
A Distributed Learning Algorithm with Bit-valued Communications for

Multi-agent Welfare Optimization

Anup Menon and John S. Baras

Abstract— A multi-agent system comprising N agents, each
picking actions from a finite set and receiving a payoff that
depends on the action of the whole, is considered. The exact
form of the payoffs are unknown and only their values can be
measured by the respective agents. A decentralized algorithm
was proposed by Marden et al. [1] and in the authors’ earlier
work [2] that, in this setting, leads to the agents picking
welfare optimizing actions under some restrictive assumptions
on the payoff structure. This algorithm is modified in this
paper to incorporate exchange of certain bit-valued information
between the agents over a directed communication graph.

The notion of an interaction graph is then introduced to
encode known interaction in the system. Restrictions on the
payoff structure are eliminated and conditions that guarantee
convergence to welfare minimizing actions w.p. 1 are derived
under the assumption that the union of the interaction graph
and communication graph is strongly connected.

I. INTRODUCTION

An important direction of research in cooperative con-

trol of multi-agent systems is game theoretic control. This

refers to the paradigm of: 1. designing individual utility

functions for agents such that certain solution concepts

(like Nash equilibria (NE)) correspond to desirable system-

wide outcomes; and 2. prescribing learning rules that allows

agents to learn such equilibria [3]. Also, the utilities and

the learning rules must conform to the agents’ information

constraints. A popular choice is to design utilities such that

the resulting game has a special structure so that the cor-

responding solution concepts are efficient w.r.t. system-wide

objectives. NE of potential games, for instance, correspond

to the extremal values of the potential function which can

then be chosen so that its extrema correspond to desirable

system-wide behavior. Examples of such utility design for

specific applications range from distributed optimization [4]

to coverage problems in sensor networks [5] and power

control in wireless networks [6].

The other advantage of designing utilities with special

structure is that players can be prescribed already available

learning algorithms from the large body of work on learning

in repeated games that helps them learn to play NE [7], [8],

[9]. Some of these algorithms have the desirable feature of

being payoff-based, i.e. an agent adjusts its play only on the

basis of its past payoffs and actions, and does not require

Research partially supported by the US Air Force Office of Scientific Re-
search MURI grant FA9550-09-1-0538, by the National Science Foundation
(NSF) grant CNS-1035655, and by the National Institute of Standards and
Technology (NIST) grant 70NANB11H148.

The authors are with the Institute for Systems Research and the
Department of Electrical and Computer Engineering at the University
of Maryland, College Park, MD 20742, USA amenon@umd.edu,

baras@umd.edu

the agents to have any knowledge of the structure of the

game. However, the success for most learning procedures is

only guaranteed under an assumption on the game such as

potential, weakly acyclic or congestion game.

Thus, while an effective paradigm, game theoretic control

has the following limitations:

• Since available algorithms are provably correct only

for certain classes of games, there is a burden to

design utilities that conform to such structure for each

application.

• If the system requirements prohibit design of utilities

with special structure, equilibrating to NE may be ineffi-

cient w.r.t. desirable outcome (also, may be unnecessary

in non-strategic situations).

While within the paradigm of game theoretic control, our

approach is complementary to that of utility design. Instead,

we focus on algorithm design for welfare (i.e. the sum of

individual utilities) optimization for arbitrary utilities. To

motivate this approach we consider an application where the

current paradigm is too restrictive: the problem of maximiz-

ing the total power production of a wind farm [10]. Aerody-

namic interactions between different wind turbines are not

well understood and there are no good models to predict the

effects of one turbine’s actions on another. However, it is

clear that the amount of power a turbine extracts from the

wind has a direct effect on the power production of turbines

downstream (such a region of influence is called a wake, see

Figure 1(a)). The information available to each turbine is

its own power production and a decentralized algorithm that

maximizes the total power production of the farm is sought.

Since there are no good models for the interactions, there

is little hope to design utilities with special structure that

are functions of such individual power measurements. This

points towards the need for algorithms that are applicable

when there is little structural information about the utilities

(for instance, a turbine can be assigned its individual power

as its utility which, in turn, can depend on the actions taken

by others in complex ways; see [10] for details).

