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- -State-Space Models for Infinite-Dimensional Systems

JOHN S. BARAS, wvemser, 1EEE, ROGER W. BROCKETT, FELLOW, IEEE, AND PAUL A. FUHRMANN

Abstract—Distributed effects are present in almost all physical
systems. In some cases these can be safely ignored but there are
many interesting problems where these effects must be taken into
account. Most infinite dimensional systems which are important
in control theory are specifiable in terms of a finite number of pa-
rameters and hence are, in principle, amenable to identification.
The state-space theory of infinife dimensional systems has advanced
greatly in the last few years and is now at a point where real applica-
tions can be contemplated. The realizability criteria provided by
this work can be employed effectively in the first step of the identifi-
cation procedure, ie., in the selection of an appropriate infinite
dimensional model. We show that there exists a natural classifica-
tion of nonrational transfer functions, which is based on the char-
acter of their singularities. This classification has important im-
plications for the problem of finite dimensional approximations of
infinite dimensional systems. In addition, it reveals the class of
transfer functions for which there exist models with spectral proper-
ties closely reflecting the properties of the singularities of the trans-
fer functions. The study of models with infinitesimal generators
having a connected resolvent sheds light on some open problems in
classical frequency response methods. Finally, the methods used
here allow one to see the finite dimensional theory itself more clearly
as the result of placing it in the context of a larger theory.

I. INTRODUCTION

ESPITE a superficial similarity between the formal-
ism for modeling finite- and infinite-dimensional
systems, there are many essential differences and these
differences require careful attention if one is to avoid
errors and meaningless constructions. In view of the traps
intrinsic in infinite-dimensional problems, there is a ten-
dency to replace all infinite-dimensional problems which
arise by finite-dimensional approximations. However there
are some notable exceptions. For example the Ziegler—
Nichols [19] technique for adjusting controllers in classical
control theory is based on approximating whatever system
one encounters by a pure delay and a second-order sys-
tem—thus converting all problems into infinite-dimen-
sional ones unless the delay happens to be zero.

The purpose of this paper is to survey the available
theory for modeling linear time-invariant infinite-dimen-
sional systems in state-space form. We consider only
systems with a finite number of inputs and outputs. Re-
garding the practical significance of this kind of study we
make the following points.

1) Syvstems which are infinite dimensional do not
necessarily require an infinite number of experiments to
identify. For example, a system whose transfer function is
e /(s 4+ B) certainly does not have a finite-dimensional
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realization but is specifiable by the two real numbers «
and 8.

2) There are experimental tests which will indicate
that a system is not finite dimensional even though
establishing that a system is finite dimensional is much
harder and perhaps impossible in any empirically mean-
ingful way. This underscores the desirability of seeing

- finite-dimensional problems as specializations of infinite-

dimensional ones as opposed to viewing infinite-dimen-
sional problems as extension of finite-dimensional ones.

3) With the exception of somewhat specialized tech-
niques such as the Padé approximation methods and
methods based on modal approximation, there are no
methods for approximating infinite-dimensional systems
by finite-dimensional ones. Moreover, it seems likely that
the basis for such a theory would, by necessity, be a
complete state-space theory for infinite-dimensional sys-
tems.

We restrict the discussion to systems which can be
realized on state spaces which have an inner product
relative to which they are Hilbert spaces. While by no
means the most general setting which has been considered
in the literature, this assumption leads to a theory which
is compatible with the modern theory of partial differ-
ential equations, optimal control, etec.

This paper is organized as follows. In Section 1I we
diseuss the basic realizability eriteria developing various
analogs of the fact that a linear time-invariant system
has a finite-dimensional state-space realization if and only
if its transform is rational and goes to zero at infinity.
There are two types of results here because one can con-
sider realizations via

@) = A=x@t) + bu@®): y@ = (=)

with A bounded, i.e., ||4z| < |2/, or, and this is more
typical, if A is not bounded but does give rise to a semi-
group e44 ¢t > 0. In Section III we discuss the relationships
between two minimal realizations of the same input—
output system. Under certain assumptions we establish a
state-space isomorphism theorem but also indicate how
this result can fail in the infinite-dimensional case. Section
IV is devoted to the important problem of finding out to
what extent the input-output data determine the
spectrum of the operator A. This property, which one
takes for granted in the finite-dimensional case, need not
hold for canonical infinite-dimensional systems. However
for important classes of infinite-dimensional systems we do
find that the spectrum of A is determined by the points of
nonanalytieity of the transfer function.

