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Abstract— In this paper we introduce two discrete-time,
distributed optimization algorithms executed by a set of agents
whose interactions are subject to a communication graph. The
algorithms can be applied to optimization problems where the
cost function is expressed as a sum of functions, and where
each function is associated to an agent. In addition, the agents
can have equality constraints as well. The algorithms are not
consensus-based and can be applied to non-convex optimization
problems with equality constraints. We demonstrate that the
first distributed algorithm results naturally from applying a
first order method to solve the first order necessary conditions
for a lifted optimization problem with equality constraints;
the solution of our original problem is embedded in the
solution of this lifted optimization problem. Using an augmented
Lagrangian idea, we derive a second distributed algorithm that
requires weaker conditions for local convergence compared to
the first algorithm. For both algorithms we address the local
convergence properties.

I. Introduction

Multi-agent distributed optimization problems appear nat-
urally in many distributed applications such as network
resource allocation, collaborative control, estimation and
identification, and so on. In these type of applications a
group of agents has as common goal the optimization of
a cost function under limited information and resources. The
limited information may be induced by the fact that an agent
can communicate with only a subset of the total set of agents,
or/and by the fact that an agent is aware of only a part of
the cost functions or constraint sets.

A particular formulation of a distributed optimization
problem refers to the case where the optimization cost is
expressed as a sum of functions and each function in the
sum corresponds to an agent. In this formulation the agents
interact with each other subject to a communication network,
usually modeled as a (un)directed graph. This formulation is
often found in wireless network resource allocation problems
[16] or in finite horizon optimal control problems with
separable cost functions [4].

A first distributed algorithm for solving an optimization
problem of the type described above was introduced in
[15]. The algorithm, referred to as “distributed subgradient
method”, is used to minimize a convex function expressed as
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a sum of convex functions. In this algorithm each agent com-
bines a standard (sub)gradient descent step with a consensus
step; the latter is added to deal with the limited information
about the cost function and about the actions of the agents.

Many subsequent versions of this algorithm appeared in
the literature. The introduction of communication noise and
errors on subgradients was addressed in [13], [17], while
the case where the communication network is modeled as
a random graph was treated in [9], [11]. Analyses of asyn-
chronous versions of the algorithm can be found in [13], [19].
A further extension was proposed in [10], where the authors
considered state-dependent communication topologies.

A modified version of the distributed subgradient method
was introduced in [7], where the authors change the order
in which the two operations of the algorithm are performed.
More specifically, first the subgradient descent step is ex-
ecuted, followed by the consensus step. The algorithms
discussed above became popular in the signal processing
community as well, being used for solving distributed fil-
tering and parameter identification problems [5], [18].

In this paper we study a distributed optimization problem
similar to the formulation proposed in [15]. Namely the
goal is to minimize a function expressed as a sum of
functions, where each function in the sum is associated
to an agent. In addition, we assume that each agent has
an equality constraint, as well. Distributed algorithms for
solving constrained optimization problems have already been
studied in the literature. The focus has been on convex
problems: the cost and constraint sets are assumed convex.
The algorithms are based on a combination of a consensus
step (to cope with the lack of complete information) and
a projected (sub)gradient descent step. They assume that
either all agents use the same constraint set [8], [13], [17]
or each agent has its own set of constraints [14], [19].
In this paper we do not make any convexity assumptions
on the cost and constraint functions, but we assume they
are continuously differentiable. We propose two distributed,
discrete-time algorithms that, under suitable assumptions on
the cost and constraint functions, guarantee convergence
to a local minimizer (at a linear rate), provided that the
initial values of the agents are close enough to a (local)
minimizer and a sufficiently small step-size is used. The most
interesting aspect of these algorithms is that they are not
heuristic algorithms, but they follow naturally from using a
first order numerical method to solve the first order necessary
conditions of a lifted optimization problem with equality
constraints; the solution of our original problem is embedded
in the solution of this lifted optimization problem.

