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Abstract: Anomaly detection is important for the correct functioning of wireless sensor
networks. Recent studies have shown that node mobility along with spatial correlation of
the monitored phenomenon in sensor networks can lead to observation data that have long
range dependency, which could significantly increase the difficulty of anomaly detection. In
this article, we develop an anomaly detection scheme based on multiscale analysis of the
long-range dependent traffic to address this challenge. In this proposed detection scheme, the
discrete wavelet transform is used to approximately de-correlate the traffic data and capture
data characteristics in different timescales. The remaining dependencies are then captured by
a multilevel hidden Markov model in the wavelet domain. To estimate the model parameters,
we develop an online discounting expectation maximization (EM) algorithm, which also
tracks variations of the estimated models over time. Network anomalies are detected as
abrupt changes in the tracked model variation scores. Statistical properties of our detection
scheme are evaluated numerically using long-range dependent time series. We also evaluate
our detection scheme in malicious scenarios simulated using the NS-2 network simulator.

Keywords: Anomaly detection; Hidden Markov model; Long-range dependency; Wavelet
decomposition.

Subject Classifications: 62L12; 62F03; 62F15.

1. INTRODUCTION

A wireless sensor network consists of a set of spatially scattered sensors that can
measure various properties of the environment, formulate local and distributed
inferences, and make responses to events or queries. It can be deployed to monitor
and protect critical infrastructure assets, such as power grids, automated railroad
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Sequential Anomaly Detection 459

control, water and gas distribution, etc. However, due to the often unattended
operating environment, it could be easy for attackers to compromise sensors and
conduct malicious behaviors. Anomaly detection is thus critical to ensure the
effective functioning of sensor networks.

Anomaly detection methods can be generally classified in two categories:
signature based and statistics based (see Dewaele et al., 2007). Signature-based
detection methods use attack signatures to identify anomalies. The attack signatures
are collected based on historical observations under the same attack; thus, such
methods cannot be applied to detect unknown anomalies. Statistics-based detection
methods overcome this drawback by only modeling normal network traffic and treat
everything that falls outside the normal scope as anomalies. A typical statistics-
based anomaly detection usually consists of the following steps: first, collect network
measurements and model the normal traffic as a reference and then apply a
decision rule to detect whether current network traffic deviates from the reference.
In the decision rule, some statistical distance between the analyzed traffic and
the reference is computed, and then it is decided whether the distance is large
enough to trigger an alarm. Traditional anomaly detection methods assume that the
network measurements are either independent or short-range dependent. However,
recent studies have shown that node mobility along with spatial correlation of
the monitored phenomenon in sensor networks can lead to long-range dependent
(LRD) traffic (see Wang and Akyildiz, 2009), which can cause high false alarms
when traditional methods are used.

In this article, we develop an anomaly detection scheme based on multiscale
analysis of the long-range dependent traffic. Since network anomalies can take
a large variety of forms—for example, they can be caused by different media
access control (MAC) layer misbehaviors, various routing layer attacks, and
many others—these anomalies may show statistically abnormal signals in different
timescales (see, Zhang et al., 2008). The length of the time interval over which
network measurements are collected can influence the results. Therefore, analyzing
network traffic in different timescales is necessary for anomaly detection. The
discrete wavelet transform (DWT) is a useful tool for multiscale analysis of network
traffic due to its capability of capturing data characteristics over different timescales
and frequencies. Furthermore, it can approximately de-correlate autocorrelated
stochastic processes. Most of the literature work on using DWT for anomaly
detection would use the first-order or second order statistics (mean or variance)
of the wavelet coefficients for anomaly detection; for example, they detect abrupt
changes in the mean or variance of the wavelet coefficients as anomalies (see
Barford et al., 2002, Zuraniewski and Rincon, 2006). In contrast, we build
a probabilistic model for the wavelet coefficients through a multilevel hidden
Markov model (HMM) in an effort to capture the remaining dependency among
the transformed data and thus better model the network traffic and improve
detection accuracy. We design a forward-backward decomposition scheme and an
online discounting expectation maximization (EM) algorithm to estimate model
parameters. The online EM algorithm can also track the structure changes of
the estimated HMMs by evaluating a model variation score, which is defined
as the symmetric relative entropy between the current estimated model and a
previous estimated one. Network anomalies are then detected as abrupt changes in
the tracked model variation scores. To evaluate the proposed anomaly detection
schemes, we provide extensive simulations, including numerical experiments using
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460 Zheng and Baras

two types of well defined LRD models, namely, the fractional gaussian noise (FGN)
and the autoregressive fractionally integrated moving average (ARFIMA) model.
We also conducted experiments using Network Simulator 2 (NS-2) for anomaly
detection in wireless sensor networks.

The article is organized as follows. Section 2 reviews the related work. Section 3
presents our wavelet-domain HMM for modeling the network traffic. The anomaly
detection algorithm that is based on HMM structure changes is presented in
Section 4. Numerical experiments are presented in Section 5 and simulation results
using NS-2 are described in Section 6. Finally, Section 7 gives the conclusions.

2. RELATED WORK

Network anomaly detection is an important problem and has attracted numerous
research efforts. It usually involves modeling the normal traffic as a reference, and
computing the statistical distance between the analyzed traffic and the reference.

The modeling of the normal traffic can be based on various statistical
characteristics of the data. For example, Lakhina et al. (2005) proposed to use
principal component analysis to identify an orthogonal basis along which the
network measurements exhibit the highest variance. The principal components with
high variance model the normal behavior of a network, whereas the remaining
components of small variance are used to identify and classify anomalies. Scherrer
et al. (2007) used a non-Gaussian long-range dependent process to model network
traffic, which can provide several statistics such as the marginal distribution
and the covariance to characterize the traffic. Zhang et al. (2009) proposed a
spatiotemporal model using traffic matrices that specify the traffic volumes between
origin and destination pairs in a network. Anomalies are detected by finding
significant differences from historical observations. Spectral density (see Cheng
et al., 2002, Hussain et al., 2003) and covariance (see Jin and Yeung, 2004)
have also been used for modeling normal network traffic. Hussain et al. (2006)
proposed a spectral fingerprint–based anomaly detector, which is based on the idea
that individual attack scenarios often generate unique spectral fingerprints. These
spectral fingerprints can detect repeated attacks using statistical pattern matching
techniques. Network tomography techniques have also been used for anomaly
detection. Duffield (2006) formulated the detection of unreliable links as a set cover
problem and correlated multi-path measurements to infer the anomalous links.