II. REALiZABILITY THEOREMS

The relations between internal and external deserip-
tions of dynamical sysfems constitute an essen‘;ial part of
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the analysis of modeling techniques. Here we deseribe
these relations for several classes of distributed parameter
svstems. Tor simplicity, and for clarity of exposition, in
this section and in Scetion 1V we restriet our discussion to
scalar inputs and scalar outputs. Seetions I1I and V dis-
cuss finite-dimensional input spaces and finite-dimensional
output spaces.

The input-output relations for the svstems we study
here are deseribed by the standard convolution

y() = j; Tt — o)u(e)de ey

where T is a real valued function, usually called the
welghting pattern. We always assume that T is Laplace
transformable and we denote the Laplace transform by T,
the fransfer function. For modeling purposes 7T gives a
model of the svstem via (1). We concentrate on non-
rational transfer functions.

On the other hand we consider modeling an infinite-
dimensional linear svstem via the following dvnamical
equations:

(—Z z(t) = Ax@®) + bu(t)
dt (2)
y(®) = {c,z(0))

where 2(f), b, ¢ belong to a separable Hilbert space X, with
inner product ¢-,-). We assume that the operator A
appearing in (2) generates a strongly continuous semi-
group of bounded operators on X [12], denoted by e?? for
¢ > 0. This means that for all ¢ > 0, ¢! 1= a bounded
operator on X, that etledr = et +2rfor {1, t» 2 0 and
that lim,_o et —x = 0 for all v in X. - is usually
called the infinitesimal generator of the semigroup e?, and
its domain of definition is denoted by Dy(1). The theory of
strongly continuous semigroups is developed in [12]. The
Hille-Yosida theorem [12] characterizes the operators A
which generate strongly continuous semigroups. Standard
examples are systems governed by the diffusion or the
wave cquation on a suitable spatial domain. We under-
stand by (2) that x(?) satisfies the integral equation

4
2() = ez (0) -I—f e~ Bu(o)do.
0

Whenever (1) and (2) represent models of the same
system we must have that

T@) = (c,e*d)
and that
T(s) = (e,(Is — A)~'b)

for an appropriate region of the complex plane. Whenever
A is a bounded operator we will say that (d,0,¢) is a
bounded realization. Jor 4 unbounded we call (4,b,c) a
regular realization.

Remark: There is another type of realizations which are
related to boundary observations and are called balanced
realizations. For this tvpe of realization b is restricted
to belong to the domain of 4, but the observations are
given by y(#) = c¢(x@)). Here ¢ i3 a linear map (not
bounded), defined for all « in the domain of A and such
that 'c(2)| < k(. Az + [jx;) for some constant & and all 2
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€ D(4). It turns out that the elasses of weighting patterns
admitting regular or balanced realizations coincide. For
more details on that we refer to [3].

It is always casy to pass from the “internal” model (2)
to the “external” model. The theorems that follow charac-
terize the classes of weighting patterns (and consequently
the classes of transfer funetions) which admit various
types of realizations, and therefore provide the answer to
the converse question. To characterize the transfer fune-
tions we need to introduce the so-called Hardy spaces
[13]. By H*(D) we mean the set of complex valued fune-
tions which are holomorphie in (the open unit disk) and
have a Tavlor series about zero with square summable
cocfficients. The unit eirele, the boundary of D, is denoted
by 7. We denote by H2(T) the subspace of L2(T) con-
sisting of functions with vanishing negative Fourier co-
cfficients. Thus, if f & H2(D) then f(z) = as + &1z + as2® +

- in D, and if ¢ € HX(T) then ¢(¢%) = by + be® +
be™ + - - . The half-plane Re s > p is denoted by II,*.
The space of functions which are analytic in II,* and
square integrable along vertical lines in II,* so that

fo
sup [ 1o + iwpledo < M < w
c>p -

is usually denoted by H2(II,*). When p = 0 we simply
write H2(TII*). Functions that are analytic and bounded in
117 (respectively in II,*) form the spaces H=(II*) (re-
spectively H=(II,*)). The boundary values of the ele-
ments of H2(I1*) form the spaec H2(I) which is the image
of Lz(0,) under the Fourier transform.

Theorem 1:

a) A weighting pattern T has a bounded realization
if and only if it is an entire function of exponential order.

b) The transfer function 7 has a bounded realization
if and only if it is analytic at infinity and vanishes there
(i.c., T can be represented by its Taylor series around the
point at infinity).

Proof: See Baras and Brockett [3].