The paper is organized as follows: in Section II we
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formulate the constrained optimization problem and intro-
duce two distributed optimization algorithms for solving this
problem. Section III presents the origins of the algorithms
by demonstrating that our initial optimization problem is
equivalent to a lifted optimization problem with equality
constraints. Section IV introduces a set of results used for
the convergence analysis of the two algorithms; analysis
detailed in Sections V and VI. Due to space limitations
we have omitted the proofs of some of the results. These
proofs can be found in the technical report [12] (http:
//hdl.handle.net/1903/13693).

Notations and definitions: For a matrix A, its (i, j) entry
is denoted by [A]i j and its transpose is given by A′. If A is
a symmetric matrix, A ≻ 0 (A ≽ 0) means that A is positive
(semi-positive) definite. The nullspace and range of A are
denoted by Null(A) and Range(A), respectively. The symbol
⊗ is used to represent the Kronecker product between two
matrices. The vector of all ones is denoted by 1. Let x and
Q be a vector and a set of vectors, respectively. By x+Q
we understand the set of vectors produced by adding x to
each element of Q, that is, x+Q , {x+y | y ∈ Q}. Let ∥ · ∥ be
a vector norm. By ∥x−Q∥ we denote the distance between
the vector x and the set Q, that is, ∥x−Q∥ , infy∈Q ∥x− y∥.
Let f : Rn→R be a function. We denote by ∇ f (x) and by
∇2 f (x) the gradient and the Hessian of f at x, respectively.
Let F : Rn ×Rm → R be a function of variables (x,y). The
block descriptions of the gradient and of the Hessian of F
at (x,y) are given by ∇F(x,y)′ =

(
∇xF(x,y)′,∇yF(x,y)′

)
, and

∇2F(x,y) =
(
∇2

xxF(x,y) ∇2
xyF(x,y)

∇2
xyF(x,y) ∇2

yyF(x,y)

)
,

respectively. Let {Ai}Ni=1 be a set of matrices. By diag(Ai, i =
1, . . . ,N) we understand a block diagonal matrix, where the
ith block matrix is given by Ai. We say that the set X is
an attractor for the dynamics xk+1 = f (xk), if there exists
ϵ > 0, such that for any x0 ∈ S ϵ , with S ϵ = {x | ∥x−X∥ < ϵ},
limk→∞ ∥xk −X∥ = 0.

II. Problem description
In this section we describe the setup of our problem.

We present first the communication model after which we
introduce the optimization model and the two distributed
optimization algorithms.

A. Communication model

A set of N agents interact with each other subject to a
communication topology modeled as an undirected commu-
nication graph G = (V,E), where V = {1,2, . . . ,N} is the
set of nodes and E = {ei j} is the set of edges. An edge
between two nodes i and j means that agents i and j can
exchange information (or can cooperate). We denote by
Ni , { j | ei j ∈ E} the set of neighbors of agent i, and by
L the Laplacian of the graph G defined as

[L]i j =


−li j j ∈ Ni,∑
j∈Ni

li j i = j,

0 otherwise,

(1)

where li j are positive scalars chosen a priori that can be
interpreted as weights put on the information transmitted on
the links (i, j). Throughout the rest of the paper we are going
to assume that the Laplacian L is symmetric, that is, li j = l ji.

Remark 2.1: Let N̄ =
∑N

i=1 |Ni|, where | · | denotes the
cardinality of a set. For a symmetric Laplacian L, there exists
a matrix S ∈RN̄×N so that L = S ′S and Null(L) = Null(S ).

B. Optimization model

We consider a function f : Rn→R expressed as a sum of
N functions

f (x) =
N∑

i=1

fi(x),

and a vector-valued function h : Rn → RN where h ,
(h1,h2, . . . ,hN)′, with N ≤ n.

We make the following assumptions on the functions f
and h and on the communication model.