Besides these methods, the wavelet transform is another popular technique
used for capturing network traffic, especially for the LRD traffic. Abry and Vitch
(1998) proposed a wavelet-based tool for analyzing LRD time series and a related
semi-parametric estimator for estimating LRD parameters. Barford et al. (2002)
assumed that the low-frequency band signal of a wavelet transform represents the
normal traffic pattern. They then normalized both medium - and high-frequency
band signals to compute a weighted sum of the two signals. An alarm is raised
if the variance of the combined signal exceeds a preselected threshold. Kim et al.
(2004) used a wavelet-based technique for denoising and separating queueing delay
caused by network congestions from various other delay variations. Zuraniewski
and Rincon (2006) have combined wavelet transforms and change-point detection
algorithms to detect the instants that the fractality changes noticeably. Pukkawanna
and Fukuda (2010) studied anomaly detection methods based on a combination

D
ow

nl
oa

de
d 

by
 [

N
at

io
nw

id
e 

C
hi

ld
re

ns
 H

os
pi

ta
l]

, [
Jo

hn
 B

ar
as

] 
at

 1
9:

28
 1

6 
O

ct
ob

er
 2

01
2 



Sequential Anomaly Detection 461

of random projection and wavelet analysis. The key feature of these wavelet-
based methods lies in the fact that the wavelet transform can turn the LRD
that exists among the data samples into a short memory structure among the
wavelet coefficients (see Abry et al., 2011). In our work, we build a wavelet-domain
multilevel hidden Markov model for the LRD network traffic. The merit of our
method is the model’s mathematical tractability and its capability of capturing data
dependency.

After modeling the network traffic, the next step is to detect the deviation of the
analyzed traffic from the reference model. The detections can be based on change-
point detection theory and methods, as in real applications it is critical to minimize
the average detection latency while maintaining a given false alarm rate. In the
standard formulation of the change-point detection problem, we have a sequence
of observations whose probability density might change at some unknown time
point and the goal is to detect the change point (in time) as soon as possible.
The change point can be assumed to be a random variable with a known prior
probability function; then the goal is to minimize the expected detection latency
for a given false alarm rate. This type of method belongs to Bayesian methods.
In another kind of method, namely, the minimax method, the goal is to minimize
the worst-case detection latency while maintaining a lower bound on the mean
time between false alarms. Change-point detection methods have been widely used
for network anomaly detection as network attacks can usually be identified by
observing some abrupt changes in the network traffic. Tartakovsky et al. (2006a)
developed an adaptive sequential method and a batch sequential method for an
early detection of anomalies based on change-point detection theory. A thresholding
of test statistics is used to achieve a fixed false alarm rate while detecting the change
point as soon as possible. The algorithms are designed to be self-learning, so they
can adapt to network loads and user patterns. In another article of Tartakovsky et
al. (2006b), change-point detection theory is applied in the design of a multichannel
anomaly detection system in computer networks. A sequential nonparametric
detection algorithm and a data quantization based algorithm are developed to
quickly detect the anomalies. Markov process and dynamic programming methods
are also used for quickest change detection in sensor networks (see Raghavan and
Veeravalli, 2008), where an optimal stopping rule is designed and reduced to a
simple threshold test.

All of these algorithms depend on statistical tests, which are used to measure
the distance between the monitored model and the reference model. These statistical
distances include simple threshold, mean quadratic distances, and entropy. Entropy
is a measure of the uncertainty of a probability distribution. It can be used to
compare certain qualitative differences of probability distributions. Gu et al. (2005)
used a maximum entropy technique to estimate the reference traffic model and
compute a distance measure related to the relative entropy of the analyzed network
traffic with respect to the reference. Nychis et al. (2008) thoroughly evaluated
entropy-based metrics for anomaly detection. In our detection scheme, we apply the
symmetric relative entropy as a distance measure. The online EM algorithm can
efficiently compute the symmetric relative entropy between the current HMM model
and a previous estimated one. Anomalies are then detected as abrupt changes in the
symmetric relative entropy measurements.

D
ow

nl
oa

de
d 

by
 [

N
at

io
nw

id
e 

C
hi

ld
re

ns
 H

os
pi

ta
l]

, [
Jo

hn
 B

ar
as

] 
at

 1
9:

28
 1

6 
O

ct
ob

er
 2

01
2 



462 Zheng and Baras

3. WAVELET DOMAIN HIDDEN MARKOV MODEL
FOR LONG-RANGE DEPENDENT TRAFFIC

Wavelet transforms have been popular for analyzing autocorrelated time series due
to their capability to compress multiscale features and approximately de-correlate
the time series. They can provide compact information about a signal at different
locations in time and frequency. Our traffic model is in the wavelet domain. We
build an HMM for the wavelet-transformed network measurements. The basic
idea for employing transform domain models is that a linear invertible transform
can often restructure a signal, generating transform coefficients whose structure is
simpler to model.

3.1. Wavelet Domain Hidden Markov Model

In the wavelet transform, the measurements x�t�� t = 1� � � � � N are decomposed
into multiple scales by a weighted sum of orthonormal basis functions x�t� =∑N

k=1 aL�k�L�k�t�+
∑L

m=1

∑nm
k=1 dm�k�m�k�t�, where �L�k� �m�k are certain orthonormal

basis functions, aL�k� dm�k are the approximation and detail coefficients. The
approximation coefficients aL�k provide the general shape of the signal, while the
detail coefficients dm�k from different scales provide different levels of details for the
signal content, with d1�k providing the finest details and dL�k providing the coarsest
details. The locality and multiresolution properties enable the wavelet transform
to efficiently match a wide range of signal characteristics from high-frequency
transients and edges to slowly varying harmonics.

In our work, we apply the DWT to the network traffic. The DWT is a wavelet
transform for which the basis functions are discretely sampled. The DWT can be
explained using a pair of quadrature mirror filters. Efficient methods have been
developed for decomposing a signal using a family of wavelet basis functions
based on convolution with the corresponding quadrature mirror filters. However,
the wavelet transform cannot completely decorrelate real-world signals; that is, a
residual dependency always remains among the wavelet coefficients. A key factor
for a successful wavelet-based algorithm is an accurate joint probability model for
the wavelet coefficients (see Crouse et al., 1998). A complete model for the joint
probability density function would be too complicated, if not impossible, to obtain
in practice, while modeling the wavelet coefficients as independent is simple but
disregards the inter-coefficient dependencies. To achieve a balance between the two
extremes, we use a hidden Markov model to capture the remaining dependency
among the wavelet coefficients. It is based on two properties of the wavelet
transform (see Crouse et al., 1998, Mallat and Zhong, 1992): the first is the clustering
property, meaning that if a particular wavelet coefficient is large/small, the adjacent
coefficients are very likely to also be large/small; the second is the persistence
property, meaning that large/small values of wavelet coefficients tend to propagate
across scales.