Certainly rational transfer functions which vanish at
infinity satisfy this criterion. Thus the results of Theorem 1
constitute an extension of the well-known realizability
criteria for finite-dimensional linear systems [5]. The
realization which is provided has the following extremely
simple form (sec, Baras and Brockett [3] and Fuhrmann
[7D)-
~ As the state space we use the sequence space &, of se-
quences {ao,m,az,- - } which are square summable, and
which serves as a prototype for separable Hilbert spaces.
The operator A4 is chosen to be a multiple of the forward
shift and has the infinite matrix representation

0 ©

100

0100
. _ 01 0
A=k 0 1.

.

As vector b we choose the sequence {1,0,0,---} and as ¢
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the sequence

1] 2) n,
{T(O)J ok )(O)J r (0)7 U r )(O)) o }

k k2 k*
where T®(0) is the value of the Ith derivative of T at 0.
The constant k& can be any real number larger than the
exponential order of T. We see therefore that the forward
shift (modulo an unimportant scaling factor) can serve
as a universal model for the dynamics of this class of
systems. This result is in complete accordance with a well-
known fact from operator theory; namely, a suitable
number of copies of the backward shift (which has as
infinite matrix representative the transpose of the matrix
shown above) is known to be a universal model for
bounded operators on a Hilbert space. For a precise ex-
position of this fact and its important consequences for
the development of operator theory, the interested reader
should consult Nagy-Foias (see [17, p. 277]).

Theorem 2:

a) Any weighting pattern T laving a regular
realization, is continuous and of exponential order. A
sufficient condition for T to be realizable is that it be
locally absolutely continuous (i.e., the derivative exists
almost everywhere) and that its derivative be of exponen-
tial order. R

b) A necessary condition for a transfer function T
to have a regular realization is that it belongs to H2(1I, 1)
N H=(1,*) for some p > 0. A sufficient condition is that 7’
and sT — T(0) belong to H2(IL,+) for some p > 0.

Proof: See Baras and Brockett [3]. A similar result
appears in [1].

This theorem provides a further generalization from the
previous one. The realization provided has a very simple
form which is described in the sequel. If we can realize
T(t) we can realize e "*T'(t) for all real p, we can therefore
assume without loss of generality that T and its derivative
belong to L:(0,«) (after appropriate scaling by an ex-
ponential factor).

Thus we take as state space X = L,(0,»), and as semi-
group e the left translation semigroup on Ls(0, ») which
acts on ¢ € Ly(0, =) by

(') (o) = z(o + 1) a2 0.

The vector b is chosen to be T and the functional ¢ is
evaluation of a function at 0. This realization is a balanced
realization and obviously

cle®d] = T(t + o)|s=0 = TQ).
We can then produce a regular realization, via the pro-
cedure detailed in [3].

There is a class of weighting patterns for which this
regular realization takes a very simple form. Suppose that
T and T belong to Ly(0,«) and that 7(0) = 0. Then
(i), i (i) and (1 — 4w)T'(4w) belong to H2(I). So

- L f

_ it 1
T2 ol iw

Therefore if we pick as state space H2(I), as A, multiplica-
tion by <w as b the function (1 — Zw)7T(iw) and as ¢ the

' (fw) dew

(1 — 4w) T (iw)dow.
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function 1/1 + 7w, the above formula provides a realiza-
tion for T, see also Baras [4]. By applying Fourier trans-
form we present this realization in terms of the left
translation semigroup. This has as state space L»(0,«), as
ed! the left translation semigroup on L,(0, ), as ¢ the
function e~* and as b the function T — T = (I — d/d)T.
Notice that the differentiation operator is the infinitesimal
generator of the left translation semigroup on Ly(0, ).
We summarize this construction in the following corollary.

Corollary 2.1: Suppose T and T belong to Ls(0, ) and
T(0) = 0. Then T has a regular realization.

We call this realization the iranslation realization of T.
We observe also the simple relation between this regular
realization and the balanced realization constructed before.
If (A.,b,c;) is the regular realization and (4;,b,,c,) is the
balanced realization

A, =4,=2
dt
d
b, = (I - dt) T = (I — A)b,
co(z) = 2(0) = fom et (1 - C%) z@)dt = (e, (I — 4,)z).

The adjoint of the left translation semigroup is the right
translation semigroup which acts via

4% _ z(e — 1) a2t

¢t '2(o) {0 o<t
Now the right translations of the function e—! span
Ly(0,). Let us denote by M, the closed subspace of
L;(0,) generated by the left translations of 7. Then in
this case it turns out that T and T — T generate via left
translations the same closed subspace of L,(0,«). De-
noting by P, the orthogonal projection on M, we see
that the following (henceforth called the restricted transla-
tion realizaiion) also realizes T.

b =P MTbr

!
c = PMTCr

’
et't = Pyret.