A decentralized learning algorithm is presented in [1] with

the intent to address this issue of unknown payoff structures.

This algorithm allows agents to learn welfare maximizing

actions and does not require any knowledge about the exact

functional form of the utilities. In our earlier work [2],

we provide conditions that guarantee convergence of this

algorithm. However, convergence is guaranteed only under

an assumption on the utilities called interdependence (which,

for instance, need not hold for the wind farm problem).

52nd IEEE Conference on Decision and Control
December 10-13, 2013. Florence, Italy

978-1-4673-5716-6/13/$31.00 ©2013 IEEE 2406

The contribution of this paper is a distributed multi-agent

learning algorithm that:

1) eliminates the need for any structural assumptions on

the utilities by using inter-agent communication;

2) and, under appropriate conditions, ensures that agent

actions converge to global extrema of the welfare

function.

Regarding the use of inter-agent communication, we

develop a framework for capturing known interaction in

the system and prove results that help design “minimal”

communication networks that guarantee convergence. The

exchanged information in our algorithm is bit-valued which

has implementation and robustness advantages. The frame-

work developed also contrasts between implicit interaction

between the agents via utilities and explicit interaction via

communication. We also wish to point out that the problem

formulated here can be thought of as a multi-agent formu-

lation of a discretized extremum seeking problem [11] and

the algorithm provides convergence to global optimal states

with few restrictions on the functions involved.

The remainder of the paper is organized as follows. In

section II we formulate the problem, develop the analysis

framework, present the algorithm and state the main con-

vergence result. Section III introduces Perturbed Markov

Chains and states relevant results. In section IV, the results

of Section III are used to prove the main result of section II.

The paper concludes with some numerical illustrations and

discussions about future work.

NOTATION

The paper deals exclusively with discrete-time, finite state

space Markov chains. A time-homogeneous Markov chain

with Q as its 1-step transition matrix means that the ith

row and jth column entry Qi,j = P(Xt+1 = j|Xt = i),
where Xt denotes the state of the chain at time t. If the

row vector ηt denotes the probability distribution of the

states at time t, then ηt+1 = ηt Q. More generally, if

Q(t) denotes the 1-step transition probability matrix of a

time-nonhomogeneous Markov chain at time t, then for all

m > n, P(Xm = j|Xn = i) = Q
(n,m)
i,j , where the matrix

Q(n,m) = Q(n) · Q(n + 1) · · ·Q(m − 1). The time indices

of all Markov chains take consecutive values from the set of

natural numbers N. A Markov chain should be understood

to be homogeneous unless stated otherwise. We denote the

N -dimensional vector of all zeros and all ones by the bold

font 0 and 1 respectively. For a multi-dimensional vector x,

its ith component is denoted by xi; and that of xt by (xt)i.

II. PROBLEM STATEMENT AND PROPOSED ALGORITHM

A. A Multi-agent Extremum Seeking Formulation

1) Agent Model: We consider N , possibly heterogeneous,

agents indexed by i. The ith agent can pick actions from a

set Ai, 1 < |Ai| < ∞; the joint action of the agents is an

element of the set A =
∏N

i=1Ai. The action of the ith agent

in the joint action a ∈ A is denoted by ai. Further, given

the ith individual’s present action is b ∈ Ai, the choice of

its very next action is restricted to be from Ai(b) ⊂ Ai.

Assumption 1: For any b ∈ Ai, b ∈ Ai(b) and there exists

an enumeration {b1, ..., b|Ai|} of Ai such that bj+1 ∈ Ai(bj)
for j = 1, ..., (|Ai| − 1) and b1 ∈ Ai(b|Ai|).

The first part of this assumption allows for the possibility

of picking the same action in consecutive steps and the sec-

ond ensures that any element of Ai is “reachable” from any

other. Specific instances of such agent models in literature

include the discretized position and viewing-angle sets for

mobile sensors in [5], discretized position of a robot in a

finite lattice in [12], [13] and the discretization of the axial

induction factor of a wind turbine in [10].