For the wavelet coefficients dj�k� j = 1� � � � � L and k = 1� � � � � nj , where L is
the decomposition level and nj is the number of wavelet coefficients in scale j, we
assume that each dj�k is associated with a hidden state sj�k. We then use a hidden
Markov model to characterize the wavelet coefficients through the factorization

D
ow

nl
oa

de
d 

by
 [

N
at

io
nw

id
e 

C
hi

ld
re

ns
 H

os
pi

ta
l]

, [
Jo

hn
 B

ar
as

] 
at

 1
9:

28
 1

6 
O

ct
ob

er
 2

01
2 



Sequential Anomaly Detection 463

Figure 1. HMM for three-level wavelet decomposition (color figure available online).

P��d1�i� s1�i�
n1
i=1� � � � � �dL�i� sL�i�

nL
i=1� = p�sL�1�

nL∏
j=2

p�sL�j�sL�j−1�
L−1∏
i=1

p�si�1�si+1�1�
L−1∏
i=1

ni∏
j=2

× p�si�j�si�j−1� si+1��j/2��
L∏
i=1

ni∏
j=1

p�di�j�si�j�� (3.1)

This factorization involves three main conditional independence assumptions: first,
conditioned on the states at the previous coarser scale i+ 1, the states at scale i
form a first-order Markov chain; second, conditioned on the corresponding state at
the previous coarser scale i+ 1, that is, si+1��j/2�, and the previous state at the same
scale, that is, si�j−1, the state si�j is independent of all states in the coarser scales;
third, the wavelet coefficients are independent of everything else given their hidden
states. The three independence assumptions are critical for deriving the inference
algorithms for this wavelet domain HMM. Figure. 1 illustrates a hidden Markov
model for a three-level wavelet decomposition.

3.2. Estimating Model Parameters Using an Expectation-Maximization Algorithm

Denote the set of wavelet coefficients and their hidden states by � = ��dL�i�
nL
i=1

� � � � � �d1�i�
n1
i=1� and � = ��sL�i�

nL
i=1� � � � � �s1�i�

n1
i=1�, respectively, where ni is the number

of wavelet coefficients in the ith scale. The parameters of the HMM include the
following three probability distributions: the first is the initial probability for the
state sL�1, that is, 	k = P�sL�1 = k�� k ∈ �, where � represents the domain of
the hidden states; the second is the two types of state transition probabilities; that
is,

	i�1
k1 � k2 = P�si�1 = k1 � si+1�1 = k2� for i < L�

	i
k1 � k2�k3 = P�si�j = k1 � si�j−1 = k2� si+1��j/2� = k3��
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464 Zheng and Baras

and the third is the conditional probability P�di�j � si�j = k�, which can be modeled
by a mixture Gaussian distribution. For simplicity and presentation clarity, we use
a single Gaussian distribution to capture P�di�j � si�j = k�, that is, P�di�j � si�j = k� ∼
� �
i

k� �
i
k�, where 
i

k and �i
k are the mean and the standard deviation for the state k

in the ith scale. The extension to mixture Gaussian distributions is straightforward.
The model parameters, denoted by � = �	k� 	

i�1
k1 � k2� 	

i
k1 � k2�k3� 


i
k� �

i
k�, can be estimated

from the real data using the maximum likelihood criterion. Due to the intractability
of direct maximization of the likelihood function, we apply an EM algorithm. The
EM algorithm provides a maximum likelihood estimation of model parameters by
iteratively applying an E-step and an M-step. In the E-step, the expected value of
the log likelihood function Q�� � ��t�� = E� �����t� �logP��� ��� is computed. Then in
the M-step, the parameters that maximize Q�� � ��t�� are computed, that is, ��t+1� =
argmax� Q�� � ��t��.

To implement the two steps, we define the following posterior probabilities,

�
i�j
k = P�si�j = k ���� �i�1k1�k2 = P�si�1 = k1� si+1�1 = k2 ���� for i < L

�
i�j
k1�k2�k3

= P�si�j = k1� si�j−1 = k2� si��j/2� = k3 ����

According to equation (3.1), maximizing Q�� � ��t�� using the Lagrange multiplier
method leads to the following estimation of �,

	k = �L�1k � 	i�1
k1 � k2 =

�i�1k1�k2∑
l∈� �i�1l�k2

� 	i
k1 � k2�k3 =

∑ni
j=2 �

i�j
k1�k2�k3∑

l∈�
∑ni

j=2 �
i�j
l�k2�k3

�


i
k =

∑ni
j=1 �

i�j
k di�j∑ni

j=1 �
i�j
k

� ��i
k�

2 =
∑ni

j=1 �
i�j
k �di�j−
ik�

2∑ni
j=1 �

i�j
k

�

The computation of the posterior probabilities ��·� is more involved. Using a
brute force computation by direct marginalization will take O�N · ���N � operations,
where ��� represents the cardinality of set � and N is the length of the input
signal. However, by exploiting the sparse factorization in equation (3.1) and
manipulating the distributive property of + and ×, we are able to design a forward–
backward decomposition algorithm to compute these posterior probabilities with
computational complexity O�N · ���L+1�, where L is the wavelet decomposition level,
which is much smaller than N .

3.3. Forward–Backward Decomposition

Our algorithm extends the classical forward–backward decomposition algorithm for
a one-level hidden Markov model to our multilevel case. The key point is to only
maintain L appropriate hidden states in both the forward and backward variables
for computational efficiency.

3.3.1. Forward Decomposition

Defining the following variables,

�i�j = �sL��2i−Lj�� � � � � si+1��2−1j�� si�j� si−1�2�j−1�� � � � � s1�2i−1�j−1���

�i�j = �dL�k≤�2i−Lj�� � � � � di+1�k≤�2−1j�� di�k≤j� di−1�k≤2�j−1�� � � � � d1�k≤2i−1�j−1���
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Sequential Anomaly Detection 465

Table 1. Algorithm for computing forward variables

Initialization: �L�1 = P�sL�1� dL�1�
For kL = 1 to 2−LN

�1�2L−1kL
= f�L� �L�kL �, �L�kL+1 = g1�dL�kL+1�

∑
sL�kL

�g2�sL�kL+1� · �1�2L−1kL


end
function ��1�2h−1j  = f�h� �h�j�
If h = 2,
�1�2j−1 = g1�d1�2j−1�

∑
s1�2j−2

�g2�s1�2j−1� · �2�j ,�1�2j = g1�d1�2j � s1�2j�
∑

s1�2j−1

�g2�s1�2j� · �1�2j−1

else
�h−1�2j−1 = g1�dh−1�2j−1�

∑
sh−1�2j−2

�g2�sh−1�2j−1� · �h�j, �1�2h−2�2j−1� = f�h− 1� �h−1�2j−1�

�h−1�2j = g1�dh−1�2j�
∑

sh−1�2j−1

�g2�sh−1�2j� · �1�2h−2�2j−1�, �1�2h−2�2j� = f�h− 1� �h−1�2j�

End

we let the forward variable be �i�j = P��i�j��i�j�. Let ��1�2h−1j = f�h� �h�j��∀h� j ∈
Z+ to define a dynamic programming algorithm. The pseudo-code for computing
the forward variables using dynamic programming is shown in Table 1. Its
correctness can be proved using the three conditional independence assumptions
in our HMM. For simplicity and presentation clarity, in Table 1 we assume that
the input data length N is a power of 2 and denote the conditional probabilities
P�di�j � si�j� by g1�di�j�, and P�si�j � si�j−1� si+1��j/2�� by g2�si�j�, respectively.

