-space  theory of infinite dimensional  systems  has  advanced 
greatly in the  last  few  years  and is now a t  a point where  real applica- 
tions can  be  contemplated.  The realizability  criteria  provided by 
this work can  be employed  effectively in the first  step of the identifi- 
cation  procedure, i.e., in the  selection of an  appropriate infinite 
dimensional model. We  show  that  there  exists  a  natural  classsca- 
tion of nonrational  transfer  functions, which is  based on the  char- 
acter of their  singularities.  This classiiication has  important im- 
plications for  the problem of finite dimensional approximations of 
infinite dimensional  systems. In addition, it  reveals  the  class of 
transfer  functions  for which there  exist  models with spectral proper- 
ties closely  reflecting the  properties of the  singularities of the  trans- 
fer  functions.  The  study of models  with  iniinitesimal  generators 
having  a  connected  resolvent  sheds  light on some  open  problems in 
classical frequency  response  methods. Finally, the  methods  used 
here allow one  to  see  the finite dimensional  theory itself more clearly 
as  the  result of placing it in the  context of a  larger theory. 

I. INTRODUCTION 

D ESPITE a superficial similarity  between  t.he formal- 
ism for modeling finit,e- and infinit,e-dimensional 

systems, there  are  many essential differences and t.hese 
differences require  careful attention if one is to  avoid 
errors a.nd meaningless constructions. I n  view of the txaps 
intrinsic in infinit,e-dimensional problems, there is a ten- 
dency to replace  all infinite-dimensiona.1 problems which 
arise  by finite-dimensional approximations.  However there 
are some notable exceptions. For example the Ziegler- 
Xichols [19] kchnique for adjust.ing  controllers  in classical 
control  theory is based on  approximating  what.ever  system 
one  encounters by a  pure  delay  and a  second-order sys- 
tem-thus converting  all problems into infinit.e-dimen- 
sional ones unless the de1a.y happens to  be zero. 

The purpose of this paper is to  survey t.he ava,ilable 
theory  for modeling linear  t.ime-inmriant infinite-dimen- 
sional  systems  in  sta.te-space form. We consider only 
systems  with a  finite  number of inputs  and  out,puts. Re- 
garding the practical significance of t,his kind of st,udy we 
make  t.he fol10~1-ing points. 

1) Systems which are infinit,e dimensiona.1 do  not 
necessarily require an infinite  number of experiments to  
ident,ify. For  esample, a  system whose transfer  function is 
e - a s /  , ( s  + 0) certainly does not  have a finite-dimensional 
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realizat,ion but is specifiable b37 the two  real  numbers a 
and P .  

2) There  are experimental tests which will indicate 
t.hat a system is not finit,e dimensional even though 
establishing  t.hat, a. system is finit,e dimensional is much 
harder  and perhaps impossible in any empirically mean- 
ingful way. This underscores the desirability of seeing 
finite-dimensional problems as  specializations of infinite- 
dimensional ones as opposed to viewing infinite-dimen- 
sional problems as ext.ension of finite-dimensional ones. 

3) With  the except.ion of somewhat, specialized tech- 
niques  such as t.he Pad6  approximation  methods and 
methods based on modal approximation, there a.re no 
methods for approxima,ting infinite-dimensional systems 
by finit,e-dimensiona.1 ones. Moreover,  it seems likely that 
the basis for  such a. theory  would,  by  necessity, be a 
complete  stat.e-space theory for infinite-dimensional sys- 
tems. 

We restrict the discussion to systems which ran  be 
realized on  state spaces which have a.n inner  product 
relat.ive t o  which they  are  Hilbert spaces. While by no 
means  t,he most general setking which has been considered 
in the lit.erature, t*his assumption  leads to a theory which 
is compatible w3h  the modern theory of partial differ- 
ential  equations, opt,imal control,  etc. 

This pa.per is orga.nized as follows. In  Section I1 we 
discuss the basic realizability  criteria  developing  various 
analogs of t.he fact t,hat.  a  linear  time-invariant system 
has  a finite-dimensional state-space  realization if and only 
if it.s transform is rational  and goes to  zero at  infinity. 
There  are t.Tvo types of ~esgl ts  here  because one can con- 
sider  realizations via. 

k[t) = A z ( t )  + bu( t ) :  y(t) = (c,z(t)) 

wit,h A bounded, i.e., l l A ~ l l  6 kllrll, or, and this' is more 
typical, if -4 is not bounded  but.  does  give  rise to  a. semi- 
group @z; t > 0. In Section I11 we discuss the relationships 
bet,ween two minimal realizations of the same  input- 
output,  system.  Under  certain assumptions lye establish a 
state-space isomorphism t.heorem but also indicate how 
t.his result  can fail in the infinibe-dimensional case. Section 
IV is devot.ed to  t,he  import,ant  problem of finding  out, t o  
what. extent  the  input-output dat,a,  determine the 
spect.rum of the operator A .  This  property, which one 
takes for granted  in  the finite-dimensional case, need not, 
hold for canonical infinite-dimensional systems.  Bowever 
for important classes of infinite-dimensional systems ?;e do 
find that  the  spectrum of A is determined  by t.he  points of 
nonanalgt,icity of t,he t.ransfer function. 