An individual has a private utility that can be an arbitrary

time-invariant function of the action taken by the whole but

is measured or accessed only by the individual. Agent i’s

utility is denoted by ui : A → R+. Examples include

artificial potentials used to encode information about desired

formation geometry for collaborative control of autonomous

robots in [12], [13] and the measured power output of an

individual wind turbine in [10]. At any time t, agent i only

measures or receives (umes
t)i = ui(at) since neither the joint

action at nor any information about ui(·) is known to the

agent.

The objective of the multi-agent system is to collabora-

tively minimize (or maximize) the welfare function W ∗ =
mina∈A W (a), where W (a) =

∑N

i=1 ui(a). Achieving this

objective results in a desirable behavior of the whole like

a desired geometric configuration of robots in [12], [13],

desired coverage vs. sensing energy trade-off in [5] and

maximizing the power output of a wind farm in [10]. Thus

we seek distributed algorithms for the agents to implement

so that their collective actions converge in an appropriate

sense to the set

A∗ = {argmin
a∈A

W (a)}.

2) Interaction Model: Interaction in a multi-agent setting

can comprise of explicit communication between agents via

communication or can be implicit with actions of an agent

reflecting on the payoff of another. We present a general

modeling framework that allows the designer to encode

known inter-agent interactions in the system while explicit

communication takes place over a simple signaling network

with only a bit-valued variable exchanged.

1) Interaction Graph

Consider a directed graph GI(a) for every a ∈ A with

a vertex assigned to each agent. Its edge set contains

the directed edge (j, i) if and only if ∃ b ∈ Aj such

that ui(a) 6= ui(b, a−j).
1 Thus, for every action profile

a, GI(a) encodes the set of agents whose actions can

(and must) affect the payoffs of other specific agents.

We call this graph the interaction graph.

In the case of a wind farm, power production of

a turbine downstream of another is affected by the

1We borrow notation from the game theory literature: aJ denotes the
actions taken by the agents in subset J from the collective action a and the
actions of the rest is denoted by a−J .

2407

T1

T2

T3

T4

Wind direction

(a)

T1

T2

T3

T4

(b)

Fig. 1. (a) Schematic diagram of a wind farm; a loop represents a
wind turbine and the dotted lines its corresponding wake. (b) Solid arrows
represent edges in GI and the dotted arrows edges in Gc.

actions of the latter (see Figure 1 (b)). For the collabo-

rative robotics problem, all robots that contribute to the

artificial potential of a given robot constitute the latter’s

in-neighbors in the interaction graph. Essentially, the

interaction graph is a way of encoding certain “coarse”

information about the structure of the payoff functions

even in the absence of explicit knowledge of their

functional forms.

2) Communication Graph

The agents are assumed to have a mechanism to

transmit a bit-valued message to other agents within a

certain range. The mode of communication is broadcast

and an agent need not know which other agents are

receiving its message. For each a ∈ A, we model

this explicit information exchange by a directed graph

over the set of agents Gc(a) called the communication

graph. A directed edge (j, i) in Gc(a) represents that

agent j can send a message to agent i when the joint

action being played is a. Let Ni(a) denote the in-

neighbors of agent i in the communication graph. Each

transmission is assumed to last the duration of the

algorithm iteration.

We stress this framework is for modeling and analysis at

the level of the system designer; the agents neither know the

joint action nor the corresponding neighbors in GI(·) or Gc(·)
and simply go about measuring their utilities, broadcasting

messages and receiving such broadcast messages from other

agents when permitted by Gc(a).

B. The Decentralized Algorithm

Endow agent i with a state xi = [ai,mi]; ai ∈ Ai

corresponds to the action picked and mi is the {0, 1}-valued

‘mood’ of agent i. When the mood variable equals 1 we call

the agent “content”, else “discontent”. The collective state of

all agents is denoted by x = (a,m). Other than recording its

state, each agent maintains a variable ui, which records the

payoff it received in the previous iterate. At t = 0, the agent

i initializes (m0)i = 0, picks an arbitrary (a0)i ∈ Ai and

records the received payoff ui = (umes
0)i. With slight abuse

of notation, we let Gc(at) = Gc(t) and Ai((at)i) = Ai(t).

For a certain pre-specified monotone decreasing sequence

{ǫt}t∈N, with ǫt → 0 as t → ∞, and constants c > W ∗,

β1, β2 > 0, agent i performs the following sequentially at

every ensuing time instant t > 0.