Here the notation W|M denotes the operator W restricted
to the subspace M. Indeed

(064 D) = (PatgCr,Pruge| 1P asss) = {cre®r'd,)y = T(8).

The last equality implied by the definition of M.

The use of the left translation semigroup as a universal
model for the dynamies, is in aceordance with the well-
known fact from the theory of semigroups of bounded
operators in Hilbert spaces, which states that any asymp-
totically stable semigroup is modeled by a left translation
semigroup in a vectorial Hilbert space (see Lax and Phillips
[14]).

We finally characterize classes of transfer functions
which admit realizations of a more special nature.

Definition: A scalar function ¢ is completely monotonic if
it is infinitely differentiable in (0, ), continuous in [0, ©)
and satisfies (—1)%™ () > 0 for { > 0,[20]. A function ¢
defined on (—,®) is called posttive definite if for all
choices of real ¢;, ¢ = 1,- - -,n and all complex numbers a;,
i=1,---,nwehave D .; ¢, — t;oum; > O.
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By Bochner’s theorem [20] the positive definite functions
are characterized as the Fourier transforms of finite
positive Borel measures on the real line.

Definition: A realization (4,b,c) is self-adjoint if 4 = A*
and b = c. It is called skew-adjointif A = —4Fand b = c.

Theor m 3:

a) A weighting pattern T has a self-adjoint stable
realization iff T is completely monotonie.

b) A weighting pattern T has a skew-adjoint realiza-
tion iff T' defined on [0, ) has an extension to (— o, ®)
which is positive definite.

Proof:

a) T completely monotonic implies by Bernstein's
theorem [20] that

0
T() = f Mdp

for some unique finite nonnegative Borel measure .
Consider Ls((— «,0);du) (the space of functions square
integrable with respect to the measure ) and the operator
multiplication by the independent variable on Ia((— «,0);
du). The projection valued measure associated with 4 via
the spectral theorem for sclf-adjoint operators satisfies
(E(a))(A) = x,(M\f(\) where ¢ is a Borel set and x is the
characteristic function. Let b be the element of Ly((— «,0);
du) defined by b(A) = 1.
Then
0

(b,e*'b) = ff b(A\)EME(dN)b(A) =f

— @

Mdu = TQ).
Conversely if

0 0

T = (b,e*'d) = f (b.ME(dNb) = f M, E(dN)b)

{b,E(d\)b) is a finite nonnegative Borel measure on the

real line and the result follows by Bernstein's theorem.
b) This follows in a similar manner by Bochner’s

theorem [20].

Notice that if a completely monotonic function T has
rational Laplace transform 7', then the zeros and poles of T
are on the negative real axis, interlace, and the first one is a
pole. Also when T is completely monotonic and 7T is
meromorphic then the zeros and poles are on the negative
real axis, interlace, and the first one is a pole. Thus we see
that transfer functions like these arise from lumped or
distributed RC networks.

I1I. THE STATE-SPACE IsoMORPHISM THEOREMS

The theory of finite-dimensional representations of linear
systems culminates in a very elegant thcorem describing
the connection between any two controllable and observ-
able realizations of the same weighting pattern. The key
result being that any two such realizations differ by a
choice of basis for the state space. Thus, the matrices
(A4,B,C) in one minimal realization of T(-) and the
matrices (F,G,H) in a second realization are related by
A = PFP~!; B = PG, C = HP~. In the infinite-dimen-
sional situation the question of comparing two realizations
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is more complicated and, except for special cases, not vet
fully resolved. In this section we describe the known
results and give some indications by way of examples and
counterexamples, as to the limitations on the subject.

For infinite-dimensional systems the concept of con-
trollability is less satisfactory than in the finite-dimen-
sional case. The problem is that systems with finite-
dimensional input spaces but infinite-dimensional state
spaces have certain inherent limitations with respeet to the
reachable set, regardless of the operators 4 and B; these
difficulties are well documented in the literature [10].

We define a realization (4,B,C) to be conirollable if
N;so ker B¥e*™ = {0} observable if N, 5o ker Cert = {0}
and canonical if it is both controllable and observable.
For some purposes it is convenient to use another, weaker,
notion of controllability and observability. Let us assume
that A4 is an infinitesimal generator of a group of operators.
We will say that the above realization is bilaterally con-
irollable (bilaterally observable) if N,-g ker B*e*™* = {0}
(Nygker Ce?? = {0}) and bilalerally canonical if it is both
bilaterally controllable and observable.