There is some implementation issue for the algorithm in Table 1, namely, the
numerical under- or overflow of �i�j as P��i�j��i�j� becomes increasingly smaller
with increasing size of the observations �i�j . Therefore, it is necessary to scale
the forward variables by positive real numbers to keep the numeric values within
reasonable bounds. One solution is to use a scaled version �̄i�j = �i�j

ci�j
, where ci�j =∑

�i�j
�i�j . In this way, �̄i�j represents the probability P��i�j ��i�j� and ci�j represents

the probability P�di�j ��i�j\di�j�, where �i�j\di�j denotes the set �i�j except di�j . It
is straightforward to prove that both ci�j and �̄i�j do not depend on the number
of observations. The algorithm for computing ��̄i�j� ci�j� can be obtained by adding
a normalization step after each update of �i�j for the algorithm in Table 1. A by-
product of the scaled forward decomposition is that the log-likelihood logP��� can
be computed as logP��� = ∑L

i=1

∑ni
j=1 log ci�j .

3.3.2. Backward Decomposition

Letting �c
i�j = �−�i�j , we define the backward variable to be �i�j = P��c

i�j ��i�j�. It
is computed using a similar dynamic programming algorithm as the one in Table 1.
To avoid the numerical under- or overflow problem, instead of computing �i�j , we
compute a scaled version �̄i�j as is shown in Table 2. The scaled backward variable

�̄i�j represents the probability
P��c

i�j ��i�j �

P��c
i�j ��i�j �

. The correctness of the algorithm in Table 2
can be verified using the three conditional independence assumptions in our HMM.
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466 Zheng and Baras

Table 2. Algorithm for computing the scaled backward variables

Initialization: �̄1�N/2 = 1
For kL = 2−LN to 1

�̄L�kL
= f�L� �̄1�2L−1kL

�, �̄1�2L−1�kL−1� =
∑
sL�kL

g1�dL�kL
�g2�sL�kL ��̄L�kL

cL�kL
end
function ��̄h�j = f�h� �̄1�2h−1j�
If h = 2,

�̄1�2j−1 =
∑
s1�2j

g1�d1�2j�g2�s1�2j� · �̄1�2j

c1�2j
, �̄2�j =

∑
s1�2j−1

g1�d1�2j−1�g2�s1�2j−1� · �̄1�2j−1

c1�2j−1

else

�̄h−1�2j = f�h− 1� �̄1�2h−22j�, �̄1�2h−2�2j−1� =
∑

sh−1�2j

g1�dh−1�2j�g2�sh−1�2j� · �̄h−1�2j

ch−1�2j

�̄h−1�2j−1 = f�h− 1� �̄1�2h−2�2j−1��, �̄h�j =
∑

sh−1�2j−1

g1�dh−1�2j−1�g2�sh−1�2j−1� · �̄h−1�2j−1

ch−1�2j−1

End

3.3.3. Computing Posterior Probabilities

Since �̄i�j = P��i�j ��i�j� and �̄i�j = P��c
i�j ��i�j �

P��c
i�j ��i�j �

, we have �̄i�j · �̄i�j = P��i�j ���

according to the Markovian property of our HMM. Then the posterior probability
��·� can be computed as

�
i�j
k = ∑

�̄i�j · �̄i�j� �i�1k1�k2 =
∑

�̄i�1 · �̄i�1� �
L�j
k1�k2

= ∑
�̄1�2L−1�j−1� · �̄L�j ·

g1�dL�j�g2�sL�j�

cL�j
�

�
i�j
k1�k2�k3

=



∑

�̄1�2i−1�j−1��̄i�j ·
g1�di�j� · g2�si�j�

ci�j
� if j is even�

∑
�̄i+1��j/2��̄i�j ·

g1�di�j� · g2�si�j�
ci�j

� if j is odd�

Without confusion, we omit the indexing variables under the
∑

symbol for the
above equations.

4. ANOMALY DETECTION BY TRACKING HMM MODEL VARIATIONS

A first thought on the anomaly detection problem is to treat the anomalies as
abrupt changes in the HMM modeled data and then apply change-point detection
methods to detect these abrupt changes as anomalies. This is also the general
routine used in the literature (see Dewaele et al., 2007). However, it is found that
directly applying change-point detection methods to the HMM modeled data is
computationally expensive. We design here a lightweight anomaly detection scheme
based on detecting the structure changes of the estimated HMM.
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Sequential Anomaly Detection 467

4.1. Difficulty of Applying Change-Point Detection Methods
on HMM Modeled Data

An anomaly detection problem can be formulated as a hypotheses testing problem;
that is, given finite samples �1�N = �y1� y2� � � � � yN �, testing between two hypotheses,

H0 � for 1 ≤ k ≤ N� p��yk ��1�k−1� = p�0
�yk ��1�k−1��

H1 � ∃ unknown 1 ≤ t0 ≤ N� s�t�{
for 1 ≤ k ≤ t0 − 1� p��yk ��1�k−1� = p�0

�yk ��1�k−1��

for t0 ≤ k ≤ N� p��yk ��1�k−1� = p�1
�yk ��1�k−1��

where �0 and �1 represent the model parameters for the normal network traffic
and the abnormal network traffic, respectively. Since �1 usually cannot be known
in advance, the hypothesis H1 is composite (i.e., �1 ∈ �� � � 	= �0�). The generalized
likelihood ratio test (GLR; see Chen and Gupta, 2012) is one of the most popular
change-point detection methods for solving this type of hypothesis testing problem.
The GLR test can be written as

gk = max
1≤j≤k

sup
�1

Sk
j � Sk

j =
k∑

i=j

ln
p�1

�yi ��1�i−1�

p�0
�yi ��1�i−1�

� t0 = min�k � gk ≥ h��

It is known that the likelihood of an HMM belongs to the so-called locally
asymptotic normal family (see Cappe et al., 2005), and the GLR statistic sup�1

Sk
j

can be approximated by the second-order expansion of Sk
j at �0 without the

computation of sup�1
over all possible �1s. However, the computation of this

second-order expansion involves computation of the Fisher information matrix of
ln p�0

�yi ��1�i−1�, which, in our case, would require an update of an L���3 × L���3
matrix each time when a new data sample arrives. This is not computationally
realistic for our application, especially in the resource constrained wireless sensor
networks.

