
 Procedia Computer Science 16 (2013) 138 – 147

1877-0509 © 2013 The Authors. Published by Elsevier B.V.
Selection and/or peer-review under responsibility of Georgia Institute of Technology
doi: 10.1016/j.procs.2013.01.015

Conference on Systems Engineering Research (CSER’13)
Eds.: C.J.J. Paredis, C. Bishop, D. Bodner, Georgia Institute of Technology, Atlanta, GA, March 19-22, 2013.

Interactive Tree Decomposition Tool for Reducing
System Analysis Complexity

Shahan Yang, Baobing Wang, and John S. Baras∗

Department of Electrical and Computer Engineering, Institute for Systems Research, University of Maryland, College Park

Abstract

We present a graphical tool for the calculation of treewidth, a metric on the parametric structure of a system that is intimately

tied to the complexity of system analysis. For many graphically describable systems, such as systems of parametric equations,

as in a SysML Parametric Diagram, or Bayesian networks or even mind maps and writing term papers, analysis of the system

is exponential in treewidth and linear in system size. A tool facilitating comprehensive analysis can serve to bring competitive

advantage to a systems engineering workflow by reducing costly unanticipated behaviors. Furthermore, a byproduct of computing

treewidth is a framework for enumerating computationally compatible distributed algorithms.

In this paper, we pose this NP-complete problem from the perspective of finding satisficing solutions, exposing choices that

can influence the complexity of the resulting system to the designer. A designer can contribute two important things to the structure

of the system: a visual intuition about the relationships between the underlying objects and the ability to change the relationships

themselves at design time to reduce analysis complexity. Having a visual tool that provides instant feedback will help designers

achieve an intuitive grasp of the relationship between design decisions and system complexity. As complexity is the root of almost

every systems engineering problem, and also something not easily understood, incorporating complexity analysis into a design

process should improve resulting system designs.

The tool uses a randomized, anytime algorithm for interactive optimization of treewidth. It presents a sequence of choices to a

designer and incrementally lowers an upper bound on system treewidth over time. This algorithm is novel, as few algorithms are

targeted at interactivity with a human user. We present a number of simple examples for using the tool. We show how our tool helps

to decompose some example systems, including a quadrotor optimization, a sensor network optimization, a Bayesian network, and

a mind map.

c© 2013 The Authors. Published by Elsevier B.V.

Selection and/or peer-review under responsibility of Georgia Institute of Technology.

1. Introduction

As systems engineers, we are intimately familiar with using graphical models to describe systems. However, these

graphical models are non-unique and there is usually a wide range of behaviorally equivalent ways to model the same

problem. One successful application of graphical models from a different community is Bayesian networks (see [1]

∗Corresponding author. Tel.: +1-301-405-6606; Fax: +1-301-314-9218; E-mail: baras@umd.edu.

Available online at www.sciencedirect.com

© 2013 The Authors. Published by Elsevier B.V.
Selection and/or peer-review under responsibility of Georgia Institute of Technology

139 Shahan Yang et al. / Procedia Computer Science 16 (2013) 138 – 147

for a review). In this work, we take some of the mathematical analysis of the graphical models of Bayesian networks

and translate it into terms that are more familiar to systems engineers. In a systems oriented fashion, we may think of

the Bayesian network as being a subclass of the more abstract class of commutative semirings, which has many other

subclasses. See Fig. 1.

Fig. 1: Interpretation of commutative semirings by

subclasses. One particularly interesting subclass

from the perspective of systems engineering is the

Tropical semiring. It encodes optimization over

structures where the overall cost function is the sum

of costs over individual components.

The basic essence of each of these cases is to solve a

problem described over a network of components where

decisions in one component may affect the choices avail-

able in another component and there is a global objective

that can only be understood by examining the complete

space of decisions. Examples of this class of problem in-

clude vertex cover, independent set, dominating set, graph

k-colorability, hamiltonian circuit, network reliability [2],

and dynamic programming [3]. This class of problems is

computationally challenging in general and embodies the

curse of dimensionality. Using structural decomposition

techniques of systems engineering is one approach towards

solving these problems. However, there are very few tools

available for doing this systematically. We present a tool

that achieves this.