11. REALIZABILITY THEOREMS 

The relations bet,ween internal  and  external descrip- 
tions of dynamical  sysfequ  constitute an essential  part. of 

.. 
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the analysis of modeling tcchniqucs. Herc we describe 
thcse  relations for several classes of distributed  paranwter 
systems. For simplicity, and for clarity of csposition, in 
this section and in Srction 11,' ~ v e  restrict o w  discussion to  
scalar  inputs and scalar outputs. Sections 111 rind V dis- 
cuss finite-dimensional input  space? and finite-dimcnsiollal 
output spaces. 

The input-output  relations for the systcms we study 
here arc dcscribed by  the  standard convolution 

y(tj = Lt ~ ( t  - o ) I ~ ( o ) ~ ! o  (1) 

u-hrw T is a real  valued  function, usually called thc 
1re fgh t i t t g  p a f f e m .  We always  assunle that T is Laplacc 
transformable  and vie denote the Laplnctx transform by T ,  
the frcrttsfrr fzozcfz'on. For modeling purposrs T gis-cs a 
model o f  thc system via (1). Wc conccwtrate on non- 
rational  transfer  functions. 

On the other  hand we consider modeling an infinitc- 
dimensional linear  system via the following ci-namical 
equ  a t '  ions: 

d 
- x ( t )  = d x ( t )  + bu(t)  
dt 1 
Y@) = (c,z(t)) 

xhcrc s ( f ) ,  b, e belong to a separable  Hilbert space X, with 
innrr product (. ,-). Wc assume that  the oprrator d 
appearing  in (2) generates  a  strongly  continuous semi- 
group of bounded operators  on X [12], drnotcd by for 
f 3 0. This nleans that for a11 t 3 0. c.'" is a bounded 
operator on X. that C"'Ie"'?.r = e-i(rl+f!'.r for f l ,  f? 3 0 and 
that limfd0 / i ~ . ~ ' . r  - s = 0 for  all .c in X. :1 is usually 
c~~llcd  the infinitesimal gcnrrator of thc semigroup eA', and 
it5 domain of definition is dcnotcd by 3,,(-1). Thv theory of 
strongly  continuous semigroups is developed in [ l a ] .  Thc 
Hiil(,--Tosidn throrcm [l?] charactcrizes the oprrators -4 
n-hirh  gcneratc  strongly  continuous scmigroups. Standard 
csanlples are systems governed by  the difTusion or the 
n-aw cyuation on a suitable  spqtial  domain. \Vc under- 
stand b!- ( 2 )  that s ( t )  satisfies the integral  equation 

.r(f) = e;i'.r(O) + s,' e-i'f--o! B1c(u)da. 

Khcnevcr ( I )  and (2) represent models of the same 
s)-Ptem we must have  that 

Tjt)  = (c,e"'b) 

and  that 
?(s) = (c , ( l s  - A)-%) 

for an  appropriate rcgion of the complex plane. Whenever 
-4 is a bounded operator we will say that ( d , b ? c )  is a 
bozmded ~wzli,zafio?z. For -4 unbounded we call (-4?b,c) a 
regttlar realization. 

Remark :  There is another  type of realizations which are 
related to  boundary  observations and  are called balauced 
r rd i ra f ions .  For this t?-pe of realization b is restricted 
t o  belong to  the domain of A ,  but  the observations are 
given by y ( t )  = c( .c ( t ) ) .  Here c is a  linear  map (not 
bounded), defined for all x in t.he domain of and such 
that Ic(x)[ < k ( ' : d s : :  + ( ( t i : )  for some constant k and all t 

E ~ ~ ( 9 ) .  It turns  out  that  thc classes of weighting patt.erm 
admitting regular or balanced  realizations coincide. For 
more details on that we refer to  [3]. 

It is a l ~ a y s  easy to  pass from  the  [[internal" model (2) 
to  the "external" model. The  theorenls  that follon- charac- 
terizc the classes of mighting  patterns (and  consequent,ly 
the classes of transfer  functions) which admit  various 
t.ypes of realizations, and  therefore provide the answer to  
the converse question. To characterize the transfer  func- 
tions we need to introduce the so-called Hardy spaces 
[13]. By H?(D)  we mean the  set of complex valued  func- 
tions which are holomorphic in  (the open unit  disk) and 
have a Taylor  series  about zero with  square  summable 
cocfficicnts. The  unit cjrcle, the boundary of D, is denoted 
by T. Wv denote by H 2  (T) the subspace of L*(T) con- 
sisting of functions  with  vanishing  negative  Fourier co- 
cfficicnts. Thus,  iff E H*(D) t.henf(z) = a0 + alr + a& + 
. . . in D, and if 4 E H 2 ( T )  then +(ei") = bo + blei8 + 
b2ei" + . . . . The half-plane Re s > p is  denoted  by n,+. 
The space of functions which are analytic  in Up+ and 
square integrable along vertical lines in UpL so that. 

sup J+a If(. + i W ) [ 2 d W  < .%f < 
s > p  - m  

is usually  denoted by Hz(rIfl+). When p = 0 me simply 
write H* (n+). Functions that  are analytic and bounded  in 
n: (rrspectively in n,+) form the spaces Hm(n+) (re- 
spectively Hm(np+)).  The boundary  values of t.he ele- 
ments of H2(nL) form the space H2(Z)  which is the image 
of Lr(O, m )  under the Fourier  transform. 

Theorem 1 : 
a) A weighting pattern T has  a  bounded  realization 

if and only if it is an entire  function of exponential  order. 
b) The  transfer function T has  a  bounded  realization 

i f  and only if it is analytic a t  infinity and vanishes  t.here 
(Le., T can  be  represented by its  Taylor series around  the 
point at infinity). 