If there exists a bounded operator P for which the rela-
tions

PA = FP,PB = (G,and (' = HP

hold then we say that P infertwines the realizations (4,5,0)
and (F,G,H). (It must be observed that (4,B,C) and
(F,G,H) play a nonsymmetric role.) If P is one to one and
has dense range then we say that the realization (F,G,H)
is a quasiaffine transform of (4,B,C). If the intertwining
operator P is boundedly invertible we say the two systems
are stmtlar. It is easy to check that if two systems are
quasiaffine transforms of each other then they are similar.

In order to see why the state-space isomorphism gues-
tion becomes more delicate in the infinite-dimensional
case it suffices to look at the easiest class of examples.
Consider the system

Z(f) = N () + bul); n =

y(t) = 22 cux,(t)

n=1

1,23,

with {bn} 21> and {c,,} 2—1” 1n I, This realizes the transfer
function

. = bae
Py = 5 e
(8) 11=18+)\n

If N, &% Ap for n £ m and b,c, # 0 for all n then this sys-
tem is controllable and observable. However, it can happen

that {nc,,},,=1°° and {(1,/71)bn},,r1‘” are both m I as well,
in which case

1
:n(t) = )‘nzn(t) + ; b"u(t); n o= 1)2,'3!' .

WO = T nea

is also a controllable and observable realization of the
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given transfer function. Here z and z are related by Px = ¢
with P defined by

1
; xn(t) = Z,,(Zf); n = 1:2)3:' T

This P is bounded and one to one but it does not have a
bounded inverse. Thus these two realizations are not
similar even though the z-system is a quasiaffine transform
of the z-system.

It seems that the further conditions to add in order to
make an isomorphism theorem hold can be of two types.
On one hand one can ask that & and ¢ be somehow the
same size or, alternatively, that the connection between
the input (output) and the state should be very tight in
both the realizations. We make these remarks precise in
two instances below.

Theorem 4: If (4,B,C) and (F,G,H) are two canonical
realizations of the same input—output map which have the
property that A = A*; B = C*and F = F¥and G = H*
then (4,B,C) and (F,G,H) are similar and the similarity
is via a unitary operator. If (4,B,C) and (F,G,H) are
two bilaterally canonical realizations of the same input-
output map which have the property that 4 = —A4%
B =C*%and F = —F*and ¢ = H* then (4,B,C) and
(F,G,H) are similar and the similarity is via a unitary
operator.

Proof: We mimic the finite-dimensional proof. Notice
that since A and F are generators one has

lle]| < Me¥; fle™(| < Me

for some M and some A > 0. Thus the integrals
Was = fo T BB g
and
Muic = j:o eA 1 C*Cetie™ Mgy

exist and define bounded self-adjoint operators. Similar
remarks hold for W pg and M z5. Moreover it is easy to see
that if the pair (A,B) is controllable then the kernel of
W 45 is zero and if the pair (4,C) is observable then the
kernel of M 4 is zero.

Because the input—output maps are the same for (4,B,C)
and (F,G,H) we have

CeA(t+a+p)B — HeF(t+”+P)G.
Pre- and post-multiplying by e ~*%4™/C* and B¥e4 e~ %,

respectively, gives upon integration on { over [0,«) and
integration on p over [0, «)

M AC’eAaI'VAB
= f e~ MeaA Tt He  te"” f e"PGB*et e M dp,
0 0

In view of the self-adjointness conditions in the hypoth-
esis we can rewrite this as

IVABBAGWAB = N*EFGN.
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Now the polar representation (see Dunford—Schwartz’s
Theorem 7, [6, p. 1249]) of N is easily seen to be UW 45
where U is a partial isometry. The initial domain of U
is the closure of the range of N* By controllability of
(4,B) U is one to one. Now if we reverse the roles of
(4,B,C) and (F,G,H) we get

WpGeFVHfFG = N*eAﬂN
using the above polar representation for N we see that
controllability of (F,G) implies that U is onto. Thus U is
unitary and
e’ = Ue"°U* U*B = G.
To treat the skew-adjoint case certain modifications
must be made. The fact that A and F are skew-adjoint

means that they necessarily generate groups, rather than
just semigroups, and that for any A > 0 the integral

WAB = f_

exists and defines a bounded self-adjoint operator. We then
follow the above proof using the fact that

et = (e—4Y)*

e BB%eA e My

and the symmetry of the domain of integrations to get
precisely the same conclusion.

Although the conclusion here is quite satisfactory the
hypothesis is rather strong. An alternative hypothesis
which is also restrictive but in a different way will now be
described.