It turns out that complexity is exponential in treewidth
and linear in problem size. The intuition behind this result is that problems on graphs are difficult to solve due to

the presence of loops. Removing the loops by multiplexing variables (aggregating them into objects) can lead to

tree decompositions of graph problems. Once the problem is in the form of a tree, then summary propagation is a

viable technique for solving the problems. Multiplexing variables creates local complexity roughly in proportion to

the number of variables tied together. More precisely, if we consider a discrete context, the space that needs to be

explored is the product of the number of discretization bins, i.e., if there are N variables with D quantization levels

each in an aggregate object, then the complexity of analyzing that object in DN . The complexity of the overall system

is the summation of the complexity of analyzing each system independently. This sum is dominated by the largest

exponent in the system, which is precisely what the treewidth measures.

Our Contribution. In [4], we presented some theory of tree decomposition. This work describes a prototype that we

have been working on to make the theory usable and several examples of problems solved using this tool. The main

contribution of this work is an interactive tool for measuring treewidth of systems. A byproduct of this measurement

is a system tree decomposition algorithm that can be used for analysis. We work out many examples using the tool

and describe the algorithm used.

2. Related Work

Guenov [5] estimates the complexity to aid high-level designers in comparing alternatives during pre-competitive

studies or during the architectural design process of composition systems. This approach is based on Boltzmann’s

entropy concept to measure the distribution of functional couplings in the system’s decomposition. However, no

mechanism is proposed to reduce the complexity.

Lu et al. [6] considered that the “overall difficulty” of an engineering system design consists of “inborn complica-

tion” due to custom requirements and external constraints as well as “acquired complexity” associated with uncertainty

in satisfying the functional requirements caused by design decisions. They introduced the Axiomatic Design Theory

and the Design-centric Complexity Theory to guide the creation and improvement of complex engineering systems.

However, they cannot provide instant feedback on the impact of design decisions on the complexity.

Clarke [7] presented a framework to reduce the complexity of temporal logic model checking in systems composed

of many parallel processes by using additional interface processes to model the environment for a component. These

interface processes are typically much simpler than the full environment of the component. By composing a component

with its interface processes and then checking properties of this composition, one can guarantee that these properties

140 Shahan Yang et al. / Procedia Computer Science 16 (2013) 138 – 147

will be preserved at the global level. However, this partitioning is ad-hoc and depends heavily on rules of thumb and

the expertise of systems engineers.

A large number of model checking algorithms are based on the symbolic model checking method, which was first

proposed in [8]. This method avoids building a state graph by using Boolean formulas to represent sets and relations.

A variety of properties characterized by least and greatest fixed points can be verified purely by manipulations of

these formulas using Ordered Binary Decision Diagrams. Instead of enumerating reachable states one at a time, the

state space is traversed much more efficiently by considering large numbers of states at a single step. Such state space

traversal is based on representations of state sets and transition relations as formulas, binary decision diagrams or other

related data structures as in [9]. Several tools that can reduce the complexity of formal verification based on symbolic

model-checking and homomorphic reduction are discussed in [10]. While these tools can reduce the complexity of

formal verification efficiently, they cannot provide guidance on how to improve the system designs to facilitate formal

verification further.

3. Tool Development and Case Studies

3.1. Tool Development
To facilitate the usage and enhance the understanding of the tree search algorithm, a user-friendly GUI was de-

veloped in Java, which enables users to control the execution of the algorithm interactively and view the results

graphically. The GUI is shown in Fig. 2, painting the relationship graph for the parameters in our case study, which

will be explained later.

Fig. 2: GUI and the generated relationship graph for the

case study

Function definitions can be loaded from a pre-

saved file, or input to the table in the upper left cor-

ner, by specifying their names and parameters. Then

they can be checked and parsed to the data structures

used in the tree search algorithm. If all functions

are defined correctly, the tree search algorithm will

process the chordal vertices [4] automatically. The

algorithm control area in the lower left corner will

provide the list of unprocessed parameters and the

parameters that have already been processed. Users

can select an unprocessed parameter to continue the

algorithm and the resulting treewidth will be calcu-

lated and updated incrementally. Users can also roll

back the algorithm to its previous state and make a

different choice, potentially with a smaller treewidth.