Proof: See Baras  and  Brockett [3]. 
Certainly  rational  transfer  functions which vanish at 

infinity satisfy this criterion. Thus t.he  results of Theorem 1 
constitute  an extension of the well-known realizability 
criteria  for finite-dimensional linear  systems [5]. The 
realization which is provided hm  the following ext.remely 
simple form (see, Baras  and  Brockett [3] and  Fuhrmann 

As the  state space we use the sequence  space 12, of se- 
quences {ao,al,a2?. . which are  square summable, and 
which serves as a prototype for separable  Hilbert.  spaces. 
The  operator 9 is chosen to  be  a mult.iple of t.he  forward 
shift and has the infinite matxiv representation 

['71). 

0 1 0 0  

As vector b we choose the sequence { 1,0,0,- . and  as c 
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the sequence 
T(l)(O) T(2)(0)  T(")(O) 

k '  k 2 '  k" ' 
{T(o) - __ . . . - . . .} 

where T(z)(0)  is the value of the  lth  derivative of T a t  0. 
The const.ant k can be  any real number larger than t,he 
exponential  order of T.  We see therefore  t.hat the forward 
shift (modulo an  unimportant scaling fact.or) can  serve 
as a universal model for the dynamics of this class of 
systems.  This result, is in  complete  accordance wit.h a well- 
known fact from  operator  theory; namely,  a suitable 
number of copies of the backwa.rd shift. (which  has  as 
infinite mat,rix rcpresent,ati-ve the  transpose of the  matrix 
shown  above) is known to be  a. universal  model for 
bounded operators on  a Hilbert space. For a precise ex- 
position of t.his fact  and its important. consequences for 
t,he development of operator  theory,  the  interested  reader 
should consult. NagJT-Foias  (see  [17, p. 2771). 

Theorem 2: 
a) Any weighting patt,ern T liaving  a  regular 

realization, is continuous  and of exponential  order. A 
sufficient. condition  for T to  be rea.lizable is that it be 
locally absolutely  continuous (i.e., the  derivative exists 
a.lmost everywhere) and  that, its derivat<ive  be of exponen- 
tial  order. ,. 

b) A necessary  condition  for  a transfer funct.jon T 
to have  a  regular realizat,ion is t.hat it belongs to H2(II,+) 
n H"_(II,+) for some p > 0. A sufficient condit,ion is t.hat ? 
and ST - T(0) belong t.0 HZ(rI,+) for some p > 0. 

Proof: See Baras  and  Brocket,t [3]. A similar result 
appears  in 111. 

This t,heorem  provides a further generalizat.ion from t.he 
previous one. The  realization  provided  has a very simple 
form  which is described  in the sequel. If we can realize 
T(t)  we ca.n realize e-&T(t) for all  real p, we can  therefore 
assume  without loss of generality that T and  its  derivative 
belong tao L ( 0 ,  m )  (after  appr0priat.e scaling by an ex- 
ponent.ia1 factor). 

Thus we take  as  st.ate  space X = b ( 0 ,  a),  and as semi- 
group eA2 the left translation  semigroup on b ( 0 ,  ..) which 
acts  on z E &(O, ) by 

(eA2x)(a)  = z(o + t )  u 3 0. 
The  vector b is chosen t,o be T a.nd the functional c is 
evaluation of a function at  0. This realiza,t,ion is a  balanced 
realizat.ion and obviously 

c[e"'b] = T(t + = T(t). 
We can  then  produce a regular  realization,  via  t,he  pro- 
cedure  detailed in [3].  

There is a class of weight,ing patt,erns for which this 
regular realizat.ion takes a, very simple  form.  Suppose t,hat 
T and T belong to &(O, a) and  t.hat T(0) = 0. Then 
?( iw) ,  i w  ?(h) and (1 - iw)?(iw) belong to H2(Z) .  So 

ei"'(1 - iw>?(iw)dw. 

Therefore if we  pick  a.s sta.t,e  space HZ(Z), as A, rnultiplica- 
tion  by i w  as b the  function (1 - iw)T(iw) and  as c the 

function 1/1 + iw, the above  formula  provides  a realiza- 
tion  for T ,  see also Baras  [4].  By  applying  Fourier  trans- 
form we present this realization  in  terms of the  left 
translat,ion  semigroup. This has  as  st,ate space Lz(O, a), as 
ear t,he left  translation semigroup  on Lz(O, a), as c t.he 
function e c 2  and  as b the function T - T = ( I  - d/dt)T. 
Not.ice t.hat  the differentia.tion operat,or is the infinibesimal 
generator of the left  translation semigroup on L ( 0 ,  a). 
We summarize this  construction  in the following corollary. 

Corollary 2.1: Suppose T and T belong t o  L2(0, a) and 
T(0) = 0. Then T has a. regular  realization. 

We call this  realization the translaiion reali.zai.ion of T.  
We observe also the simple  relation  between  this  regular 
realization  and the bala,nced realizat,ion constructed before. 
If (A,,b,,c,) is the regular realization and (A,,be,cD) is the 
balanced  realization 

b, = ( I  - it) T = (I  - A, )b ,  

The  adjoint of the left. translation semigroup is t.he right 
translation semigroup  which acts  via 

Now the  right  translations of the  function e-' span 
Lz(0, a). Let  us  denote  by M T  t.he closed subspace of 
L ( 0 ,  a) generated  by the left translations of T.  Then in 
this case it  turns  out  that T and T - T.generat,e  via  left 
translations  the  same closed subspace of L2(0, a). De- 
noting  by P,, the orthogonal project,ion on M T  me see 
that  the following (henceforth called the restricted transla- 
tion  realization) also realizes T.  

b' = PM&T 
c' = p>%fTc7 

eA'f  = PMTeArfJM. 
Here  the  nota.tion Br1.i7/r denotes  the  opemtor W restricted 
to  the subspace f l f .  Indeed 

(c' ,eAff6')  = ( P ~ ~ ~ r , P ~ ~ T ~ ~ ' I . ~ i P , u T b r >  = {ct ,eA4,)  = T(t) .  
The la.st equality  implied  by the definition of &IT. 