Assumption 2.1: (a) The functions fi(x) and hi(x), i =
1, . . . ,N are twice continuously differentiable;

(b) Agent i has knowledge of only functions fi(x) and hi(x),
and scalars li j, for j ∈ Ni;

(c) Agent i can exchange information only with agents
belonging to the set of its neighbors Ni;

(d) The communication graph G is connected and the Lapla-
cian L is symmetric.

The common goal of the agents is to solve the following
optimization problem with equality constraints

(P1) minx∈Rn f (x),
subject to: h(x) = 0,

under Assumptions 2.1. Throughout the rest of the paper we
assume that problem (P1) has at least one local minimizer.

Let x∗ be a local minimizer of (P1) and let

∇h
(
x∗
)
,
[∇h1

(
x∗
)
,∇h2

(
x∗
)
, . . . ,∇hN

(
x∗
)]

be a matrix whose columns are the gradients of the functions
hi(x) computed at x∗. The following assumption is used to
guarantee the uniqueness of the Lagrange multiplier vector
ψ∗ appearing in the first order necessary conditions of (P1),
namely

∇ f (x∗)+∇h
(
x∗
)
ψ∗ = 0.

Assumption 2.2: Let x∗ be a local minimizer of (P1).
The matrix ∇h (x∗) is full rank, or equivalently, the vectors
{∇hi (x∗)}Ni=1 are linearly independent.
Together with some additional assumptions on f (x) and
h(x), Assumption 2.2 is also typically used to prove local
convergence of a first-order numerical method for solving
the first order necessary conditions of (P1) (see for example
Section 4.4.1, page 386 of [1]). As we will see in the next
sections, the same assumption will be used to prove local
convergence for two distributed algorithms used to solve
(P1).

Remark 2.2: We assumed that each agent has an equality
constraint of the type hi(x) = 0. All the results presented in
what follows can be easily adapted for the case where only
m ≤ N agents have equality constraints.
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C. Distributed algorithms

Let x∗ be a local minimizer of (P1) and let xi,k denote
agent i’s estimate of x∗, at time-slot k. We propose the
following distributed algorithm to solve the problem (P1),
referred henceforth as Algorithm (A1):

xi,k+1 = xi,k −α∇ fi(xi,k)−αµi,k∇hi(xi,k)− (2)

− α
∑
j∈Ni

(
li jλi,k − l jiλ j,k

)
, xi,0 = x0

i ,

µi,k+1 = µi,k +αhi(xi,k), µi,0 = µ
0
i , (3)

λi,k+1 = λi,k +α
∑
j∈Ni

li j(xi,k − x j,k), λi,0 = λ
0
i , (4)

where α > 0 is the step-size of the algorithm, ∇ fi(xi,k) and
∇hi(xi,k) denote the gradients of functions fi(x) and hi(x),
respectively, computed at xi,k, and x0

i , µ0
i and λ0

i are given
scalars. In addition, the positive scalars li j are the entries of
the Laplacian L of the graph G defined in (1).

A modified version of the previous algorithm, called
henceforth Algorithm (A2) is given by:

xi,k+1 = xi,k −α∇ fi(xi,k)−αµi,k∇hi(xi,k)−
− α

∑
j∈Ni

(
li jλi,k − l jiλ j,k

)
−αchi(xi,k)∇hi(xi,k)

− αc
∑
j∈Ni

li j(xi,k − x j,k), xi,0 = x0
i , (5)

µi,k+1 = µi,k +αhi(xi,k), µi,0 = µ
0
i , (6)

λi,k+1 = λi,k +α
∑
j∈Ni

li j(xi,k − x j,k), λi,0 = λ
0
i , (7)

where in addition to the parameters of Algorithm (A1), we
have a new positive parameter c. As shown later in the
paper, the advantage of this algorithm is that it requires
weaker conditions to prove local convergence, compared to
Algorithm (A1).