An observer thread is running in the background

to update the relationship graph of the parameters and

the resulted tree of cliques periodically, which are

shown in the right tabbed panel. Users can also update them instantly by clicking the Refresh button. Based on

the characteristics of the graph and the tree, users can select different layout algorithms to place the vertices automati-

cally to get a better view, or arrange them manually. The Java Universal Network/Graph (JUNG) Framework1 is used

for data visualization.

3.2. Wireless Sensor Networks
We consider the trade-off analysis between energy efficiency and transmission reliability in wireless sensor net-

works, where the IEEE 802.15.4 standard is applied as the media access control protocol. For simplicity, we only

provide high-level abstract functions here, emphasizing the abstract relationships between the parameters in each

function. More details are available in [11]. The following functions are used in this trade-off analysis, in which the

blue parameters are their outputs:

1http://jung.sourceforge.net/index.html

141 Shahan Yang et al. / Procedia Computer Science 16 (2013) 138 – 147

• Tradeoff(score, energy, rel) = 0. This function specifies the trade-off rules between energy efficiency and

transmission reliability.

• Reliability(rel, dist) = 0. This function calculates the reliability based on the static distribution of the Markov

chain model in [Wang et al., 2011], which models the peer-to-peer communications for time-critical applications

in wireless sensor networks using the enhanced IEEE 802.15.4 protocol.

• StaticDist(dist, config) = 0. This function computes the static distribution, based on the configuration informa-

tion specified for the protocol.

• Config(config, retry, waitRound, lambda) = 0. This function processes the protocol parameters, such as the

maximum retransmission times and the maximum waiting rounds, to generate the configuration information.

Lambda(lambda, constant) = 0. This function is defined to simplify the Config function, by processing other

protocol-specific constants and feeding the results to the Config function.

• Energy(energy, config, pGTS, pCAP) = 0. This function calculates the expected energy consumption for each

transmission, based on the configuration information, and the expected energy consumptions in the contention-

based access period (CAP) and in the guranteed time-slot period (GTS).

• PGTS(pGTS, config , pIdle, pRcv, pTx) = 0. This function computes the expected energy consumption in the

GTS period, based on the transmission power, receiving power, the power in the idle state and the configuration

information.

• PCAP(pCAP, pIdle, pRcv, pTx, per) = 0. This function is very similar to the PGTS function, except that the

packet error ratio (PER) is considered here.

• PER(per, size) = 0. This function simply calculates the PERs based on packet sizes.

Fig. 3: The generated tree of cliques

The generated tree of cliques is shown in Fig. 3, in

which each vertex stands for a clique in the relationship

graph of parameters, and the edge direction represents the

reverse order of information propagation. When a vertex

has received the information from all its children, it be-

gins to calculate the parameters in its clique locally and

propagate the result back to its parent. Now suppose every

parameter can have 10 different values (continuous param-

eters can be sampled discretely). Then the complexity can

be reduced significantly to: 102 ∗ 2 + 103 ∗ 3 + 104 ∗ 2 +

105 + 106 = 1123200, compared to 1016 in the original

computation.

3.3. Quadrotor Example

Fig. 4 shows the relationships between variables in a

quadrotor that is designed to fly out to a specified destination, land, perch and take observations. It uses a parametric

diagram, which is exactly equivalent to a factor graph, in being a bipartite graph that has variable nodes in one partition

and function nodes in the other partition. The fact that it is a factor graph means that summary propagation can be

used as a solution algorithm with the correct interpretation of the summation and multiplication operations. This

particular parametric diagram reflects a query on the tradeoff between range and cost. The constraint Tradeoff is a

query in this case and modifies the structure of the parametric diagram, which in turn has an impact on the resulting

tree decomposition. In working with this system of tree decompositions, this dependency of structure on the query

occurs often. If a query relates two variables that were previously unrelated, then a link must be added to the graph

reflecting this added coupling.

142 Shahan Yang et al. / Procedia Computer Science 16 (2013) 138 – 147

Fig. 4: Parametric diagram for high level tradeoffs of a

quadrotor. Consider the constraints shown in this diagram.