The use of the  left  translation senligroup as a. universal 
model for the dynamics, is in accorda,nce with Dhe well- 
known fact  from  t,he  theory of semigroups of bounded 
operators in Hilbert spaces, which states  that  any  asymp- 
tot,ically st.able semigroup is modeled by  a left. translat.ion 
semigroup in  a  vectorial  Hilbert  space (see  Lax and Phillips 

We finally characterize classes of transfer  functions 
which  admit.  realizations of a  more special nature. 

Definition: A scalar  function C#J is completely  monotonic if 
it is infinitely differentiable in (0, a), continuous in [O, ) 
and satisfies ( - l ) " ~ # P ) ( t )  2 0 for t > 0,[20]. A function C#J 
defined on (- a, ) is called positive definite if for  all 
choices of real t i , i = 1,. . .,n and  all  complex  numbers ai, 
i = 1, . -,n we  have ci,j +(tt - t j ) ~ i ~ j  3 0. 

1141). 
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By Bochner's theorem [20] the posit.ive definite functions 
are characterized as the Fourier  t,ransforms of finite 
positive Borel measures on the real line. 

Ekfininition: A realization (-4 ,b,c) is self-adjoint if -4 = A * 
and b = c .  It is called skew-adjoint if -4 = --=1* and b = c. 

The07 .TI 3: 
a) A weighting pattern T has a self-adjoint stable 

realizat.ion iff T is completely monotonic. 
b) A weighting pattern T has a skew-adjoint rcaliza- 

tion iff T defined on [0, m ) has an cxt ension to (- m , m ) 
which is positive definite. 

Proof: 
a) T completely monotonic implirs by Hernstein's 

theorem [a01 t.hat. 

for some unique finite nonnegative Rorel measure p. 
Consider L2((- m , O ) ; d p )  (thc space of functions  square 
integrable  with  respect to  the measure p) and the operator 
multiplication by the independent  variable on Ip2(( - >O) ; 
d p ) .  Thc projection  valued  measure  aswciated  with -4 via 
the spectral  theorem  for self-adjoint operators satisfies 
(E(u)f)(X) = x,(X)f(X) where u is a Borel set and x is t.hr 
characteristic  function.  Let b be the element of L2(( - :O); 
d p )  defined by b ( x )  = 1. 

Then 

(b,eALb) = J:m b(X)e"'E(dX)b(X) = ehfdp = T(1). 
0 

- 

Conversely if 

T( t )  = (b,eA'b) = (b.e"E(dh)b) = som e"jb,E(dX)b) 

(b,E(dX)b) is a finite nonnegative Borel measure on the 
real line and  the result follows by  Bernstein's  theorem. 

b) This follows in a similar manner by Bochner's 
theorem [20] .  

Sotice  that if a completely  monotonic  function T has 
rational La.place t.ransform f', t.hen the zeros and poles of T 
are on the negative real axis, interlace, and  the first one is a 
pole. Also when T is completely monotonic and T is 
meromorphic then  the zeros and poles arc on the negative 
real axis, int.erlace, and  the first one is a pole. Thus \ve see 
that.  transfer functions likc these  arise  from  lumped or 
distributed RC networks. 

111. THE STATESPACE ISO3IORPHIS3I THEOREM 

The  theory of finite-dimensional represent.ations of linear 
systems  culminates in a very elegant  theorem describing 
the connection  between any two cont.rollable and ob: +err- 
able  realizat,ions of the same weighting pattern.  The key 
result being that.  anJ- t.wo such  rmlizations diffcr by a 
choice of basis for the  state space. Thus, the matrices 
(B,B,C) in  one minimal rea.lization of T(-)  and  the 
matrices (F,G,H) in a second realization a.rc related by 
A = P F P - l ;  B = P G ,  C = HP- ' .  In  the infinite-dimen- 
sional situation t.he question of comparing two  realizations 

W more complicated and, except for special cases, not  yet 
fully resolved. In  this section we describe. the krlon-n 
results  and give some indications by way of examples  and 
counterexamples? as to  the limitations  on the subject. 

For  infinitcdimcnsional  systems thcl concept of con- 
trollability is less satisfactory than in the finite-dinwn- 
sional case. The problem is that systems  with finite- 
dimmsional input. spaces  but infinite-dimensional state 
sparcs  have  certain  inhrrcnt limitations  with respvct to  the 
reachable set,  regardles of the operators :i and B ;  these 
difficulties are well docunlented  in the  literature [lo]. 

We define a realization (A,B,C) to bc controlla.ble if 
f l t : o  kerB*e"*' = (01 observable if n t 2 0  ker Cell = (0)  
and canmical if it is both controllable and observable. 
For some purposes it is convenient. to  use another,  n-eaker, 
notion of controllability and observability.  Let us assume 
that -4 is  a.n infinitesimal gcncrator of a  group of operators. 
We \vi11 say that  the above  realization is bilaterally cml- 
trollable (bilaterallu obsewable) if n,,, kcr R*e"'I = I 01 
( fl t c ~  kcr CeAr = { 01) and bilaterally  cn~o)~ica.l  if it is both 
bilaterally  controllable  and  observable. 