We observe that if a system has a finite-dimensional in-
put space and infinite-dimensional state space then for any
f1 < o the controllability Grammian

1
W) = f e*'BB*e4 ™'t
0

is compact since the integral can be approximated in the
uniform operator topology by finite rank compact oper-
ators. (Recall B has finite rank.) Hence W (¢) cannot be
boundedly invertible.

This argiiment is invalid for & = « however, and it can
happen that W(«) exists as a bounded operator which is
boundedly invertible. An example is given by the system
discussed at the start of this section with b, = ¢, = 1/n;

», = —1/7% In this case W () is an isometry
o @ 1 w©
W(o)z = 3 —~ e~ rdt = 3 x? = ||z
0 »=17° - n=1

Following Helton [11] (see also Balakrishnan [2, p.
109]) we say that a system (A4,B,C) is exactly controllable
if the limit as ¢ goes to infinity of W(f) exists as a bounded
operator with a bounded inverse. We call a system (4,B,C)
exactly observable if (A*,C* B¥) is exactly controllable.

Theorem 5:

a) Let (4,B,() and (F,G,H) be two exactly con-
trollable (observable) realizations of the same weighting-
pattern. Suppose in addition that both realizations are
observable (controllable) then the systems are similar.
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b) Let (4,B,C) and (F,G,H) be two realizations of
the same weighting pattern and such that the first system
is observable and exactly controllable and the second
system is controllable and exactly observable, then the
realization (F,G, H) is a quasiaffine transform of (A,B,C).

Part a) is due to Helton [11] whereas part b), which has
a similar proof, is due to Moore.

IV. SpECTRAL MNINIMALITY

In the absence of a general state-space isomorphism
theorem, realizations which have speetral properties re-
flecting the singularities of the transfer function 7' are
important. This requirement is essential from the engineer-
ing point of view and is used in several ad hoe modeling
methods. Moreover, the connectedness of the resolvent
set of the infinitesimal generator has important implica-
tions as far as the relationship to frequency response
methods for svstem identification is concerned.

Let (4,B,C) be any realization of the transfer function
T. We let po(Ad) denote the principal connected com-
ponent of p(4d) the resolvent set of A. Thus pe(4) in-
cludes some half-planc of the form {SERO s > w} . Clearly
there exists an analvtic continuation of T' to all of go(4),
namely, that analytic function defined by C(sf — 4)7'B
forall s & pp(d). Thus for this particular analytie continu-
ation we have the spectral inclusion property [3]

o(T) < oo(A)

where o(7) is the sct of nonanalyticity of 7' and ao(4) is
the complement of py(4).

A realization of 7 is called spectrally minimal if there
exists an analytic continuation of T for which a(f’) =
a(4).

We proceed to analyze the question of spectral mini-
mality in the context of restricted translation realizations
and that of realization by self-adjoint svstems. As might
be expected, beeause of their extreme struetural symmetry
self-adjoint svstems exhibit the best behavior in this
respect. The situation is summed up by the following
theorem.

Theorem 6:

a) Let (4,b,b) be a canonical self-adjoint realization
of a weighting pattern T then the realization is spectrally
minimal.

b) Let (4,b,b) be a skew-adjoint bilaterally canoni-
cal realization of a weighting pattern T' for which p(4) is
connceted then the realization is spectrally minimal.

Proof:

a) Weindieate briefly what is involved. The speetral
theorem in particular the use of projection valued mea-
sures seem essential to the solution. Let T(s) be the
Laplace transform of 7T, thus T(s) = (b,(sI — A)~b).
Let E(-) be the projection valued measure associated with
A. Given any open interval (o,8) on the real line then
{FE{(x,8))b,c) can be recaptured by the following limit [6,
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p. 920]:
(E((e,8))b,c) = lim lim
§—0 «—0
1 8-
5 F((N — i) — A)~b,c)
LTl S atd

— (A + i) — A)~b,e)}dN.

This formula is a generalization of the Dunford—Cauchy
operational calculus [6]. Now if we assume 7' to be
analytic in («,8) then it follows from Cauchy’s theorem
that (E((a,8))b,0) = ||[E((«,8))b']2 = 0. Since E(-) com-
mutes with the semigroup e’ gencrated by A it follows
that E((«,8))e*'b = 0 for all positive ¢. Now the set of
vectors of the form e'd span the state space by the
assumption about controllability and hence E((e,8)) = 0
or («,8) belongs to the resolvent set of 4. This together
with the speetral inclusion property imply spectral
minimality in this case.

b) The representation T(s) = (b, Is — A)~b) is
valid e prior: onlv for s for which Re s > 0. Since the
infinitesimal generator is skew-adjoint its speetrum is
restricted to the imaginary axis, and by assumption p(4)
i3 connceted hence the transfer funetion T(s) has an
analytic continuation to the left half-planc. The rest of
the argument follows as before with the sole exception
that the space is spanned by the set of vectors | e[t € R}.