In Algorithms (A1) and (A2) the index i (or j) designates
an agent while k denotes the discrete time. It can be observed
that the algorithms are indeed distributed since for updating
its current estimate xi,k agent i uses only local information,
that is, its own information (xi,k, µi,k, λi,k, ∇ fi(xi,k) and
∇hi(xi,k)) and information from its neighbors (x j,k, λ j,k, for
j ∈ Ni). Therefore, at each time instant, agent i shares with
its neighbors the quantities xi,k and li jλi,k. In the case of
Algorithm (A1), equation (2) is comprised of a standard
gradient descent step and two additional terms used to cope
with the local equality constraint and the lack of complete
information. The exact origin of equations (3) and (4) will
be made clear in the next sections. Intuitively however, µi,k
can be seen as the price paid by agent i for satisfying the
local equality constraint, while λi,k is the price paid by the
same agent for having its estimate xi,k far away from the
estimates of its neighbors. Compared to Algorithm (A1),
Algorithm (A2) adds two additional terms in equation (5).
These terms have their origin in the use of an augmented
Lagrangian and ensure the local convergence to a local
minimizer under weaker conditions than the conditions used
in the convergence analysis of Algorithm (A1).

III. An equivalent optimization problem with equality
constraints

In this section we define a lifted optimization problem,
from whose solution we can in fact extract the solution
of problem (P1). As will be made clear in what follows,
Algorithm (A1) comes as a result of applying a first-order
method to solve the first order necessary conditions of the
lifted optimization problem. In addition, Algorithm (A2)
comes as a result of applying a first-order method to the
same first order necessary conditions, but expressed in terms
of an augmented Lagrangian.

Let us define the function F : RnN →R given by

F(x) =
N∑

i=1

fi(xi),

where x′ = (x′1, x
′
2, . . . , x

′
N), with xi ∈ Rn. In addition, we

introduce the vector-valued functions h : RnN → RN and
g : RnN →RnN , where

h(x) = (h1(x),h2(x), . . . ,hN(x))′ ,

with hi : RnN →R given by hi(x) = hi(xi), and

g(x)′ =
(
g1(x)′,g2(x)′, . . . ,gN(x)′

)
,

with gi : RnN →Rn given by

gi(x) =
∑
j∈Ni

li j(xi− x j),

where li j are the entries of the Laplacian L defined in (1).
The vector valued function g(x) can be compactly expressed
as

g(x) = Lx,

where L = L⊗ I, with I the n-dimensional identity matrix.
We define the optimization problem

(P2) minx∈RnN F(x), (8)
subject to: h(x) = 0, (9)

g(x) = Lx = 0. (10)

The Lagrangian function of problem (P2) is a function
L : RnN ×RN ×RnN →R, defined as

L (x,µ,λ) , F(x)+µ′h(x)+λ′Lx. (11)

The following proposition states that by solving (P2) we
solve in fact (P1) as well, and vice-versa.

Proposition 3.1: Let Assumptions 2.1 hold. The vector x∗

is a local minimizer of (P1) if and only if x∗ = 1⊗ x∗ is a
local minimizer of (P2).�

Remark 3.1: We note from the above proposition the
importance of having a connected communication topology.
Indeed, if G is not connected, then the nullspace of L is much
richer than {1⊗ x | x ∈Rn}, and therefore the solution of (P2)
may not necessarily be of the form x∗ = 1⊗ x∗. However, the
fact that we search for a solution of (P2) with this particular
structure is fundamental for showing the equivalence of the
two optimization problems.�
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IV. Auxiliary results

In this section we recall and prove a number of results
concerning the optimization problems (P1) and (P2). They
will be used for analyzing the local convergence properties
of algorithms (A1) and (A2).

Let x∗ = 1⊗ x∗ denote a local minimizer of (P2) and let
∇h(x∗) denote the matrix

∇h(x∗) ,
[∇h1(x∗),∇h2(x∗), . . . ,∇hN(x∗)

]
.