If thew exists a bounded  operator P for n-hich the rela- 
tions 

P A  = FP, PI3 = G? and C = I iP  

hold then we say that P int~rtrtLines the realizations (A$,@) 
and (F,G',H). (It must, be observed that. (B,B,C) and 
( F , G , H )  play a nonsynlmetric role.) If P is one to  one and 
has dense range then we say that,  the realization (F?G',H) 
is R quasiafine transform of (A,B,C). If the  intertwining 
operator P is boundedly  invertible we say the tm-o systems 
are similar. I t  is easy to  check that. if t.wo systems are 
quasiaffine transforms of each other  then  they  are similar. 

In  order to  see why the state-space isomorphism ques- 
tion becomes more delicate  in the infinite-dimensional 
case it. suffices to look at  the easiest class of examples. 
Consider the system 

&(f) = A,xn(t) + b,u( f ) :  = 1,'2,3,.. . 
m 

y(t) = c,s,(t) 
n = l  

with { bn]  n=lP and fen) in l r .  This realizes the transfer 
function 

If X, # X, for 72. # m and b,cn # 0 for all ' n  then  this sys- 
tem is controllable and observable. Howevcr, it  can  happen 
that {wen} n = l m  and { (l! .) j)bn]n=le are  both  in I? as well, 
in which case 

0 

~ ( t )  = C 71~n~n( t )  
n = l  

is also a controllable and observable  realization of the 
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given transfer  function.  Here x and z a.re related by Px = z 
with P defined by 

1 
- x&) = z,(t); n = 1,2,3,. + . . 
n 

This P is bounded and one t.0 one but it. does not  have a 
bounded  inverse. Thus  these t,wo realizations are  not 
similar even  though the z-system is a quasiaffine transform 
of  Dhe x-system. 

It seems t,hat t.he further condit.ions to  add  in order to  
make an isomorphism theorem hold ca.n be of two  types. 
On one  hand one ca.n ask  that b and e be somehow the 
same size or, alternatively,  t,hat t,he  connection  between 
the input.  (output)  and t.he stat,e should be very t.ight. in 
both  the realizations. We make tahese remarks precise in 
t,wo inst.ances below. 

Theorem 4: If (-4 ,B,C) and (F,G,H) are  two canonical 
realizations of the same  input-out,put map which have the 
property that A = A*; B = C* and F = F* and G = H* 
t,hen (A,B,C)  and (F,G,H) are similar and t.he  similarity 
is via  a  unit.ary  operator. If (A,B,C)  and (F,G,H) are 
two  bilaterally canonical realizations of the same  input- 
output  map which have the property tha.t. A = - A*, 
B = C*, and F = -F* and G = H *  then ( A , B , C )  a.nd 
(F,G,H) are similar and t.he  similarity is via a unitary 
operator. 

Proof: We mimic the finite-dimensional proof. Kotice 
that. since -4 and F are generators one has 

I l d z l l  6 Me"; llePtll 6 ,WeAt 

for  some A+' and some X > 0. Thus  the integrals 

a.nd 

M A C  = S, eA*zC*c&te-"dt 
m 

exist and define bounded self-adjoint, operators.  Simihr 
remarks hold for W p G  and M,. Moreover it is easy t.0 see 
that if the pair ( A , B )  is controllable then  the kernel of 
W A B  i s  zero and if t,he  pair (A,C) is observable then  the 
kernel of MAC is zero. 

Because the input-output  maps  are t.he  same  for (A,B,C) 
and (F,G,H) we have 

c ~ A ( ~ + u + P ) B  = HeP(t+U+P)G 

Pre-  and post-multiplying by e-4xt&* IC* and B*&*Pe-4Xp, 
respectively, gives upon  integrat,ion on t over [0, a) and 
int.egration  on p over [0, a) 

fifA&d'JvAB 

In view of the self-adjointness conditions in  the  hypoth- 
esis  we can  rewrite this as 

l'VABe""WAB = N*eFUN. 

Now the polar representation (see Dunford-Schwartz's 
Theorem 7, [6, p. 12491) of A T  is easily seen t.0 be U W A B  
where U is a partial isometry. The initial  domain of U 
is the closure of the range of N*.  By controllability of 
( A , B )  U is one to  one. Now if we reverse the roles of 
( A , B , C )  and (F,G,H) we get 

wFGeP"WFG = N*e""N 

using the above po1a.r representation for N we see t,hat 
controllability of (F,G) implies that U is onto. Thus U is 
unit,ary  and 

eAu = UeF"L7*; u*fj = G. 

To t.reat. the skew-adjoh>t case cert.a.in modifications 
must be made. The  fact  that, A and F are slrew-adjoint 
means that,  they necessarily generat.e groups,  rat,her than 
just semigroups, and  that  for  any X > 0 the integral 

W A B  == J:m eAiBB*eA'Ce-All'l& 

exist,s and defines a  bounded  self-adjoint  operator. We then 
follow the above proof using t,he fact  that 

ear = (e-Ac)* 
and  the  symmetry of the domain of integrations t.0 get 
precisely the sa.me conclusion. 

Although t.he conclusion here is quite  satisfactory  the 
hypothesis is rather st,rong. An alternative  hypothesis 
which is a.lso restrict.ive  but, in a different, may mill now be 
described. 