It should be noted that any completely monotonic fune-
tion 7' defined on [0,) can be uniquely extended to a
positive definite function 7' on the real line by letting

T £20
o = {T(—t)* t < 0.

Thus, by Bochner’s theorem, T has also a realization by
a skew-adjoint system which, without loss of generality,
can be taken to be bilaterally canonieal. In general this
realization will not be canonical and we will have no
spectral minimality.

As an example, consider T(/) = e’ which has a one-
dimensional canonical realization with —1 as the only
spectral point of the generator. Now the function T4(t) =
e~'" defined on (— o, @) is positive definite and has the
following representation

1 f° it dw
= = e .
TJ-w 1 4+ &2

Thus the skew-adjoint realization in this case has
I12(— o,®; dw/l1 + »?) as state space and multiplication
by 7w as infinitesimal generator. The spectrum of the
infinitesimal generator is therefore the whole imaginary
axis.

Next we pass to the analysis of the case of translation
realization, Generally a closed subspace of L2(0,e) will
be called left (right) invariant if it is invariant under the
left (right) translation semigroups. For a given weighting
pattern 7' & L2(0, « ), M » denotes the smallest left invariant

e—ltl
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subspace of L2(0, ) that includes T. We will say that 7
is cyelic or noncyclic according to whether My is equal to
L2(0,®) or not.

The translation realization of the weighting pattern 7,
satisfying the assumptions of Corollary 2.1 is canonical
if we take the state space to be M. In the cyclic case the
state space becomes all of L2(0,«) and the infinitesimal
generator of the left translation semigroup is the differ-
entiation operator having the whole closed left half-plane
as spectrum. Thus for all noncyclic functions T' whose
Laplace transforms 7" admits some analytic continuation
to the left half-plane there is no hope for spectral minimal-
ity using the translation realization. So we are left with
realizable functions which are noneyelic.

To facilitate analysis we apply the Fourier transform &
to the following direct sum decomposition L2(0,») =
My @ Ms*. By the Payley-Wiener theorem 12(0, ) is
mapped onto H2(1+) and M+ (which is right invariant)
is mapped onto a subspace of H2(II*) which is invariant
under multiplication by any H=(I*) funection. The
structure of these subspaces is determined by a theorem of
Beurling and Lax [13],[15] and they have the form
oH(ITF) = {qbf ] f&e (T +)} where ¢ is an inner function
in I, i.e., a function analytic in 11+ satisfying |¢(s)| < 1
and for which almost everywhere on the boundary, the
boundary values ¢(iw) exist and satisfy lq&(iw)] = 1. To
get a feeling about inner functions we consider a left
invariant subspace M spanned by a family of exponentials
{*| Re A, < 0}. A function f &€ L2(0, ) is orthogonal to
eM if and only if J, its Laplace transform, vanishes at
—A.. Thus one sees that a function f is orthogonal to A7
if and only if its Laplace transform vanishes at all points
—X, in the right half-plane. Now it turns out that if there
are not too many exponentials, in the sense that
—~Z(Re \)/( + f)\niz) < o there is a canonical inner
function vanishing at these points, the funetion being
the Blaschke product

2+ % |1~ &2
B= InI \1—7\112

associated with this set of zeros. This circle of ideas is
closely associated with the Miintz—Szasz theorem about
density of exponentials in various spaces. The Blaschke
products do not exhaust all possible inner functions and
there are the singular inner functions associated with
possible continuous spectrum on the imaginary axis.
We omit details and refer to the excellent exposition in
[13].

Now if the Fourier transform of M, is ¢H2(II1) it
follows that 7" is orthogonal to H2(IT+), and hence 7' is
factorable on the imaginary axis in the form T(iw) =
¢ (iw)h(iw) for some A & H2(II+). Since T generates Mo
under left translations it follows that ¢ and & are rela-
tively prime, i.e., have no common nontrivial inner factor.