The vectors ∇hi(x∗) are the gradients of the functions hi(x)
at x∗ with a structure given by

∇hi(x∗)′ =

=

0, . . . ,0︸ ︷︷ ︸
n zeros

, . . . ,0, . . . ,0︸ ︷︷ ︸
n zeros

, ∇hi(x∗)′︸   ︷︷   ︸
ith component

,0, . . . ,0︸ ︷︷ ︸
n zeros

, . . . ,0, . . . ,0︸ ︷︷ ︸
n zeros

 , (12)

as per the definition of the function hi(x).
We now characterize the tangent cone at a local minimizer

of (P2).
Proposition 4.1: Let Assumptions 2.1-(a) and 2.2 hold, let

x∗ = 1⊗ x∗ be a local minimizer of (P2) and let Ω denote
the constraint set, that is, Ω = {x | h(x) = 0,Lx = 0}. Then the
tangent cone to Ω at x∗ is given by

TC(x∗,Ω) = Null
([∇h(x∗),L′

]′)
=

=
{
1⊗ z | z ∈ Null

(∇h(x∗)′
)
= TC(x∗,Ω)

}
,

where Ω = {x | h(x) = 0} is the constraint set of (P1), and
TC(x∗,Ω) is the tangent cone to Ω at x∗.�

Let x∗ = 1⊗ x∗ denote a local minimizer of (P2). From
the theory concerning optimization problems with equality
constraints (see for example Chapter 3, page 15 of [20],
or Chapter 3, page 253 of [1]), the first order necessary
conditions for (P2) ensure the existence of λ∗0 ∈R, µ∗ ∈RN

and λ∗ ∈RnN so that

λ∗0∇F(x∗)+∇h(x∗)µ∗+∇g(x∗)λ∗ =

= λ∗0∇F(x∗)+∇h(x∗)µ∗+L′λ∗ = 0.

Note that since L is not full rank, and therefore the
matrix [∇h(x∗),L′] is not full rank as well, the uniqueness
of µ∗ and λ∗ cannot be guaranteed. The following result
characterizes the set of Lagrange multipliers verifying the
first order necessary conditions of (P2).

Proposition 4.2 (first order necessary conditions for (P2)):
Let Assumptions 2.1 and 2.2 hold and let x∗ = 1⊗ x∗ be
a local minimizer for problem (P2). There exist unique
vectors µ∗ and λ∗ ∈ Range(L) so that

∇F(x∗)+∇h(x∗)µ∗+L′λ = 0,

for all λ ∈ {λ∗+λ⊥ | λ⊥ ∈ Null (L′)}.�
Under the assumption that the matrix ∇h(x∗) is full rank,

the first order necessary conditions of (P1) are given by

∇ f (x∗)+∇h(x∗)ψ∗ = 0,
h(x∗) = 0,

where the vector ψ∗ is unique (see for example Proposition
3.3.1, page 255, [1]). An interesting question is whether or
not there is a connection between ψ∗ and µ∗ shown in the
first order necessary conditions of (P2). As stated in the
following, the two vectors are in fact equal.

Proposition 4.3: Let Assumptions 2.1 and 2.2 hold, let
x∗ = 1⊗ x∗ be a local minimizer of (P2) and let ψ∗ and µ∗ be
the unique Lagrange multiplier vectors corresponding to the
first order necessary conditions of (P1) and (P2), respectively.
Then ψ∗ = µ∗.�

The convergence properties of algorithms (A1) and (A2)
depend on the spectral properties of a particular matrix;
properties analyzed in the following result.

Lemma 4.1: Let Assumptions 2.1 and 2.2 hold, let α be a
positive scalar, and let x∗ be a local minimizer of (P2). Then
the eigenvalues of the matrix