We observe that if a system  has a finite-dimensional in- 
put space and infinite-dimensional state space  then for any 
tl < m the controllability  Grammian 

W(t1) = l'* &cBB*eA*cdt 

is compact  since the integral  can  be  approximated in the 
uniform  operator topology by  finite  rank  compact oper- 
ators. (Recall B has finite rank.)  Hence lV(t1) cannot  be 
boundedly  invertible. 

This a r s m e n t  is invalid for tl = however, and  it can 
happen that W( a) exists as a bounded  operator which is 
boundedly  invertible.  An exa.mple is given  by the system 
discussed at   the st.a.rt of this section wit.h b, = c, = l /n;  
>.71 = -1/n2. In  this case W (  a) is an isometry 

P m  m 1 m 

Following Helton [I1 ] (see also Balalrrishnan [2, p. 
1091) we say  that, a syst>em ( A , B , C )  is exactly  controllable 
if the limit  as t goes to  infinity of W(t)  exists as a  bounded 
operator wit.h a  bounded  inverse. We call a  system ( A , B , C )  
exuxtly observable if (A*,C*,B*) is exactly cont,rollable. 

Theorem. 5: 
a)  Let (A,B,C) and (F,G,H) be  two  exactly con- 

t,rollable (observable) realizat,ions of the  same weighting' 
pattern. Suppose in addition  that)  both realizations are 
observable (controlla,ble) t.hen the systems are similar. 
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b) Let (A,B,C)  and (F,G,H) be  two  realizations of 
the same weighting pat.tern  and such that  the first  system 
is observable and exactly  controllable and t.he second 
system is controllable and exactly observable, then  the 
realization (F,G,H) is a quasiafiine transform of (d,B,C). 

Part  a) is due to Helton [ I l l  whereas part  b), which has 
a similar proof, is due  to Moore. 

I\'. SPECTR~L MINIIIALITT 

In thr  absence of a general state-space isomorphism 
theorem.  realizations which have  spectral  properties re- 
fleeting thc singularities of the transfer  function T are 
important.  This requirement is essential from the engineer- 
ing point of v i m  and is used in several ad hoc modeling 
methods.  IIoreovc~r, the connectednrss of the resolvent 
set of thc infinitesimal generator has important implica- 
tions  as  far as thc relationship to  frequency responsc 
methods for system  identification is concerned. 

Let (A,B!C) be any realization of the transfer  function 
T .  If7(> Irt po(.-l) denote  the principal connected com- 
ponent of p ( - 4 )  the resolvent set of A .  Thus po(=l)  in- 
cludes some half-planc of the form ! sjRe s > W )  . Clearly 
thrrc exists an analytic  continuation of T to all of p o ( A ) .  
namely, that analytic  function defined by C(s1 - -4)-lB 
for all s E ~~(-4). Thus for this  particular  analytic  continu- 
ation we have the spectral  inclusion  properfy [ 3 ]  

* 

u ( f )  c ffO(A) 
where c(F)  is the set of nonanalyticity of ? and ~ ~ ( - 4 )  is 
t,he complepnt  of p o ( A ) .  

A realization of T is called spectrally  minimal if t.here 
exists an analytic  cont.inuation of T for which a ( T )  = 

R e  proceed to  analyze the question of spectral mini- 
mality in the  contest of restricted  translation  realizations 
a.nd that of realization  by self-adjoint. systems. As might 
be  expected. because of their  extreme  structural  symmetry 
self-adjoint  systems  exhibit the best behavior in this 
respect. Thc  situation is sununcd up by the following 
theorem. 

A A 

.(A). 

Theoren1 6: 
a) Let (A ,b ,b)  be a canonical self-adjoint realization 

of a weighting pat.tern T then t.he realizat.ion is spectrally 
minimal. 

b) Let (A,b,b) bc a skew-adjoint bilaterally canoni- 
cal realization of a weighting pattern T for which p(A) is 
connected then  the realization is spectrally minimal. 

Prooj: 
a) Wc indicate briefly what is involved. The  spectral 

theorem in particular the use of projection  valued mea- 
sures scem esscntial to  the solution. Let T ( s )  be the 
Laplace  transform of T ,  thus ??(s) = (b,(sl  - -a)-%). 
Let E ( - )  bc the projection  valued  measure associated with 
-4. Given any open  interval (CY$) on the real line then 
(E((a,B))b,c) can  be  recaptured by t,he following linlit [6, 

p. 9201: 

(E((a,B))b,c) = lim lim 
6-0 e - 0  

1 rs--6 

- ( ( (A + i e ) l  - A )  -'b?c)} dh. 

This formula is a generalizat.ion of t,he Dunford-Cauchy 
operational calculus [6]. Kom if  we assume f' to be 
ana1yt.i~  in (a$)  t.hen it follows from  Cauchy's  theorem 
that (E((a!P))b,b) = I/E((a,,8)jbl12 = 0. Since E ( . )  com- 
mutes  with the semigroup ear  generated b -  -4 it  follows 
that E((a,B))e;l'b = 0 for  all positive t .  Sou- the set of 
vectors of the form e"% span  the  state space by the 
assumption  about  controllability and hence E((a,P)) = 0 
or ( m i ? )  belongs to  thc resolvent set of -4. This  together 
xith  the spectral inclusion propert>- imply spectral 
minimality in  this case. 

b)  The  representation f ( s )  = (b: ( I s  - =l)-'b) is 
valid a priori  only for s for n-hich Re s > 0. Since the 
infinitesimal generator is skew-adjoint its  spectrum is 
restricted t o  the imaginary axis. and by assumption p ( A )  

is connected  hence the  transfer function +is) has an 
analytic  continuation to  the left half-plane. The rest of 
the  argument follows as before with the sole exception 
that  the space is spanned  by the set of vectors e"'blt E R ]  . 