In the next subsections, we design a lightweight algorithm for anomaly detection
by detecting structure changes of the estimated HMM. An important requirement
for anomaly detection is to make the decision-making process online. Therefore, we
first develop an online EM algorithm for HMM model estimation.

4.2. An Online Discounting EM Algorithm

The online discounting EM algorithm is derived based on the so-called limiting EM
algorithm (see Cappe, 2011). We first briefly present the limiting EM algorithm. Let
x denote the hidden states and y denote the observations. If the joint probability
distribution p��x� y� belongs to an exponential family such that p��x� y� =
h�x� y� exp������� ss�x� y�� − A���� where �·� denotes the scalar product, ss�x� y� is
the sufficient statistics for � and A��� is some log-partition function. If the equation
�������� ss� − ��A��� = 0 has a unique solution, denoted by � = �̄�ss�, then the
limiting EM algorithm obeys the simple recursion sst+1 = E�∗ �E�̄�sst��ss�x� y� � y,
where �∗ represents the true model parameter. Since E�∗ �E��ss�x� y� � y can be
estimated consistently from the observations by 1

N

∑N
t=1 E��ss�xt� yt� � yt , an online
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468 Zheng and Baras

EM algorithm can be obtained by using the conventional stochastic approximation
procedure (see Cappe, 2011), ŝst+1 = �t+1E�̄�ŝst��ss�xt+1� yt+1� � yt+1+ �1− �t+1�ŝs

t,
where �t+1 is a time discounting factor. The estimation of model parameters can
then be derived from the sufficient statistics ŝs. It was proved by Cappe (2011) that
under suitable assumptions, this online EM algorithm is an asymptotically efficient
estimator of the model parameter �∗.

It is not difficult to see that the joint probability distribution of our HMM
model, that is, P�� ���, satisfies the above-mentioned conditions. For each wavelet
coefficient di�j , we have the following sufficient statistics for computing the HMM
model parameters,

�
i�j
l�k =

n
i�j
l∑

m=1

P�sl�m = k��i�j ��i�j�� �̂
i�j
l�k =

n
i�j
l∑

m=1

P�sl�m = k��i�j ��i�j� · dl�m�

�̄
i�j
l�k =

n
i�j
l∑

m=1

P�sl�m = k��i�j ��i�j� · d2
l�m�

�
i�j
l�k1�k2�k3

=
n
i�j
l∑

m=2

P�sl�m = k1� sl�m−1 = k2� sl+1��m/2� = k3��i�j ��i�j��

where l ∈ �1� � � � � L� is the scale index, k ∈ � is the hidden state index, and n
i�j
l

represents the number of observed wavelet coefficients in scale l after di�j arrives;
that is,

n
i�j
l =

{
�2i−lj� if l ≥ i�

2l−ij if l < i�

It is straightforward to prove that the HMM model parameters �	l
k1 � k2�k3� 


l
k� �

l
k� can

be updated using ��
i�j
l�k� �̂

i�j
l�k� �̄

i�j
l�k�

i�j
l�k1�k2�k3

� as follows;

	l
k1 � k2�k3 =

∑
�i�j

�
i�j
l�k1�k2�k3∑

k1

∑
�i�j

�
i�j
l�k1�k2�k3

� 
l
k =

∑
k

∑
�i�j

�̂
i�j
l�k∑

k

∑
�i�j

�
i�j
l�k

�

��l
k�

2 =
∑

k

∑
�i�j

�̄
i�j
l�k∑

k

∑
�i�j

�
i�j
l�k

−
(∑

k

∑
�i�j

�̂
i�j
l�k∑

k

∑
�i�j

�
i�j
l�k

)2

� (4.1)

The other HMM parameters 	k and 	i�1
k1 � k2 can be updated using sufficient statistics

defined as �̃
i�j
L�k = P�sL�1 = k��i�j ��i�j� and �̃

i�j
l�1 = P�sl�1 = k1� sl+1�1 = k2��i�j ��i�j�.

We omit the related computations here, as they are similar.
The next step on the design of our online EM algorithm is to obtain recursive

(online) updates of the sufficient statistics �i�jl�k, �̂
i�j
l�k, �̄

i�j
l�k, and �

i�j
l�k1�k2�k3

. According to the
Markovian property of the HMM, the online updates of the sufficient statistics can
be achieved by following a similar dynamic programming procedure as the one for
computing the scaled forward variables �̄i�j . Recall that �̄i�j is computed by adding a
normalization step after �i�j is computed in the algorithm in Table 1. The sufficient
statistics can be updated once �̄i�j is updated. For illustration purposes, we show
here how to update the sufficient statistics when �h�2j−1 in Table 1 is computed, as
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Sequential Anomaly Detection 469

updates for the other cases are similar. For l ∈ �1� � � � � L�, let �h−1�2j−1 be a time
discounting factor, and �lh−1 be the Dirac delta function such that �lh−1 = 1, if l =
h− 1 and �lh−1 = 0 if l 	= h− 1, and let

rlh−1�2j−1 = �lh−1 · �h−1�2j−1 · �̄h−1�2j−1� tlh−1�2j−1 = �1− �lh−1�h−1�2j−1�
g1�dh−1�2j−1�

ch�j
�

ql
h−1�2j−1 = �lh−1�h−1�2j−1

g1�dh−1�2j−1�g2�sh−1�2j−1��̄h�j

ch−1�2j−1

�

where g1�·� and g2�·� are defined as in Table 1. The sufficient statistics can be
updated as follows;

�
h−1�2j−1
l�k = rlh−1�2j−1 + tlh−1�2j−1

∑
sh−1�2j−2

g2�sh−1�2j−1��
h�j
l�k � (4.2)

�̂
h−1�2j−1
l�k = rlh−1�2j−1dh−1�2j−1 + tlh−1�2j−1

∑
sh−1�2j−2

g2�sh−1�2j−1��̂
h�j
l�k � (4.3)

�̄
h−1�2j−1
l�k = rlh−1�2j−1d

2
h−1�2j−1 + tlh−1�2j−1

∑
sh−1�2j−2

g2�sh−1�2j−1��̄
h�j
l�k � (4.4)

�
h−1�2j−1
l�k1�k2�k3

= ql
h−1�2j−1 + tlh−1�2j−1

∑
sh−1�2j−2

g2�sh−1�2j−1� · �h�jl�k1�k2�k3
� (4.5)

In summary, the online discounting EM algorithm works as follows. Each time
a new wavelet coefficient arrives, the sufficient statistics are updated accordingly; for
example, when dh�2j−1 arrives, by updating the sufficient statistics using equations
(4.2)–(4.5). After a minimum number nmin of wavelet coefficients are observed, where
nmin is small, that is, nmin = 20 might be enough, the HMM model parameters are
updated according to equation (4.1).