The Tradeoff constraint reflects the fact that we are inter-

ested in the relationship between cost and range of the

quadrotor. As indicated by the Cost constraint, the cost

value is determined entirely, in this model, by the choice

of payload and battery. The weight is also determined by

these two variables, as shown by the Weight constraint.

The range of the quadrotor, as indicated by the Range

constraint, is determined by the choice of battery and the

power requirements expressed as current. The flight cur-

rent needed is determined by the weight of the quadrotor,

as indicated by the Current constraint. Finally, there is a

perch time variable that is solely determined by the pay-

load as shown in the PerchTime constraint.

The different functions specify feasible regions of

values for the various parameters, but there is a lo-

cality structure to this specification because certain

variables are not directly related. For example, the

current needed to fly the quadrotor depends on the

weight (as indicated in the Current constraint, but

these variables are not directly connected to the cost).

Weight depends on the battery and payload chosen,

which then directly contribute to the cost.

We would like to determine all feasible con-

figurations with respect to range and cost in our

trade study. We shall assume that every parameter

takes on a discrete set of values, which could come

from discretization. Naively, there are 7 variables in

this system. Evaluating over all of them simultane-

ously using brute force could involve D7 evaluations,

where D is the number of discretization levels.

Fig. 5a shows the input to the tool representing

the relationships between the variables. Compare this

to Fig. 4. The name column contains exactly entries

corresponding to the constraints of the parametric di-

agram and the parameter column contains the argu-

ments to those constraints.

Fig. 5b shows the initial topology of the quadro-

tor (the functional dependence graph in the language

of [4]), which is extracted from the relationships in

Fig. 5a. Note that this graph is not chordal [4], which

means that the designer will need to choose additional variable couplings for the system to decompose.

At this point, the designer has a decision to make because the only simplical node is PerchTime, which is eliminated

by the algorithm. Elimination on the rest of the nodes creates fillins. To make this decision, the designer thinks about

which variables most naturally fit together with respect to the fillins created. Since the relationship between weight

and range is the most intuitive, the next elimination is FlightCurrent, which creates a fillin between weight and range.

This is shown in Fig. 5c. One more fillin is neeed to complete the system decomposition.

A link was added between weight and range, coupling these two variables within the analysis even though there

is no immediate equation describing this relationship. This is an artifact of performing the tree decomposition of the

system. Of the remaining variables, the next most intuitive relationship is the one between payload and range, so we

eliminate cost next, which requires payload and range to be coupled. Fig. 5d shows the result. This system is chordal

and has a tree decomposition. The tree structure consists of three tetrahedrons that are stacked next to each other and a

tail consisting of the PerchTime, which is only loosely coupled with the rest of the system. The tool produces Fig. 5e

as the tree decomposition of the system using these hints from the designer.

The last step in the analysis described in [4] is to map the original constraints and functions back to the resulting

join tree. The most natural language for expressing this is a block diagram, as shown in Fig. 6. The associations

between blocks are labeled according to the shared variables. There is always a way to assign the constraints back to

the aggregations in such a way that every constraint has all its parameters in its local block. Though mapping is not

unique in general, it happens that the assignment of the constraints back to the structure is unique in this case.

To analyze the system shown in Fig. 6, we use a very simplistic algorithm using sets. Each block, Perch, Metrics,

Weight, and Range, can be thought of as describing a set of feasible points based on the constraints. The overall

space of the system can be described as the intersection of the spaces described in the blocks. To apply summary

propagation, we use set intersection as the multiplication operation and projection as the summation operation. Since

this is a trade study, our goal is to evaluate the Metrics block. Fig. 7 depicts the general strategy of evaluation. Using

the decomposition of Fig. 6 reduces the complexity of analyzing the system from D7 down to 3D4 + D2. This is a

143 Shahan Yang et al. / Procedia Computer Science 16 (2013) 138 – 147

(a) Input to the tool (b) Functional dependence graph

(initial)

(c) Functional dependence graph

(with additional fillins)

(d) Chordal transformation (e) Join tree

Fig. 5: Quadrotor example

Fig. 6: The completed Block Diagram of the tree decomposition of the quadrotor

significant reduction. Suppose, for example, we use a grid of 20 points. 207 = 1.28∗109 while 3∗204+202 = 480, 400,

which is orders of magnitude fewer samples.