Start

Step 1: Receive (mt−1)j from all j ∈ Ni(t − 1), i.e. the

in-neighbors of i in Gc(t− 1). Compute temporary variable

m̃i as follows.

1) If (mt−1)i = 0, set m̃i = 0;

2) else, if (mt−1)i = 1 and
∏

j∈Ni(t−1)

(mt−1)j = 1, set

m̃i = 1;

3) and if (mt−1)i = 1 and
∏

j∈Ni(t−1)

(mt−1)j = 0,

set m̃i = {0, 1} w.p. {1− ǫ
β1

t , ǫ
β1

t }.

Step 2: Pick (at)i as follows.

1) If m̃i = 1, pick (at)i from Ai(t− 1) according to the

p.m.f.

p(b) =

{

1− ǫct if b = (at−1)i
ǫc
t

|Ai(t−1)|−1 otherwise.
(1)

2) Else, if m̃i = 0, pick (at)i according to the uniform

distribution

p(b) =
1

|Ai(t− 1)|
for all b ∈ Ai(t− 1). (2)

Step 3: Measure or receive payoff (umes
t)i(= ui(at)).

Step 4: Update (mt)i as follows.

1) If m̃i = 1 and ((at)i, (u
mes
t)i) = ((at−1)i, ui) , then

set (mt)i = 1;

2) else, if m̃i = 1 and ((at)i, (u
mes
t)i) 6= ((at−1)i, ui),

set (mt)i = {0, 1} w.p. {1− ǫ
β2

t , ǫ
β2

t };
3) and if m̃i = 0, set

(mt)i =

{

0 w.p. 1− ǫ
(umes

t
)i

t

1 w.p. ǫ
(umes

t
)i

t .
(3)

Update ui(← u
mes
t)i.

Step 5: Broadcast (mt)i to all out-neighbors in Gc(t).
Stop

It is easy to see that the algorithm defines a nonhomogeneous

Markov chain on the state space S = A× {0, 1}N .

C. Convergence Guarantees

The following is the main convergence result for the

decentralized algorithm described above.

Theorem 1: Let

1)
∞
∑

t=1
ǫct =∞ and

2) For every a ∈ A, Gc(a)∪GI(a) be strongly connected.

Then, if Xt = [at,mt] denotes the collective state of the

agents at time t,

lim
t→∞

P[at ∈ A
∗] = 1.

From a practical view-point, the result provides a system-

designer with guidelines on how to guarantee convergence

of the above algorithm. The first assumption translates to

2408

a constraint on the sequence {ǫt}t∈N (or an “annealing

schedule”) on how fast it may approach zero.

The second provides flexibility to design a ‘minimal’

communication network by utilizing information about the

payoff structure (such a choice is made in Figure 1 (b)).

For instance, if the designer has no information about the

structure of the payoff function (GI(·) = ∅), a communica-

tion network such that Gc(a) is strongly connected for all

a ∈ A can be installed to guarantee convergence. The other

extreme case is for all a ∈ A, GI(a) is strongly connected;

then the algorithm converges even in the absence of any

explicit communication.

The proof for Theorem 1 relies on the theory of perturbed

Markov chains. The general theory is reviewed in Section

III and two important results are stated - Theorem 2 from

[14] and Theorem 3 from [2]. Theorem 1 is then proved in

Section IV with this theory applied to the special case of the

algorithm.

III. PERTURBED MARKOV CHAINS

The theory of perturbed Markov chains, developed by

Young [14], is reviewed in this section. Consider a ho-

mogeneous Markov chain with possibly several stationary

distributions. Perturbed Markov chains are essentially a way

of “choosing” amongst these by perturbing elements of the

Markov chains. This section describes this theory in detail

and also presents results on how to reduce ǫ over time while

evolving according to the perturbed chain (rendering the

chain nonhomogeneous) while retaining ergodicity.

A. Perturbed Markov Chains

Let P (0) be the 1-step transition probability matrix of a

Markov chain on a finite state space S. We refer to this chain

as the unperturbed chain.