4.3. Change-Point Detection on Model Variations

To measure the structure changes of the estimated HMM models over time, we use
the concept of the symmetric relative entropy to define a model variation score (see
Hirose and Yamanishi, 2008). Denote the model at time t − 1 and t by Pt−1 and Pt,
respectively, then the model variation score is defined as vt = limn→�

1
n
D�Pt�Pt−1�+

limn→�
1
n
D�Pt−1�Pt�, where D�p�q� represents the relative entropy of distribution p

to q, and n represents the length of the input data. It is natural to let n → � as we
can then compare the two models under the stationary states in the limit of n → �.
Lemma 4.1 shows that the relative entropy between Pt and Pt−1 can be captured by
the changes on the hidden states and the changes on the data generation pattern
from a fixed hidden state.

Lemma 4.1. Let 	i
k = P�si�j = k�, we have

lim
n→�

1
n
D�Pt�Pt−1� =

L∑
i=1

1
2i

∑
k1�k2�k3

�	i
k1�k2�k3

�t log
�	i

k1 � k2�k3�
t

�	i
k1 � k2�k3�

t−1

+
L∑
i=1

1
2i

∑
k

�	i
k�

tD�� ��
i
k�

t� ��i
k�

t��� ��
i
k�

t−1� ��i
k�

t−1���
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470 Zheng and Baras

Proof. As we compare Pt and Pt−1 under the stationary states in the limit of n →
�, we have

lim
n→�

1
n
D�Pt�Pt−1� = lim

n→�
1
n

∑
� ��

Pt�� ��� ·
[
log

Pt�sL�1�

Pt−1�sL�1�
+

L−1∑
i=1

log
Pt�si�1 � si+1�1�

Pt−1�si�1 � si+1�1�

+
L∑
i=1

ni∑
j=2

log
Pt�si�j � si�j−1� si+1��j/2��
Pt−1�si�j � si�j−1� si+1��j/2��

+
L∑
i=1

ni∑
j=1

log
Pt�di�j � si�j�
Pt−1�di�j � si�j�

]

= lim
n→�

1
n

∑
� ��

Pt�� ��� ·
[
log

Pt�sL�1�

Pt−1�sL�1�
+

L−1∑
i=1

log
Pt�si�1 � si+1�1�

Pt−1�si�1 � si+1�1�

]

+ lim
n→�

1
n

∑
� ��

Pt�� ��� ·
[ L∑

i=1

ni∑
j=2

log
Pt�si�j � si�j−1� si+1��j/2��
Pt−1�si�j � si�j−1� si+1��j/2��

+
L∑
i=1

ni∑
j=1

log
Pt�di�j � si�j�
Pt−1�di�j � si�j�

]

= 0+ lim
n→�

1
n

∑
� ��

Pt�� ��� ·
[ L∑

i=1

n

2i
�log

�	i
k1 � k2�k3�

t

�	i
k1 � k2�k3�

t−1

+ log
� ��
i

k�
t� ��i

k�
t�

� ��
i
k�

t−1� ��i
k�

�t−1��
�

]

=
L∑
i=1

1
2i

[ ∑
k1�k2�k3

�	i
k1�k2�k3

�t log
�	i

k1 � k2�k3�
t

�	i
k1 � k2�k3�

t−1

+∑
k

�	i
k�

tD�� ��
i
k�

t� ��i
k�

t��� ��
i
k�

t� ��i
k�

�t−1���

]
�

�

Therefore, besides the probability distributions 	i
k1 � k2�k3 and � �
i

k� �
i
k� provided

by the online EM algorithm, the computation of limn→�
1
n
D�Pt�Pt−1� also involves

the probability distributions 	i
k1�k2�k3

= P�si�j = k1� si�j−1 = k2� si+1��j/2� = k3� and 	i
k.

The estimation of 	i
k and 	i

k1�k2�k3
can be obtained from the sufficient statistics �l�mi�k

and �l�mi�k1�k2�k3 as 	i
k =

∑
�l�m

�l�mi�k � 	
i
k1�k2�k3

= ∑
�l�m

�l�mi�k1�k2�k3 . The other relative entropy
limn→�

1
n
D�Pt−1�Pt� can be computed similarly. We can see that the symmetric

model variation score actually captures two types of changes. The first is the changes
in the transition probabilities of the hidden states while the second is the changes
in the generation pattern of the observed data from a fixed state. By using the
symmetric relative entropy as a distance measure between two HMM models, it is
expected that not only the changes of the data generation pattern will be detected,
but also the changes in the hidden states can also be detected.

In our detection algorithm, we use the model variation score vt as the statistics
in the hypothesis testing. More specifically, assuming that H0 represents the normal
traffic and H1 represents the abnormal traffic, then we have the following test,

H0 � vt < h vs�H1 � vt ≥ h�

If we have vt1 ≥ h, an alarm will be issued at time t1. In other words, if there is
an abrupt change in the monitored HMM model, as measured by the statistic vt at
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Sequential Anomaly Detection 471

time t1, we will raise an alarm. Note that the value of vt is computed online (i.e.,
for each t), so after an alarm is issued, say, at t1, our algorithm can continue to
monitor the value of vt and issue alarms at later times (t2 > t1) if necessary. The
value of the threshold h is determined depending on the application type and data,
and through trade-off analysis between the detection rate and the false alarm rate
via experiments (see Section 5 for further details on this matter).

5. NUMERICAL EVALUATIONS

In this section, we numerically evaluate the statistical properties of the proposed
anomaly detection scheme. Two types of LRD time series, including the FGN and
the ARFIMA model, are used for generating data. We then inject two types of
model variations as anomalies. The first is the mean level shift; that is, a step
function with a constant amplitude is imposed on the original signal. The second
is to vary model parameters for the data generation process, including the standard
deviation and the Hurst parameter for FGN and ARFIMA. The duration for the
normal state and the anomaly state is generated from exponential distributions with
different mean values.