B =

 H ∇h(x∗) L′
−∇h(x∗)′ 0 0
−L 0 1

αJ

 ,
have positive real parts, where H is a positive definite matrix

and J , 11′
1′1 ⊗ I.�

V. Convergence analysis of Algorithm (A1)
In this section we analyze the convergence properties

of Algorithm (A1). Since the matrix L is not full rank,
we cannot apply directly existing results for regular (lo-
cal) minimizers, such as Proposition 4.4.2, page 388, [1].
Still, for a local minimizer and Lagrange multipliers pair
(x∗,µ∗,λ∗), with λ∗ ∈ Range(L), we show that if the initial
values (x0,µ0, (I−J)λ0) are close enough to (x∗,µ∗,λ∗), for
a small enough step-size and under some conditions on
(the Hessians of) the functions fi(x) and hi(x), i = 1, . . . ,N,
the vectors xk and µk do indeed converge to x∗ and µ∗,
respectively. However, although under the same conditions
λk does converge, it cannot be guaranteed that it converges
to the unique λ∗ ∈ Range(L) but rather to a point in the set
{λ∗+Null (L′)}.

To find a solution of problem (P2) the first thing we can
think about is solving the set of necessary conditions:

∇F(x)+L′λ+∇h(x)µ = 0, (13)
h(x) = 0, (14)

Lx = 0. (15)

Solving (13)-(15) does not guarantee finding a local min-
imizer, but at least the local minimizers are among the
solutions of the above nonlinear system of equations. An
approach for solving (13)-(15) consists of using a first order
method (see for instance Section 4.4.1, page 386, [1]), which
is given by

xk+1 = xk −α
[∇F(xk)+∇h(xk)µk +L′λk

]
, (16)

µk+1 = µk +αh(xk), (17)
λk+1 = λk +αLxk, (18)

where α> 0 is chosen to ensure the stability of the algorithm.
By reformulating the above iteration in terms of the n-
dimensional components of the vectors xk and λk, and
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in terms of the scalar components of the vector µk, we
recover Algorithm (A1), which shows the distributed and
non-heuristic nature of the algorithm.

The following theorem addresses the local convergence
properties of Algorithm (A1), which, under some assump-
tions on the functions fi(x) and hi(x), states that provided the
initial values used in the Algorithm (A1) are close enough to
a solution of the first order necessary conditions of (P2), and
a small enough step-size α is used, the sequence {xk,µk,λk}
converges to this solution.

Theorem 5.1: Let Assumptions 2.1 and 2.2 hold and
let (x∗,µ∗,λ∗) with λ∗ ∈ Range(L), be a local minimizer-
Lagrange multipliers pair of (P2). Assume also that
∇2

xxL (x∗,µ∗,λ∗) is positive definite. Then there exists ᾱ, such
that for all α ∈ (0, ᾱ], the set (x∗,µ∗,λ∗+Null (L′)) is an
attractor of iteration (16)-(18) and if the sequence {xk,µk,λk}
converges to the set (x∗,µ∗,λ∗+Null (L′)), the rate of con-
vergence of ∥xk −x∗∥, ∥µk −µ∗∥ and ∥λk − [λ∗+Null (L′)]∥ is
linear.

Proof: Using the Lagrangian function defined in (11),
iteration (16)-(18) can be equivalently expressed as xk+1

µk+1
λk+1

 = M̄α(xk,µk,λk), (19)

with

M̄α(x,µ,λ) =

 x−α∇xL(x,µ,λ)
µ+α∇µL(x,µ,λ)
λ+α∇λL(x,µ,λ)

 .
It can be easily checked that (x∗,µ∗,λ∗+Null (L′)) is a set of

fixed points of M̄α. Let us now consider the transformation
λ̃ = (I−J)λ, where J = 11′

1′1 ⊗ I. This transformation extracts
the projection of λ on the nullspace of L′ from λ and there-
fore λ̃ is the error between λ and its orthogonal projection on
Null (L′). Under this transformation, iteration (19) becomes xk+1

µk+1
λ̃k+1

 =Mα(xk,µk, λ̃k)

with

Mα(x,µ, λ̃) =

 x−α∇xL(x,µ, λ̃)
µ+α∇µL(x,µ, λ̃)

(I−J) λ̃+α∇λ̃L(x,µ, λ̃)