Definition 3.1: A regular perturbation of P (0) consists

of a stochastic matrix valued function P (ǫ) on some non-

degenerate interval (0, a] that satisfies, for all x, y ∈ S,

1) P (ǫ) is irreducible and aperiodic for each ǫ ∈ (0, a],
2) lim

ǫ→0
Px,y(ǫ) = Px,y(0) and

3) if Px,y(ǫ) > 0 for some ǫ, then ∃ r(x, y) ≥ 0 such

that 0 < lim
ǫ→0

ǫ−r(x,y)Px,y(ǫ) <∞.

An immediate consequence of the first requirement is that

there exists a unique stationary distribution µ(ǫ) satisfying

µ(ǫ)P (ǫ) = µ(ǫ) for each ǫ ∈ (0, a]. The other two

requirements dictate the way the perturbed chain converges

to the unperturbed one as ǫ→ 0. Let L = {f ∈ C∞| f(ǫ) ≥

0, f(ǫ) =
L
∑

i=1

aiǫ
bi for some ai ∈ R, bi ≥ 0} for some large

enough but fixed L ∈ N, where C∞ is the space of smooth

functions. The following assumption will be invoked later.

Assumption 2: For all x, y ∈ S, Px,y(ǫ) ∈ L.

We develop some notation that will help state the main

result regarding perturbed Markov chains. The parameter

r(x, y) in the definition of regular perturbation is called the

1-step transition resistance from state x to y. Notice that

r(x, y) = 0 only for the one step transitions x→ y allowed

under P (0). A path h(a → b) from a state a ∈ S to b ∈ S

is an ordered set {a = x1, x2, . . . , xn = b} ⊆ S such that

every transition xk → xk+1 in the sequence has positive 1-

step probability according to P (ǫ). The resistance of such a

path is given by r(h) =
n−1
∑

k=1

r(xk , xk+1).

Definition 3.2: For any two states x and y, the resistance

from x to y is defined by ρ(x, y) = min{r(h)| h(x→ y) is

a path}.
Definition 3.3: Given a subset A ⊂ S, its co-radius is

given by CR(A) = max
x∈S\A

min
y∈A

ρ(x, y).

Thus, ρ(x, y) is the minimum resistance over all possible

paths starting at state x and ending at state y and the co-

radius of a set specifies the maximum resistance that must

be overcome to enter it from outside. We will extend the

definition of resistance to include resistance between two

subsets S1, S2 ⊂ S:

ρ(S1, S2) = min
x∈S1,y∈S2

ρ(x, y).

Since P (ǫ) is irreducible for ǫ > 0, ρ(S1, S2) < ∞ for all

S1, S2 ⊂ S.

Definition 3.4: A recurrence or communication class of a

Markov chain is a non-empty subset of states E ⊆ S such

that for any x, y ∈ E, ∃ h(x → y) and for any x ∈ E and

y ∈ S \ E, ∄ h(x→ y).
Let us denote the recurrence classes of the unperturbed

chain P (0) as E1, ..., EM . Consider a directed graph GRC

on the vertex set {1, ...,M} with each vertex corresponding

to a recurrence class. Let a j-tree be a spanning subtree in

GRC that contains a unique directed path from each vertex

in {1, ...,M} \ {j} to j and denote the set of all j-trees in

GRC by T j
RC .

Definition 3.5: The stochastic potential of a recurrence

class Ei is

γ(Ei) = min
T∈T i

RC

∑

(j,k)∈T

ρ(Ej , Ek).

Let γ∗ = minEi
γ(Ei).

We are now ready to state the main result regarding

perturbed Markov chains.

Theorem 2 ([14], Theorem 4): Let E1, ..., EM denote the

recurrence classes of the Markov chain P (0) on a finite state

space S. Let P (ǫ) be a regular perturbation of P (0) and let

µ(ǫ) denote its unique stationary distribution. Then,

1) As ǫ → 0, µ(ǫ) → µ(0), where µ(0) is a stationary

distribution of P (0) and

2) A state is stochastically stable i.e. µx(0) > 0 ⇔ x ∈
Ei such that γ(Ei) = γ∗.