The performance of the detection scheme is evaluated by the detection latency
and the receiver operating characteristic (ROC) curve, which is a plot of the
detection rate versus the false alarm rate at different thresholds. We also plot
the detection latency curve, which is a plot of the detection latency versus false
alarm rates. In our numerical experiments, we have sequential observations �1�N =
�y1� y2� � � � � yN �, where N is always a finite number. Assuming that the change-
point occurs at time �0, and the detection time is �, where the detection time �
is computed as � = min�t � vt ≥ h � t ≥ �0�, where vt is the model variation score,
and h is a predefined threshold. Since we are interested in detection within a finite
time interval, we also introduce a tolerance interval �∗ after the change-point �0, to
enforce timeliness of change detection; that is, we will characterize the alarm as a
change detection if and only if � ∈ ��0� �0 + �∗. On the other hand, if � > �0 + �∗, the
alarm will be characterized as a false alarm and the associated change detection time
will not be included in the computation of detection latency. In other words, the
detection latency is computed as E��− �0 � �∗ + �0 ≥ � ≥ �0, where E�· represents
the averaged value over different runs. The selection of the tolerance interval �∗ is
a tradeoff between detection latency and detection accuracy. Basically for a smaller
tolerance interval, the cost would be a possible reduction on detection accuracy;
that is, a decrease detection rate and increase in false alarms. In our numerical
experiments, we show results of using 8% and 12�5% of the anomaly duration (time
interval) as the tolerance interval, respectively. In real applications, the value of the
tolerance interval �∗ should depend on the application requirements.

To compute the detection rate and the false alarm rate, we denote by n0 the
number of times that there is an abrupt change, by n1 the number of times that the
abrupt change is detected within the tolerance interval, and by n2 the number of
times that there is no abrupt change but an alarm is raised. Then the false alarm
rate and detection rate are computed as follows:

Detection Rate = n1

n0

� False Alarm Rate = n2

n1 + n2

�

D
ow

nl
oa

de
d 

by
 [

N
at

io
nw

id
e 

C
hi

ld
re

ns
 H

os
pi

ta
l]

, [
Jo

hn
 B

ar
as

] 
at

 1
9:

28
 1

6 
O

ct
ob

er
 2

01
2 



472 Zheng and Baras

To get one data point in the ROC curve and the detection latency curve,
we use h0 as a threshold for raising the alarms in n runs of experiments and
get a number of corresponding false alarm rates �far1� � � � � farn�, detection rates
�dr1� � � � � drn�, and detection latencies �dt1� � � � � dtn�. Then we use the average values
� ¯far = E��far�n1� d̄r = E��dr�n1� to plot one data point in the ROC curve and
� ¯far = E��far�n1� d̄t = E��dt�n1� for one data point in the detection latency curve.
In the ROC curve, we also show an horizontal error bar and vertical error bar. The
horizontal error bar represents the standard deviation for the false alarm rate ¯far,
that is, �far =

√
E��fari − ¯far�2, and the vertical error bar represents the standard

deviation for the detection rate d̄r; that is, �dr =
√
E��dri − d̄r�2. In the detection

latency curve, the horizontal error bar shows the same standard deviation for ¯far,
and the vertical error bar shows the standard deviation for the detection latency

d̄t; that is, �dt =
√
E��dti − d̄t�2. In both the numerical experiments and NS-2

simulations, we use n = 5� 000.
The selection of the wavelet basis used in our scheme is based on a balance

between its time localization and frequency localization characteristics (see Barford
et al., 2002). Long filters usually have poor time localization, which can lead to
excessive blurring in the time domain, and thus may miss strong but short-duration
changes in the time series. In contrast, short filters have good time localization
but poor frequency localization, which can lead to the appearance of large wavelet
coefficients when no significant event is occurring and can cause high false alarms
rates if detection is based on a simple threshold. In our scheme, we build a hidden
Markov model for the wavelet coefficients and the detection is based on HMM
structure changes rather than a simple threshold; thus, the sensitivity of the filter’s
frequency localization capability on detection performance is significantly reduced.
In our experiments, we found that the D2 (Haar wavelets) and D4 wavelets from
the Daubechies family of wavelets can give us relatively good performance. Hence,
we use the Haar wavelets for all the experiments in this article. For performance
comparison, we implement a baseline method adapted from the method proposed by
Barford et al. (2002), in which only the mean and variance of the wavelet coefficients
is used for anomaly detection. More specifically, for the wavelet coefficients at each
scale, the latter method only computes the mean and variance over a time window
with fixed length. Any abrupt changes in the mean and variance values are treated
as anomalies.

Figure 2 shows one representative example of the detection performance on
mean level shifts in the synthetic LRD time series. The top figure illustrates the
time series, which is generated from an ARFIMA model with Hurst parameter
0�9 and length 215. The standard deviation for the generated data sequence is set
to 1. The mean level shift occurs at the first quarter of the time and ends at the
middle with intensity 0�75, which is less than the standard deviation. The bottom
two figures show the corresponding model variation scores computed by our online
EM algorithm with five-level and four-level wavelet decomposition respectively. The
x axis represents the aggregated time due to the wavelet decomposition and the y
axis represents the model variation score.

From Figure 2, we can see that the visual inspection of the injected mean level
shift from the time series directly can be difficult. However, in the tracked model
variation scores, there are abrupt changes of the model variation scores at the
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Sequential Anomaly Detection 473

Figure 2. Effect of wavelet decomposition levels (color figure available online).

two time locations where the mean level shift starts and ends. These two abrupt
changes suggest where the injection starts and ends. Especially when the wavelet
decomposition level is 5, these are the only two abrupt changes that exist. When the
wavelet decomposition level is 4, there are some false alarms.

We further compare the effects of the wavelet decomposition level on detection
performance. Figure 3 shows the ROC curves using different decomposition levels.
The ROC curves are obtained over 5� 000 randomly generated time series with
standard deviation 1 and intensity 0�75. These time series have 215 data points
and the mean level drift starts at different random time points in the first half

Figure 3. ROC curves: different wavelet levels (color figure available online).
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474 Zheng and Baras

of the time series with length 213. We use 12�5% of the anomaly duration as the
tolerance interval. We can see that a higher decomposition level can reduce the false
alarms while achieving the same detection rate. However, an L-level decomposition
has a 2L time aggregation scale; that is, it transforms the data samples within
a 2L time window to the wavelet domain, so the wavelet coefficients within this
window are time indistinguishable. Therefore, a higher level decomposition would
often give longer detection latency than that of a smaller level decomposition.
The selection of the decomposition level should depend on the specific application
requirements on detection latency and accuracy. A basic guideline is that for an
L-level decomposition, the lower bound on the detection latency will be at least

2L

data sampling rate . Given the requirements on detection latency and data sampling rate,
we can obtain a high bound on decomposition level L. Then, within tolerable
detection latency, we should choose as high a decomposition level as possible in
order to increase detection accuracy. In our experiments, we found that a five-level
wavelet decomposition can give a reasonable good balance between detection
accuracy and latency.