We now describe how the above factorization indicates
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clearly the singularities of the analytic extension of T
into the left half-plane. Clearly A(¢w) has an analytic ex-
tension H into the left half-plane which actually belongs to
H2(11-) and is given by H(s) = h(—3). Now ¢(iw) has
also an extension ® which is meromorphic in 11—, the ex-
tension being given by ®(s) = ¢(—35)~L. Thus for points
in the left half-plane we have T(s) = ®()H(s) = [H(s)]/
[¢— (3) |, which clearly exhibits the meromorphic character
of T in the left. half-plane. It follows from the above dis-
cussion that the prime factorizations of 7' on the imaginary
axis is but a generalization of representing a rational fune-
tion as a ratio of two relatively prlrne polynomials.

To relate the singularities of 7' to the spe'ctrum of the
infinitesimal generator of the left translation semigroup
when restricted to the left invariant subspace M, we
have to find the relation between the spectrum and the
inner function ¢. If M is spanned by the exponentials &
then the infinitesimal generator has point spectrum given
by the set {)\,Z f n 2 O} together with continuous spectrum
given by the set of all finite accumulation points of the A,.
Thus it coincides with the set of all points X\, where
B(—X,) = 0 where B is the Blaschke product introduced
before. In general the result is analogous and is covered
by a theorem of Moeller [16]. The, spectrum of the in-
finitesimal generator is the set of all points X in the left
half-plane for which ¢(—X) = 0 together with the set of all
points A on the imaginary axis where ¢ is not analytically
continuable into the left half-plane. Thus in this case the
spectrum of the infinitesimal generator coincides exactly
with the singularities of the transfer function 7. To sum-
marize we have the following (see also [4]).

Theorem 7: Let T & 1.2(0, ) be a noncyelic weighting
pattern satisfying the assumptions of Corollary 2.1.
Then the restricted translation realization of T con-
structed in Section II is spectrally minimal.

V. Some REMaARKS oN Fintre INput/FINITE
OvuTrPUT SYSTEMS

Most of the results obtained in the previous section can
be pushed further to encompass the case of matrix weight-
ing patterns and matrix transfer functions. While some of
the results generalize in a straightforward way there are
natural complications arising from the noncommutativity
involved. _

To see in the most direct way how the theory of in-
variant subspaces enters naturally we consider a weighting
pattern 7'(f) that is n X m matrix valued with the matrix
elements being L2(0,«) functions. For simplicity we
will assume that T, € H2(II+) N H=(II*). We define the
controllability operator € on the set A of all C™-vector
valued functions whose coordinate functions have compact
support and belong to L2((), ). The controllability oper-
ator is defined by (Cu)(t) = [Tt + o)u(q)us. By our
assumption € is well defined and bounded. The closure of
the range of € which we denote by My is a left translation
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invariant subspace of L2(0, = ;C") the set of all C* valued
functions with 72(0, «) coordinates. Clearly the null space
of @ is a right translation invariant subspace of L2(0, «;
C™). By taking Fourier transforms we get in a natural way
two invariant subspaces in H2(IT+;C*) and H(I1+;C™).
respectively, the invariance being under multiplication by
all bounded matrix valued analytic funetion. As in the
scalar case these subspaces have the form QH2(IT+; C%)
and QH2(II+;C™), respectively. The functions @ and @
are contractive analytic functions in II + with the boundary
values being almost evervwhere partial isometries with a
fixed initial space. Thus @ = O corresponds to the evelic
scalar case. If the initial space of the partial isometry is
C? then almost everywhere Q(#w) is unitary and we call
such functions inner. The functions 7' giving rise in this
way to inner functions will be called strictly noneyeclic.
It should be noted that there are many functions which are
neither cxvelic nor strietly noneyvelie. The class of strietly
noncyelie funetions admits a theory parallel to the one
described in the previous section. Most importantly the
translation realization in this case turns out to be spee-
trally minimal. The transfer function 7 admits two rela-
tively prime factorizations on the imaginary axis of the
form 7'(iw) QUw)H (iw)* = Hi(iw)*Q1(ix). In these
factorizations @ and @, are matrix inner functions of sizes
n X nand m X m, respectively. These inner functions are
closely related. They carry the information about the
singularities of T in the left half-plane. It follows from
these factorizations that 7' admits an analytic extension to
II+ which is meromorphic and of bounded type there.
Thus spectral minimality of the translation realization is
related to the meromorphic properties of 7. The two
factorizations of T are generalizations of the type of nu-
merator denominator type of factorization considered by
Rosenbroek [18]. The advantage of our approach, besides
being able to handle a large class of nonrational transfer
functions, is that such- factorizations immediately give
rise to state-space realizations by first-order syvstems.
All of the above can be done for the ease of diserete sys-
tems and wo refer the reader to Fuhrmann [8],[9].
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