It should be noted that  any complctely monotonic func- 
tion T defined on [0, a) can  be  uniquely  extended to  a 
positive definite  function TI on the real line by hitting 

Thus, by Bochncr's theorem, T has also a realization  by 
a  skew-adjoint  system which? without loss of generality, 
can be taken  to be bilaterally canonical. In general this 
realization will not be canonical and we will have no 
spectral  minimality. 

-4s an examplc, consider T(t)  = e-' n-hich has a one- 
dimensional canonical realization  with -1 as  the only 
spectral point of the generator. Kow the function Tl(t) = 

e - ! t '  defined on (- a, a) is positive definite and  has t.he 
following representation 

Thus  the skex-adjoint.  realization  in  this case has 
I,?( - 03 00 ; d w / l  + w ? )  as  state space and multiplication 
by i w  as infinitesimal generator.  The  spectrum of the 
infinitesimal generator is therefore the whole imaginary 
asis. 

Kext we pass to  the analysis of the case of translat,ion 
realization.  Generally  a closed subspacc of L?(O: 03) will 
be called left, (right)  invariant if it is invariant  under t.he 
left (right)  translation semigroups. For a given weighting 
pattern T E L2(0, ), 31, denotes the smallest left invariant 
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subspace of D(0,  a) t,hat includes T. We will say that T 
is cyclic or nomycl ic  according to  whet.her M ,  is equal  t,o 
LZ(0, a) or not. 

The translat.ion  realization of the weighting pattern T,  
satisfying the assumptions of Corollary 2.1 is canonical 
if we t,ake the  stmate space to  be M T .  In  the cyclic case the 
state space becomes all of L2(0, ) and t.he idinit,esimal 
generat,or of the left  translation  semigroup is the differ- 
entiat.ion  operat,or  having the whole closed left half-plane 
as  spectrum.  Thus for all noncyclic functions T whose 
Laplace  transforms F admit.s some a.nalytic  continuation 
to t,he left. half-plane there is no  hope  for  spectral minimal- 
ity using the translat,ion  realization. So we a.re left wit,h 
reslizable  functions which are noncpclic. 

To facilitate  analysis we apply the Fourier  t,ransform 5 
to  the following direct  sum decomposit,ion L2(0, a) = 
M T  @ N,'. By the Pa.yley--Wiener theorem L2(0, a) is 
mapped  ont,o H2(n+) and N,' (which is right  invariant) 
is mapped onto a subspace of H2(n+) which is invariant. 
under mult.iplicat.ion by a.ny Hm(II+)  fundon.  The 
structure of these  subspaces is determined by a  theorem of 
Beurling and Lax [13],[15]  and  they  have t,he  form 
+H2 (II +) = { +j I f E H 2  (n +) f where 4 is  an inner  function 
in II+, Le., a  function  analytic in II+ sat,isfying I+($/ < I 
and  for which almost, everywhere  on the  boundary,  the 
bounda.ry  values +(iw) exist and  satisfy I+(iw)I = 1. To 
get. a feeling about  inner  functions we consider a  left 
invariant,  subspace $1 spa.nned by a family of exponentials 
{ ehnt! Re X, < 0} . A function f E L2(0, a) is orthogonal to  
ehnt if and only if j ,  its Laplace  transform,  vanishes a t  
- X,. Thus one sees that a  function f is  orthogonal to  M 
if and only if its La.place transform  vanishes  at.  all  points 
- X n  in the right. half-plane. Now it  t,urns  out  that if there 
are  not  too ma.ny exponentia.ls, in  the sense that 
-Z(Re X, ) / ( l  + (X,12) < a t.here is a canonical inner 
function  vanishing at  these points, the function being 
the Blaschke  product 

associated  with this set) of zeros. This circle of ideas is 
closely associated  with the Miintz-Szasz theorem  about 
densit.y of esponentials  in  various spaces. The Blaschke 
products do not exhaust. all possible inner  functions and 
there  are t.he singular  inner  functions associated wit.h 
possible continuous  spectrum  on the imaginary axis. 
We omit det.ails and refer to  the excellent exposition in 

Now if t.he Fourier  transform of MT' is 9H2(n+) it 
follows that $'f is orthogonal t.0 H2(IT+), and hence !? is 
factorable  on the imaginary a,sis in  t,he  form !f( iw) = 
+(i')h(iw) for some 11 E H 2 ( I I + ) .  Since T generat,es M, 
under  left trans1at.ions it follows that. + and h a.re rela- 
tively prime, Le., have no common nont.rivia1 inner  factor. 

We  now describe how the above fact,orizat.ion indicates 

D31. 

clearly the singularities of the __ analytic  extension of !f' 
int.0 the  left half-plane. Clearly h(iw) has  an a.nalytic ex- 
tension H int,o the left half-plane which actually belongs to  
HZ@-) and is given by H(s)  = h(-X). K O ~  +(iw) has 
also an ext,ension 9 which is meromorphic in II-, the ex- 
tension being given  by @(s) = +( -S)-l. Thus for p0int.s 
in the left half-plane we have ?(s) = 9(s)H(s)  = [ H ( s ) ] /  
[+: ( S )  J, which clearly exhibits the meromorphic character 
of T in t.he 1eft.half-plane. It follows from the above dis- 
cussion that  the prime factorizat.ions of ? on the imaginary 
a.xis is but a generalimtion of representing  a  rational  func- 
tion  as a ratio of two  relatively  prime polynomials. 