B. Ergodicity of Nonhomogeneous Perturbed Markov Chains

Consider the nonhomogeneous Markov chain resulting

from picking the ǫ along the evolution of P (ǫ) at time

instant t as the corresponding element ǫt of the sequence

{ǫt}t∈N. We henceforth refer to this sequence as the anneal-

ing schedule and the resulting Markov chain as the nonho-

mogeneous perturbed chain. Theorem 3 provides conditions

on the annealing schedule that guarantee ergodicity of the

nonhomogeneous perturbed chain with µ(0) (as in Theorem

2409

2) being the limiting distribution. We denote the time-varying

transition matrix of the nonhomogeneous perturbed chain by

the bold-font P, i.e. P(t) = P (ǫt).
Define

κ = min
E∈{Ei}

CR(E). (4)

Theorem 3 ([2], Theorem 3 or [15], Theorem 5): Let

the recurrence classes of the unperturbed chain P (0) be

aperiodic and the parameter ǫ in the perturbed chain be

scheduled according to the monotone decreasing sequence

{ǫt}t∈N, with ǫt → 0 as t → ∞, as described above. Then,

a sufficient condition for weak ergodicity of the resulting

nonhomogeneous Markov chain P(t) is
∑

t∈N

ǫκt =∞.

Furthermore, if the chain is weakly ergodic and Assumption

2 holds, then it is strongly ergodic with the limiting distri-

bution being µ(0) as described in Theorem 2.

IV. ANALYSIS OF THE ALGORITHM

The objective of this section is to prove Theorem 1.

The proof relies on some Lemmas that are stated in the

following. The proofs for the Lemmas are excluded for want

of space and may be found in [15]. We will first consider

the algorithm of section II-B with the parameter ǫt held

constant at ǫ > 0. The algorithm then describes a Markov

chain on the finite state space S = A × {0, 1}N and we

denote its 1-step transition matrix as P (ǫ). The reason for

choosing the same notation here as for the general perturbed

Markov chain discussed in section III is that we wish to view

the Markov chain induced by the algorithm as a perturbed

chain and analyze it using results from section III. Similarly,

P(t) denotes the 1-step transition probability matrix for the

duration (t, t + 1) of the nonhomogeneous Markov chain

induced by the algorithm as described in section III, i.e. with

time varying ǫt. Henceforth, the components of any x ∈ S

will be identified with a superscript i.e. x = [ax,mx].
Lemma 4.1 ([15], Lemma 4.1): The Markov chain P (ǫ)

is irreducible and aperiodic.

Lemma 4.1 implies that P (ǫ) has a unique stationary dis-

tribution which we denote, as in the previous section, by

µ(ǫ). It is also clear that P (ǫ) is a regular perturbation of

P (0) (the latter obtained by setting ǫt ≡ 0 in the algorithm).

Thus, by Theorem 2, µ(ǫ) → µ(0) as ǫ → 0 where µ(0) is

a stationary distribution of P (0).

A. Stochastically Stable States: Support of µ(0)

Definition 4.1: Let

C0 = {x ∈ S|mx = 1} and

D0 = {x ∈ S|mx = 0}.
Lemma 4.2 ([15], Lemma 4.2): If for every a ∈ A,

Gc(a) ∪ GI(a) is strongly connected, the recurrence classes

of the unperturbed chain P (0) are D0 and the singletons

z ∈ C0.

z1 z|A|zk

D0

> c

> c

W (a1) W (a|A|)
cc

Fig. 2. The circles represent recurrence classes of P (0) and weights on
the arrows the corresponding ρ(·, ·)s. If W (az1) = W ∗, the zig-zag lines
represent edges in the minimum resistance tree rooted at z1.

Guided by Theorem 2, we now proceed to calculate

the stochastic potential of the recurrence classes of P (0).
But first some calculations are organized in the following

Lemma.

Lemma 4.3 ([15], Lemma 4.3): Under the same assump-

tion as Lemma 4.2, for any y ∈ D0 and z ∈ C0,

ρ(x, y) = c, ∀ x ∈ C0, (5)

ρ(y, z) = W (az), (6)

ρ(x, z) ≤W (az), ∀ x ∈ S \ C0, (7)

and ρ(z′, z) > c, ∀ z′ ∈ C0, z′ 6= z. (8)

From Lemma 4.2, there are exactly |A|+1 recurrence classes

of P (0) - |A| corresponding to each a ∈ A (i.e. each element

of C0) and one for the set D0. Let {z1, ..., z|A|} be an

enumeration for C0; together with the calculations in Lemma

4.3, Figure 2 emerges as a picture for GRC of the algorithm.