Now we summarize how systems engineers can use our tool to improve their designs. Firstly, a system engineer

transforms the constraints (i.e., functions) in the SysML Parametric Diagrams and inputs them into our tool as in

Fig. 5a. If the generated functional dependence graph is not chordal (e.g., Fig. 5b), the engineer needs to interact

144 Shahan Yang et al. / Procedia Computer Science 16 (2013) 138 – 147

with our tool to help it transform the initial functional dependence graph into a chordal graph, which is essential for

our algorithm. The basic operation is to add more fillins. However, the transformation is not unique. Different set

of added fillins can result in different expected complexity of system analysis, which is dominated by the size of the

maximum clique in the chordal graph. The engineer can try different options, and if the current selection induces a

large complexity, the engineer can roll back the current graph to its previous status and continue investigation with

other options. Therefore, our tool can expose a sequence of design choices to systems engineers to provide instant

feedback about the influence of a design decision on the complexity of system analysis.

Fig. 7: Summary propagation applied to the block diagram of Fig. 6. We treat each of the blocks as sets. The overall

system is understood as the intersection of all the sets. We can use a generalized version of summary propagation to

efficiently run queries on this structure

With a chordal graph, our tool will generate a join tree, based on which the engineer can create a SysML Block

Diagram by assigning constraints to blocks. This Block Diagram is essentially a factor join tree, in which blocks are

the factor nodes, and the intersection of parameters in two blocks is the variable node between them, as shown in

Fig. 6. Based on this Block Diagram, the engineer can revise the original SysML Parametric Diagrams accordingly,

such that constrains and parameters in the same block can be grouped together locally. Then the engineer can analyze

the system using summary propagation as shown in Fig. 7. Therefore, our tool can provide guidance for systems

engineers to improve their designs and analyze their systems.

3.4. Other Examples

Traffic Intersection. Fig. 8a shows the interference graph for a traffic intersection. TTW denotes the traffic light

controlling traffic from the west that is turning left (north) and TW denotes the traffic light controlling traffic coming

from the west and going east. There is a link between two variables if they are not permitted to be simultaneously

green. Fig. 8b shows one of the possible join trees generated by the tool. Since Fig. 8a is not chordal, this is not a

unique decomposition. Note that the interface or shared variables are te, tte, ttw and tw. This is essentially a Boolean

satisfaction problem where we are searching for all the satisfying instances.

It is not immediately clear how to analyze the system using the join tree given in Fig. 8b since the variables are

highly coupled. We take the nodes of Fig. 8a and rearrange them so that the interface variables te, tte, ttw and tw are

in the middle separating the rest of the variables. Fig. 8c shows the result of this manipulation. This graph, derived

from the join tree of Fig. 8b, reveals the structure of the traffic intersection dependence graph intuitively. We can see

that ttw | te and tte | tw disable the opposite pairs of lights. Among themselves, they also have some structure. They

do not oppose each other at all, in fact, so the compatible configurations are ttw and (tw or tte). The other possible

configurations are symmetrical to these.

Join Tree for a Bayesian Network. The traditional usage for junction trees is performing inference on Bayesian

networks. Fig. 9a shows a Bayesian network depicting a disease diagnosis inference. Fig. 9b shows its corresponding

loop-free join tree that is suitable for inference.

Mind Mapping. One problem that occurs when writing a paper is taking a graph that represents the ideas in the

paper and linearizing it into an outline. This tool can help in doing this. Fig. 10 shows the graph structure of some

concepts used in a different paper.

145 Shahan Yang et al. / Procedia Computer Science 16 (2013) 138 – 147

(a) Interference graph (b) Join tree (c) Structure of traffic interfer-

ence dependence graph

Fig. 8: Example of traffic intersection

(a) A graph showing a Bayesian network for diagnosing

lung conditions. This graph is coincidentally chordal, so

the algorithm converges immediately to a unique solution

(b) A graph depicting the join tree of the Bayesian network from

Fig. 9a. The join tree is loop free so summary propagation is an ex-

act inference algorithm

Fig. 9: Example of Bayesian network

Fig. 10: A map of concepts in a paper. This graph is coincidentally chordal

Fig. 11 depicts the tree representation of the graph in Fig. 10. The tool helps convert the graph representation into

a tree representation of the information. The tree can then be conveniently linearized into an outline.