To re1at.e t.he singularities of f' to  the spectrum of the 
inGnitesirna1 generator of the left  translation  semigroup 
when rest,ricted to  the left, invariant  subspace M T  we 
have t.0 find the relat.ion between the  spectrum  and  the 
inner fundion 9. If M is spannrd by the exponentials ehR* 
t,hen the infinit,esimal genera.t,or has  point  spect.rum  given 
by the  set { h, I n 3 0 )  together  with cont,inuous spectrum 
given by the set, of all  finite  accumulation  points of the X,. 
Thus it coincides mit,h t,he set of all  points X, where 
R(--X,) = 0 where B is  t,he Blaschke product  introduced 
before. In  general the result is analogous and is covrred 
by a t>heorem of A,Ioeller [IS]. The. spect,rum of the in- 
finitesimal generator is the set. of all p0int.s 1 in the left. 
half-plane for mhich +( - 7,) = 0 toget,her  with t.he set. of all 
points h on t.he imaginary axis where + is not,  analyt.ically 
cont,inuable into  the  left half-plane. Thus  in t,his case the 
spectrum of thc infinit.esima1 generator coincides exact.ly 
with  t.he  singularities of the t.ransfer  function f'. To sum- 
marize we have the following (see also [4]). 

Theorem 7': Let. T' E L2(0, a) be a noncyclic weight,ing 
pattern sat,isfying the assumptions of Corollary 2.1. 
Then  the  restricted  translation realization of T con- 
struct,ed in Sect,ion I1 is spect.rally nlinima.1. 

~- 

V. SOME REMARKS ON RKITE IKPUT/~'IEI?TE 
OUTPUT SYSTEMS 

Most of the results obta.ined in the previous sect,ion ca.n 
be pushed further  to encompass the case of matrix weight- 
ing patterns  and  matrix  transfer functions. While some of 
the results generalize in  a  straightfornard way there  are 
natural complicat,ions arising  from the noncnmmutativit,y 
involved. 

To see in the most  direct way how the  theory of in- 
variant subspaces  enters  naturally we consider a weighting 
pattern T(t)  that is n X n i  matrix  valued  with the matrix 
element,s being D ( 0 ,  a) functions. For ~implicit~y we 
nil1  assume that pi, E H2(II+)  fl H z @ + ) .  We define the 
controllabilit,y  operator (2 on the  set A of all Cm-vector 
valued  functions whose coordinate  functions hare compact. 
support,  and belong t o  L2 (0, a ) , The controllability oper- 
ator is defined by (eu)(t) = . f tT( t  + u)u(q)zm. By our 
assumption e is well defmed and boilnded. The closure of 
the ra.nge of e which we denote by ATT is a  left  translation 



700 

invariant subspace of L2(0, 03 ;Cn) the set. of all C" valued 
functions with L2(0, m )  coordinates. Clearly the null space 
of e is a right  translation  invariant subspace of L'(0.m : 
C"!). By taking Fourier  transforms we get in a natural way 
tn-o invariant subspaces in H?(rI+;C") and H?(rI+;C"). 
rcspcctirel?-. the invariance being under multiplication  by 
all bounded matrix valued analytic function. As in the 
scalar case these subspaces have the form QH"(n+; C") 
and Q1H2(ll+;Cn), respectively. The functions Q and Q1 
are  contractive  analytic functions in nf with  the  boundary 
~ L W S  being almost everywhere partial isometrics with n 
fixed initial space. Thus Q = 0 corresponds to  the cyclic 
scalar case. If the initial  space of the partial  isonletry is 
C" then almost everprhere Q(iw) is unitary  and we call 
such  functions inner.  The functions T giving rise in this 
way to inner  functions will be called strictly noncyclic. 
It should be  noted  that  there  are  many functions which are 
neither  q-clic nor strictly noncyclic. The class of strictly 
noncJ-clic functions admits a theory parallel to  the one 
described in  the previous section. IIost inlportantlp  the 
translation realization in this case turns out to be spec- 
tra11J- minimal. The transfer  function T admits two rela- 
tivel>- prime factorizations on the imaginary asis of the 
form ?(L) = Q ( ~ C ) H ( ~ W ) *  = H ~ ( ~ W ) * Q ~ ~ L ) .  IU these 
factorizations Q and Q1 arc  matrix inner  functions of sizes 
1 )  x N and ) / I  x H I ,  respectivel?.. These  inner function: 4 arc 
closel>- related. They carry  the information about  the 
singularities of T in  the left. half-plane. It f o l l o ~ s  from 
these factorizations that. !f' admits  an  analytic extension to  
n+ u-hich is nwromorphic and of bounded type  there. 
Thus spectral minimality of the  translation realization is 
related to  the meromorphic properties of !f'. The tlvo 
factorizations of T are generalizations of the  type of nu- 
merntor  denominator type of factorization considered by 
Roscmbrocl; [lS]. The  advantage of our approach. besides 
being ablc t o  handle a large class of nonrationnl trander 
functinns. is that auch.  factorizations  immediately give 
rise to statc-space  realizations  by first-order systems. 
Alll of the above can be done for the casc of discrete sys- 
tems  and n-c refer the reader to  Fuhrmann [S]:[9]. 

A 
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