The intensity of the injected mean level shift also affects the detection
performance. Figure 4 shows the ROC curve and detection latency for the injected
mean shift with different intensities. Each curve is obtained over 5� 000 simulation
traces with the five-level wavelet decomposition and using 12�5% of the anomaly
duration as the tolerance interval for a true detection. We can see that for higher
injected mean level shifts, the detection becomes much easier, in terms of lower false
alarms, higher detection rates, and smaller detection latency. As for the detection
on changes in the data generation model, we have similar observations; that is,
when the change of the Hurst parameter or of the data variance is more significant,
the detection becomes easier. Due to space constraints, we do not showing the
corresponding results here.

We then use 8% of the anomaly duration as the tolerance interval to rerun our
algorithms over the 5,000 simulation traces. Figure 5 illustrates the effects of the
shorter tolerance interval on the ROC curve and on the detection latency curve. As
is expected, the detection latency becomes smaller, but the detection accuracy drops.

Figure 4. Effects of different injected intensities: (a) ROC curve and (b) detection latency
curve (color figure available online).
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Sequential Anomaly Detection 475

Figure 5. Effects of different tolerance interval for true detections: (a) ROC curve and (b)
detection latency curve (color figure available online).

Figure 6. Comparison with the baseline: (a) ROC curve and (b) detection latency curve
(color figure available online).

We next compare the performance of our algorithm to the baseline method. It
is observed that our method can always beat the baseline method. For example,
Figure 6 shows the ROC curves and detection latency for our method and the
baseline methods on the detection of Hurst parameter changing from 0�9 to 0�7.
While achieving the same false alarm rate, our method has a higher detection rate
and smaller detection latency. Similar results are observed for the detection of other
types of injected anomalies. It verifies our expectation that the hidden Markov
model can capture more characteristics of the wavelet domain data than using only
the first- and second-order statistics.

6. NS-2 SIMULATION STUDIES

We next create anomaly scenarios in wireless sensor networks using the NS-2
simulator. We simulate the in-band wormhole attack in the routing layer and
evaluate the proposed detection scheme. Note that our detection scheme is a general
method; that is, it is not only designed for the wormhole attacks but can adapt to
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476 Zheng and Baras

detect any other attacks that will cause deviation of the network traffic from its
normal state.

The in-band wormhole attack is a collaborative attack in the routing layer.
During a wormhole attack, the malicious nodes perform a tunneling procedure
to form a wormhole where one node receives packets and covertly tunnels them
to another colluding node, and then the colluding node replays these packets as
if it received them from its physical neighbors. The in-band wormhole connects
the purported neighbors via multihop tunnels over the existing wireless medium.
It can affect shortest path routing calculations and allow the attacking nodes to
attract and route traffic from other parts of the network to go through them, thus
creating artificial traffic choke points that can be utilized at an opportune future
time to analyze network traffic and degrade network performance. Figure 7 shows
an example of a three-hop in-band wormhole. By n-hop wormhole we mean that the
actual path length between the two wormhole endpoints is n-hop but the routing
protocol is fooled to consider it as only one-hop.

In the in-band wormhole attack, the multihop tunneling process will cause the
transmission delay along a path to deviate from its normal state. For example,
in Figure 8 the attacker fools the routing protocol to consider the three-hop path
3-5-7-8 as a one-hop path 3-8. The transmission delay of a three-hop path, however,
would be different from a real one-hop path due to different path lengths, not to
mention that the wormhole attack can introduce additional congestion in the path
due to the attraction of traffic from other parts of the network. The difficulty of
detection lies in the fact that traffic variability, such as network congestion, may
lead to high false alarm rates.

We create the in-band wormholes in networks containing 50 nodes in a
1,000×1,000 square field using NS-2. Different simulation scenarios are considered,
including networks that have different levels of background traffic and wormholes
that have different lengths. Figure 7 shows three typical scenarios of the collected
packet round trip times between a source-destination pair that was attracted by
a four-hop wormhole, where the wormhole starts at time around 2� 500. The top
figure (scenario 1) corresponds to the case when the background traffic is relatively
light, so there is no congestion in the wormhole or other places of the network.
The packet round trip time becomes slightly higher after the wormhole attack starts.
The middle one (scenario 2) shows the case when the background traffic becomes
heavier. Since more traffic was attracted by the wormhole, leading to some level

Figure 7. A 3-hop in-band wormhole.
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Figure 8. Three scenarios of wormhole (color figure available online).

of congestion inside the wormhole, paths go through the wormhole have much
longer round trip time than its previous normal state. This case is the easiest case
for wormhole detection. In the bottom figure (scenario 3) the background traffic
becomes much heavier, in which case the network congestion causes large traffic
variation even when there is no wormhole attack. It is the most difficult case for
wormhole detection.

Figure 9 presents the ROC curve for detection of the four-hop wormhole under
different levels of background traffic corresponding to the three scenarios. The
results are obtained over 5,000 simulation runs with finite observations, where we
set 50 as the tolerance interval for a true detection. In the worst-case, that is,
scenario 3, our algorithm performs much better than a random guess; for example,
when the false alarm rate reaches 0�4, the detection rate is around 0�8. The results
are satisfactory considering that the end-to-end packet round trip time is the only

Figure 9. Detection of different wormholes (color figure available online).
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478 Zheng and Baras

Figure 10. Comparison with the baseline: (a) ROC curve and (b) detection latency curve
(color figure available online).

traffic profile we used for detection. We expect that if our detector is combined
with methods based on other characteristics of the network traffic, better detection
performance can be achieved. Figure 10 shows performance comparison of our
method with the baseline method for scenario 3, in which our method achieves
better performance.

7. CONCLUSION

In this article, we studied the anomaly detection problem in wireless sensor
networks. As discovered by recent works, the traffic in wireless sensor networks
can have the similar LRD property as in wireline and wireless 802.11 networks,
which could significantly increase the difficulty of network anomaly detection.
To reduce the effect of LRD on anomaly detection performance, we proposed a
wavelet-domain hidden Markov model for capturing the normal network traffic.
The wavelet transform is able to turn the long-range dependency that exists among
the sample data into a short memory structure among its wavelet coefficients. An
HMM in the wavelet domain is used to further capture the remaining dependency
among the wavelet coefficients, thus modeling the traffic variability more accurately.
Network anomalies are then detected as abrupt changes in the tracked HMM
model structures. The performance of our algorithm is evaluated by extensive
simulations, including numerical experiments in MATLAB and experiments using
Network Simulator 2. In our future work, we plan to study the optimization of
model parameters for the wavelet domain HMM model to improve performance.
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