The following Lemma can be derived on the basis of Figure

2.

Lemma 4.4 ([15], Lemma 4.4): Under the same assump-

tion as Lemma 4.2, the stochastically stable set is {zi ∈
C0|W (azi) = W ∗}.

B. Proof of Theorem 1

We return to the analysis of the nonhomogeneous Markov

chain, P, induced by the algorithm with the annealing

schedule {ǫt}t∈N. The proof relies on noting that if the

annealing schedule satisfies
∞
∑

t=1
ǫt

c = ∞, P is strongly

ergodic with the limiting distribution having support over

states with efficient actions as described by Lemma 4.4.

Lemma 4.5 ([15], Lemma 4.5): Under the same assump-

tion as Lemma 4.2, for the nonhomogeneous Markov chain

defined on S by the algorithm, κ as defined in (4) equals c.

Proof: [Proof of Theorem 1] The Assumption of Lemma

4.2 is included in the statement of the Theorem. All transition

probabilities in the algorithm of section II-B belong to L;

thus Assumption 2 holds. For any y ∈ D0 and z ∈ C0,

Py,y(0) > 0 and Pz,z(0) > 0. Hence the recurrence classes

2410

of the unperturbed Markov chain are aperiodic and, from

Theorem 3 and Lemma 4.5, the chain is strongly ergodic if

∞
∑

t=1

ǫt
c = ∞. (9)

Next, for any initial distribution η0 on S and any subset

S̃ ⊂ S, P(Xt ∈ S̃) =
∑

j∈S̃

(η0P
(1,t))j . Since (9) implies

strong ergodicity with limiting distribution µ(0) as in The-

orem 2, lim
t→∞

P(Xt ∈ S̃) =
∑

j∈S̃

µj(0). Let S̃ = {x ∈

S|W (ax) = W ∗,mx = 1}. Then in view of Lemma 4.4,

lim
t→∞

P[at ∈ A
∗] = 1.

V. NUMERICAL SIMULATIONS AND CONCLUSIONS

An interesting question is how the performance of the

algorithm depends on Gc. We present results of some simple

numerical experiments to motivate such questions. Consider

N identical agents with Ai = {0.1, 1} and ui(a) = ai−1 for

i = 2, ..., N and u1(a) = aN . Thus GI(a) is a directed ring

for all a ∈ A (see Figure 3 (a)) and the welfare function

W (a) =
∑N

i=1 ai, has a unique minimum at (0.1, ..., 0.1).
Let directed edges (i, i−q) (where subtraction is mod N) for

all i constitute Gqc (a) for all a ∈ A and G(q) = Gqc ∪GI . The

algorithm is implemented in MATLAB for the case N = 10,

c = 1.1, β1 = β2 = 0.5, ǫt =
1
c
√
t

and is allowed to run while

ǫt > 10−4. The experiment is carried out for different values

of q and performance is measured as the percentage of times

the welfare minimal action is picked averaged over 100 runs

for each value of q. The performance measure, the length of

the longest shortest-path (SP) in G(q) and length of a cycle in

G(q) are plotted for values of q in {0, .., (N−1)} in Figure 3

(b). The results suggest a heuristic: To improve performance,

pick Gc(a) to comprise of edges exactly opposite of GI(a)
and thereby reducing the cycle lengths.

1

2

3

4

5

6

7

8

9

10

q = 1

q = 3

q = 5

q = 7

(a)

0

0

00

1

1

1

2
2

2

2

3

3 3

3

20%

4

4

4

4

4

40%

5

5

5

5

6

6

6

6

6

60%

80%

100%

7

7

7

7

8

8

8

8

8

9

9

9

9

10

10

q

q

q

Length of longest shortest-path

Length of a cycle

Performance

(b)

Fig. 3. Effects of varying Gc for N = 10. (a) The blue solid arrows
represent GI and the dotted arrows denote the edge (1, 1 − q) in the
corresponding G

q
c . (b) Plot of performance, longest SP and cycle length

w.r.t. different values of q.