146 Shahan Yang et al. / Procedia Computer Science 16 (2013) 138 – 147

Fig. 11: A tree view of the contents of Fig. 10. This tree can be directly translated into an outline for a paper. In

fact, many outlines can be produced from this tree. The first degree of freedom is the choice of a root node. Since a

property of trees is that a unique path exists between any pair of nodes, identifying a root induces a partial order over

the tree. The suborderings must also be determined to linearize the tree structure

4. Discussion

One interesting property of the technique is how counterintuitive these join trees are from the perspective of

creating block diagrams. However, looking at Fig. 5d reveals an interesting relationship between the geometry of the

chordal decomposition and the resulting block structure. The Battery and Range variables are shared by the three

blocks. It is apparent in the geometry that these two variables form an axis which connects the three tetrahedrons and

thus Battery and Range are shared variables over three of the blocks in the block diagram. We are not accustomed, as

engineers to expressing decompositions using shared variables, although it is apparent that this is natural because the

constraint structure has a both locality and a dependence structure. Having a tool for performing this analysis certainly

helps in finding the tree decompositions.

As shown through the examples, this is a very general technique that can be applied to many domains. In the

examples of this paper, the sets are static in nature. In [12], we show how the same technique of composition and

projection can help in the formal analysis of dynamic Bayesian networks.

5. Future Work

The current tool only implements the basic join tree algorithm that can be found in [13]. This algorithm utilizes the

fact that ordering the cliques in reverse of the elimination order that generates them provides a way to constructively

attach the cliques into a clique. [14] describes a means to generate all possible join trees. The cliques generated by

the algorithm are unique and can be used to create the clique-separator graphs of [14]. The specific join tree could

be a design decision for the system and it would be good to extend the tool to allow interaction over these structures.

In [4], a further addition to the clique separator is to remap the original constraints back to the resulting cliques. This

mapping is proven to exist for the clique decomposition but it is not unique, so the tool should also assist with this

step. It should also be possible to map Parametric Diagrams directly into inputs for this tool, given how similar they

are structurally. Automated generation of block diagrams should then be possible as well from the output of the tool.

6. Conclusion

We have presented a tool that uses an interactive method to compute junction trees and show how the technique

can be applied in structuring the analysis of broad range of systems. Theoretically, problems that can be encoded as

commutative semirings are amenable to analysis by this technique, but it is not limited to this domain. We believe this

tool and graphical decomposition technique could be of use to many systems engineers. It is complexity aware and

generates decompositions that are amenable to localized computational analysis.

147 Shahan Yang et al. / Procedia Computer Science 16 (2013) 138 – 147

Acknowledgment

Research supported in part by the NSF under grant CNS-1035655, by the NIST under contract 70NANB11H148

and by a grant from the Lockheed Martin Corporation.

References

[1] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible inference, 1988.

[2] S. Arnborg, A. Proskurowski, Linear time algorithms for np-hard problems restricted to partial k-trees, Discrete Appl. Math. 23 (1) (1989)

11–24.

[3] H. Bodlaender, Dynamic programming on graphs with bounded treewidth, Automata, Languages and Programming (1988) 105–118.

[4] S. Yang, J. S. Baras, Factor join trees for systems exploration, in: International Conference on Software and Systems Engineering and their

Applications, 2011, pp. 1–10.

[5] M. D. Guenov, Complexity and cost effectiveness measures for systems design, in: Manufacturing Complexity Network Conference, 2002,

pp. 1–13.

[6] S. C. Y. Lu, N.-P. Suh, Complexity in design of technical systems, CIRP Annals - Manufacturing Technology 58 (1) (2009) 157 – 160.

[7] E. Clarke, Compositional model checking, in: Proceedings of Fourth Annual Symposium on Logic in Computer Science, 1989, pp. 353 – 362.