 ,
where we used the fact that (I− J)λ̃ = (I− J)λ and L′J =
JL = 0. Clearly (x∗,µ∗,λ∗) is a fixed point for Mα and if(
xk,µk, λ̃k

)
converges to (x∗,µ∗,λ∗), we in fact show that

(xk,µk,λk) converges to (x∗,µ∗,λ∗+Null (L′)). The derivative
of the mapping Mα (x,µ,λ) at (x∗,µ∗,λ∗) is given by

∇Mα
(
x∗,µ∗,λ∗

)
= I−αB,

where

B =

 ∇
2
xxL (x∗,µ∗,λ∗) ∇h(x∗) L′
−∇h(x∗)′ 0 0
−L 0 1

αJ

 .
By Lemma 4.1 we have that the real parts of the eigenvalues
of B are positive and therefore we can find an ᾱ so that

for all α ∈ (0.ᾱ] the eigenvalues of ∇Mα (x∗,µ∗,λ∗) are
strictly within the unit circle. Using a similar argument as in
Proposition 4.4.1, page 387, [1], there exist a norm ∥ · ∥ and
a sphere Sϵ =

{
(x′,µ′,λ′)′ | ∥(x′,µ′,λ′)′− (x∗′,µ∗′,λ∗′)′ ∥ < ϵ}

for some ϵ > 0 so that the induced norm of ∇Mα (x,µ,λ)
is less than one within the sphere Sϵ . Therefore, using
the mean value theorem, it follows that Mα (x,µ,λ) is a
contraction map for any vector in the sphere Sϵ . By invoking
the contraction map theorem (see for example Chapter 7 of
[6]) it follows that

(
xk,µk, λ̃k

)
converges to (x∗,µ∗,λ∗) for any

initial value in S ϵ .
Let us know reformulate the above theorem so that the

local convergence result can be applied to problem (P1).
Corollary 5.1: Let Assumptions 2.1 and 2.2 hold and let

(x∗,ψ∗) be a local minimizer-Lagrange multiplier pair of
(P1). Assume also that ∇2 fi(x∗) + ψ∗i∇2hi(x∗) are positive
definite for all i = 1, . . . ,N. Then there exits ᾱ, such that
for all α ∈ (0, ᾱ], (x∗,ψ∗) is a point of attraction for iteration
(2) and (3), for all i = 1, . . . ,N, and if the sequence

{
xi,k,µi,k

}
converges to (x∗,ψ∗), then the rate of convergence of ∥xi,k −
x∗∥ and ∥µi,k −ψ∗∥ is linear.

VI. Convergence analysis of Algorithm (A2)

In the previous section we gave sufficient conditions for
convergence to a local minimizer using Algorithm (A1). By
using an augmented Lagrangian on problem (P2), we refor-
mulate the first order necessary conditions for (P2). Applying
as in the case of Algorithm (A1) a first order method to solve
the reformulated first order necessary conditions, we obtain
algorithm (A2), for which local convergence can be proven
under more relaxed conditions than in the case of Algorithm
(A1).

Let S be a matrix as in Remark 2.1 and let S = S ⊗ I.
It follows that L = S′S. We define the following augmented
Lagrangian for problem (P2):

Lc(x,µ,λ) = F(x)+µ′h(x)+λ′Lx+
c
2
∥h(x)∥2+ c

2
x′S′Sx,

(20)
where c is a positive scalar. The gradient and the Hessian of
Lc(x,µ,λ) are given by

∇xLc(x,µ,λ) = ∇F(x)+∇h(x)µ+L′λ+ c∇h(x)h(x)+ cLx,
(21)

and

∇2
xxLc(x,µ,λ) = ∇2F(x)+

N∑
i=1

µi∇2hi(x)+ cL+

+c
N∑

i=1

(
hi(x)∇2hi(x)+∇hi(x)∇hi(x)′

)
, (22)

respectively. Note that in the additional quadratic cost we do
not include x′L′Lx but x′Lx, since doing so would prevent
the distributed implementation of the first order method. It
turns out that the introduction of x′Lx is enough to obtain
the desired behavior of the Hessian ∇2

xxLc(x∗,µ∗,λ∗).
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The first order necessary conditions for (P2), reformulated
in terms of Lc(x,µ,λ) become