An important open question is determining the rate of

convergence of the algorithm. One way to answer this

question is to calculate the rate of convergence of ||ηt−µ(0)||
as t → ∞, where ηt is the density of Xt = [at,mt].
This is difficult since the Markov chain is nonhomogeneous

and the best results we know in such situations are for the

simulated annealing algorithm [16]. We will address this

issue along such lines in future work. We expect that such

an investigation will also shed light on the issue of how

the communication and interaction graphs play a role in

determining the speed of convergence.

REFERENCES

[1] J. R. Marden, H. P. Young, and L. Y. Pao, “Achieving
Pareto optimality through distributed learning,” in Proc.

of 51st Annual Conference on Decision and Control

(CDC), pp. 7419–7424, IEEE, 2012. Available online at
http://ecee.colorado.edu/marden/files/Pareto%20Optimality.pdf.

[2] A. Menon and J. S. Baras, “Convergence guarantees for a decentralized
algorithm achieving Pareto optimality,” in Proc. of the 2013 American

Control Conference (ACC), pp. 1932–1937, 2013.
[3] R. Gopalakrishnan, J. R. Marden, and A. Wierman, “An architectural

view of game theoretic control,” ACM SIGMETRICS Performance

Evaluation Review, vol. 38, no. 3, pp. 31–36, 2011.
[4] N. Li and J. R. Marden, “Designing games for distributed optimiza-

tion,” in Proc. of 50th IEEE Conference on Decision and Control

and European Control Conference (CDC-ECC), 2011, pp. 2434–2440,
IEEE, 2011.

[5] M. Zhu and S. Martnez, “Distributed coverage games for energy-aware
mobile sensor networks,” SIAM Journal on Control and Optimization,
vol. 51, no. 1, pp. 1–27, 2013.

[6] E. Altman and Z. Altman, “S-modular games and power control in
wireless networks,” IEEE Transactions on Automatic Control, vol. 48,
no. 5, pp. 839–842, 2003.

[7] J. R. Marden and J. S. Shamma, “Revisiting log-linear learning:
Asynchrony, completeness and payoff-based implementation,” Games

and Economic Behavior, vol. 75, no. 2, pp. 788–808, 2012.
[8] J. R. Marden, H. P. Young, G. Arslan, and J. S. Shamma, “Payoff based

dynamics for multi-player weakly acyclic games,” SIAM Journal on

Control and Optimization, vol. 48, pp. 373–396, Feb 2009.
[9] H. P. Young, “Learning by trial and error,” Games and Economic

Behavior, vol. 65, no. 2, pp. 626–643, 2009.
[10] J. Marden, S. Ruben, and L. Pao, “A model-free approach to wind

farm control using game theoretic methods,” IEEE Transactions on

Control Systems Technology, vol. 21, no. 4, pp. 1207–1214, 2013.
[11] N. Ghods, P. Frihauf, and M. Krstic, “Multi-agent deployment in the

plane using stochastic extremum seeking,” in Proc. of 49th IEEE

Conference on Decision and Control (CDC), 2010, pp. 5505–5510,
IEEE, 2010.

[12] X. Tan, W. Xi, and J. S. Baras, “Decentralized coordination of au-
tonomous swarms using parallel Gibbs sampling,” Automatica, vol. 46,
no. 12, pp. 2068–2076, 2010.

[13] W. Xi, X. Tan, and J. S. Baras, “Gibbs sampler-based coordination
of autonomous swarms,” Automatica, vol. 42, no. 7, pp. 1107–1119,
2006.

[14] H. P. Young, “The evolution of conventions,” Econometrica: Journal

of the Econometric Society, pp. 57–84, 1993.
[15] A. Menon and J. S. Baras, “A distributed learning algorithm with

bit-valued communications for multi-agent welfare optimization.” In-
stitute of Systems Research Technical Report. Available online at
http://drum.lib.umd.edu/advanced-search, 2013.

[16] D. Mitra, F. Romeo, and A. Sangiovanni-Vincentelli, “Convergence
and finite-time behavior of simulated annealing,” Advances in Applied

Probability, pp. 747–771, 1986.

2411