[8] K. L. McMillan, Symbolic model checking: an approach to the state explosion problem, Ph.D. thesis, uMI Order No. GAX92-24209 (1992).

[9] A. Biere, A. Cimatti, E. M. Clarke, Y. Zhu, Symbolic model checking without bdds, in: Proceedings of the 5th International Conference on

Tools and Algorithms for Construction and Analysis of Systems, TACAS ’99, 1999, pp. 193–207.

[10] E. Clarke, Computer-aided verification, IEEE Spectrum 33 (6) (1996) 61 – 67.

[11] B. Wang, J. Baras, Performance analysis of time-critical peer-to-peer communications in ieee 802.15.4 networks, in: IEEE ICC, 2011, pp.

1–6.

[12] S. Yang, Y. Zhou, J. S. Baras, Compositional analysis of dynamic bayesian networks and applications to cps, in: Conference on Systems

Engineering Research (CSER), 2013, pp. 1–10.

[13] F. V. Jensen, T. D. Nielsen, Bayesian Networks and Decision Graphs, 2nd Edition, 2007.

[14] L. Ibarra, The clique-separator graph for chordal graphs, Discrete Appl. Math. 157 (8) (2009) 1737–1749.

Appendix A. Theory Background

A system is defined as the tuple P = 〈L,P1(X1), . . . ,PM(XM)〉, with L = {Σ1, . . . ,ΣN} and Xi ⊆ L for i =
1, . . . ,M. Each Σi ∈ L is a set corresponding to the domain of a system variable xi. Each Pi (i = 1, . . . ,M) is

a general component that influences the variables with domains Xi. A functional dependence graph of a system P
is defined as the graph G = 〈L, E〉 with E = {(x, y) | ∃i ∈ [1,M] s.t. (x, y ∈ Xi) ∧ (x � y)}. Every parameter

set defined by Xi induces a clique of mutually connected nodes in the flattened graph G. The elimination of a node

Σ ∈ L from the graph G, denoted by
⊕
Σ

G, is defined as the graph G′ = 〈L \ {Σ}, E′〉, where E′ is defined as

(E \ {(x, y) | Σ ∈ {x, y}})⋃ F. Here, F is the set of links in the clique induced by the set of neighbors N(Σ) of Σ. The

sequence of graphs induced by an elimination ordering Lp, which is denoted by 〈G1(Lp), . . . ,GN+1(Lp)〉, is defined

as G1(Lp) = G and Gk+1(Lp) =
⊕
Σik

Gk(Lp) for k = 1, . . . ,N . The sequence of cliques induced by an elimination
ordering Lp, which is denoted by 〈C1(Lp), . . . ,CN (Lp)〉, is defined as Ck = NGk(Lp)(Σik)

⋃{Σik } for k = 1, . . . ,N .

Here, NGk(Lp)(Σik) is the set of neighbors of Σik in Gk(Lp) from the sequence of graphs induced by Lp.

The width of graph G with respect to ordering Lp is defined as the maximum size of the cliques in the sequence

of induced cliques minus 1, i.e., WG(Lp) = maxk |Ck(Lp)| − 1 . The extra minus 1 ensures that the treewidth of a tree

is 1. The treewidth W of a system P is defined as:

W = min
Lp

WG(Lp) = min
Lp

max
k
|Ck(Lp)| − 1

The value of W gives the minimal tree decomposition of the system.

A node is simplical if all of its neighbors are mutually connected. We have the following theorem:

Theorem 1. Let Lp be an elimination order where Σik and Σik+1 are both simplical in Gk(Lp), and L′p be another
elimination order by swapping Σik and Σik+1 in Lp. Then WG(L′p) = WG(Lp).

Theorem 1 states that eliminations of simplical nodes are commutative with respect to the treewidth of the resulting

graphs. Therefore, simplical nodes can be eliminated in any order without impacting the width of the graph. Our

heuristic algorithm to find the treewidth of a graph can be sketched out as follows: (1) Eliminate all simplical nodes

in any order; (2) If any nodes remain, eliminate one randomly; (3) If any nodes remain, return to step 1.