∇F(x)+∇h(x)µ+L′λ+ c∇h(x)h(x)+ cLx = 0, (23)
∇h(x) = 0, (24)

Lx = 0. (25)

A first order numerical method that can be used to solve the
necessary conditions (23)-(25) takes the form

xk+1 = xk −α
[∇F(xk)+∇h(xk)µk+

+ c∇h(xk)h(xk)+L′λk + cLxk
]
, (26)

µk+1 = µk +αh(xk), (27)
λk+1 = λk +αLxk, (28)

which is basically the compact representation of Algorithm
(A2).

The following result addresses the local convergence prop-
erties of the iteration (26)-(28).

Theorem 6.1: Let Assumptions 2.1 and 2.2 hold and
let (x∗,µ∗,λ∗) with λ∗ ∈ Range(L), be a local minimizer-
Lagrange multipliers pair of (P2). Assume also that
x′∇2

xxL (x∗,µ∗,λ∗)x > 0 for all x ∈ TC(x∗,Ω). Then there
exists c̄> 0 so that for all c> c̄ we can find ᾱ(c) such that for
all α ∈ (0, ᾱ(c)], the set (x∗,µ∗,λ∗+Null (L′)) is an attractor
of iteration (26)-(28). In addition, if the sequence {xk,µk,λk}
converges to the set (x∗,µ∗,λ∗+Null (L′)), the rate of con-
vergence of ∥xk −x∗∥, ∥µk −µ∗∥ and ∥λk − [λ∗+Null (L′)]∥ is
linear.
The following corollary gives conditions that ensure local
convergence to a local minimizer of (P1) for each agent
following Algorithm (A2).

Corollary 6.1: Let Assumptions 2.1 and 2.2 hold and let
(x∗,ψ∗) be a local minimizer-Lagrange multiplier pair of
(P1). Assume also that x′

[
∇2 fi(x∗)+ψ∗i∇2hi(x∗)

]
x > 0 for all

x ∈ TC(x∗,Ω). Then there exists c̄ > 0 so that for all c ≥ c̄
we can find ᾱ(c) such that for all α ∈ (0, ᾱ(c)], (x∗,ψ∗) is a
point of attraction for iteration (5)-(7), for all i = 1, . . . ,N. In
addition, if the sequence

{
xi,k,µi,k

}
converges to (x∗,ψ∗), then

the rate of convergence of ∥xi,k− x∗∥ and ∥µi,k−ψ∗∥ is linear.
Remark 6.1: Algorithms (A1) and (A2) are part of the

general class of methods, called Lagrangian methods (see for
example Section 4.4.1, page 386, [1]). They are based on a
first order method, and therefore they achieve a linear rate
of convergence. The optimization literature includes more
sophisticated methods for solving constrained optimization
problems, such as the multipliers methods or the sequential
quadratic programming methods (see for instance [2], [3]);
methods that can achieve superior convergence rates. They
are based on a sequence of unconstrained minimization prob-
lems that in our case would need to be solved at each iteration
in a distributed manner. In other words, unlike Algorithms
(A1) and (A2), they have two layers of iterations: one layer
is used to compute the estimate of the minimizer while the
second one is used to update the Lagrange multipliers. Still,
using the approach introduced in this paper (that is, minimiz-
ing the lifted constrained optimization problem), it turns out

that each of the unconstrained optimization problems can
be solved in a distributed manner. This is mainly due to
the separability of the augmented Lagrangian (20). We are
currently working on extending the augmented Lagrangian
method so that it can be implemented in a distributed manner.
The extension of the method is based on dealing with the fact
that the Lagrange multipliers corresponding to the equality
constraint Lx = 0 are not unique and therefore, the (local)
minimizers are not regular.
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