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Abstract—In this paper, we study a distributed opportunistic
scheduling problem to exploit the channel fluctuations in wireless
ad-hoc networks. In this problem, channel probing is followed
by a transmission scheduling procedure that is executed indepen-
dently within each link in the network. We study this problem
for the popular block-fading channel model, where channel
dependencies are inevitable between different time instances
during the channel probing phase. Different from existing works,
we explicitly consider this type of channel dependencies and its
impact on the transmission scheduling and hence the system
performance. We use optimal stopping theory to formulate this
problem, but at carefully chosen time instances at which effective
decisions are made. The problem can then be solved by a new
stopping rule problem where the observations are independent
between different time instances. Since the stopping rule problem
has an implicit horizon determined by the network size, we first
characterize the system performance using backward induction.
We develop one recursive approach to solve the problem and
show that the computational complexity is linear with respect to
the network size. Due to its computational complexity, we present
an approximation for performance analysis and develop a metric
to check how good the approximation is. We characterize the
achievable system performance if we ignore the finite horizon
constraint and apply the stopping rules based on the infinite
horizon analysis nevertheless. We present an improved protocol
to reduce the probing costs which requires no additional cost.
We characterize the performance improvement and the energy
savings in terms of the probing signals. We show numerical
results based on our mathematical analysis with various settings
of parameters.

Index Terms—Opportunistic scheduling, media access control,
ad-hoc networks, channel probing, block fading, optimal stop-
ping, backward induction

I. INTRODUCTION

THERE have been many works on opportunistic schedul-
ing to exploit the channel fluctuations in the past decade.

Instead of treating fading as a source of unreliability and
trying to mitigate such channel fluctuations, fading can be
exploited by opportunistic transmission of information when
and where the channel is strong [1], [2]. On the other hand,
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opportunistic spectrum access and spectrum sharing has been
widely studied for cognitive radio networks [3]. Hence it
is important to understand the trade-off between the costs
spent for channel sensing and the opportunities (e.g. system
throughputs) obtained for such systems. Most existing works
on opportunistic scheduling assume a cellular like system
where a central scheduler tries to optimize the overall system
performance by selecting the on-peak user for data transmis-
sion [1], [4]–[8]. In contrast, in ad-hoc networks it is necessary
to access the wireless medium and schedule data transmission
in a distributed fashion. So far few existing works have studied
this problem. Such examples include rate adaptation with
MAC design based on the RTS/CTS handshaking for IEEE
802.11 networks [9]–[11] and channel-aware ALOHA for
uplink communications [12]–[14]. However, rate adaptation
focuses on exploiting temporal opportunities while leaving
the media access issue to the RTS/CTS mechanism. On the
other hand, channel-aware ALOHA associates the probability
to access the uplink with the channel state information (CSI)
assuming that each user knows its own CSI. These schemes
ignore the overhead due to the distributed nature of ad-
hoc networks when considering the joint media access and
scheduling problem. In fact, these costs should be counted
into the protocol design in order to fully exploit the channel
fluctuations in the network.

In [15], the authors proposed to study a distributed op-
portunistic scheduling (DOS) problem for ad-hoc networks,
where M links contend the wireless medium and schedule
data transmissions in a distributed fashion. In such networks,
the transmitter has no knowledge of other links’ channel
conditions, and even its own channel condition is not available
before a successful channel probing. The channel quality
corresponding to one successful probing can either be good
or poor due to channel fluctuations. In each round of channel
probing, the winner makes a decision on whether or not to
send data over the channel. If the winner gives up the current
opportunity, all links re-contend again, hoping that some link
with better channel condition can utilize the channel after
re-contention. The goal is to optimize the overall system
performance. The authors show that the decision on further
channel probing or data transmission is only based on local
channel conditions, and the optimal strategy is a threshold
policy.

One key issue in the design and analysis of opportunistic
scheduling protocols for wireless ad-hoc networks is to seek
an optimal trade-off between the costs to obtain the CSIs
and the opportunities that can be exploited based on these
CSIs. When channel probing is adopted for this purpose, the
problem reduces to a tradeoff between the durations elapsed
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for channel probing and those remaining for data transmis-
sions. The authors in [15] considered the constant data time
(CDT) model [16], where a fixed duration of T is available for
data transmission regardless of the time consumed for channel
probing. To further understand this tradeoff and its impact on
the system performance, we consider the constant access time
(CAT) model [16], where the total time duration available
is a fixed amount T and the protocol needs to decide how
to split T between channel probings and data transmissions
in order to improve the system performance. On the other
hand, in [15] the winners’ channel rates were explicitly
assumed to be independent in the channel probing phase,
which is an ideal assumption. As we will explain in Section
III, there are inevitable dependencies between the winners’
rates at different time instances during the channel probing
phase. In our previous conference paper [17], we analyzed
the distributed opportunistic scheduling problem for the CAT
problem under the ideal assumption that the winners’ channel
rates are independent in the channel probing phase. In this
paper, we further investigate this problem under the popular
block fading channel model. We explicitly consider how such
dependencies could impact the transmission scheduling and
hence the system performance. We use optimal stopping the-
ory [18]–[20] to describe this problem, where we only choose
the time instances when an effective decision is taken to make
our mathematical analysis tractable. The new contributions of
this paper include:

1) We study a distributed opportunistic scheduling problem
under the popular block fading channel model where
there are inevitable dependencies between the winners’
channel rates during the channel probing phase. To the
best of our knowledge, this problem has not been studied
in the literature.

2) We present a concept named “effective observation
points”, where we only take observations at time in-
stances when effective decisions are made. In this ap-
proach, repeated decisions by the same link are properly
treated as a single decision. This approach makes our
mathematical analysis tractable, where winners’ channel
rates in the probing phase are not independent in the first
place.

3) We characterize the optimal stopping rules and network
throughputs for networks at different scales. We show
that the finite horizon analysis is necessary for networks
whose sizes are not large enough, otherwise the actual
achievable network throughputs may deviate a lot from
the infinite horizon analyses.

4) We propose a modified protocol to reduce the probing
costs, which requires no additional overhead for protocol
design. By analytical and numerical results, we show that
the new protocol improves the system performance, in
particular for scenarios when the network size is not large
or the network is “over-probed”. Furthermore, we show
that the new protocol can reduce the energy consumed
in the channel probing phase considerably. This makes
the improved protocol of particular interest for networks
whose nodes have limited battery life.

This paper is organized as follows. In Section II we describe
our system model for the distributed opportunistic scheduling

problem. In Section III we formulate the problem as an
optimal stopping problem and present our concept of effective
observation points for analyzing the problem. We first present
a rigorous analysis for the CAT problem based on the finite
horizon approach in Section IV. Due to its computational
complexity, in Section V we introduce an approximate ap-
proach to characterize the system performance. In Section
VI we present a modified protocol to reduce the probing
costs, and analyze the performance improvement in network
throughputs and energy savings during the channel probing
phase. In Section VII we introduce the results for the CDT
problem and a performance comparison to the CAT problem.
We show our numerical results in Section VIII and finally
conclude the paper in Section IX.

II. SYSTEM MODEL AND MOTIVATION

In this section, we introduce our system model for the
distributed opportunistic scheduling problem. Similar to the
problem discussed in [15], we assume M links share the
wireless medium without any centralized coordinator in an
ad-hoc network. To access the wireless medium, all links
have to probe first. Suppose the links adopt a fixed probing
duration τ . A collision channel model is assumed, where a
link wins the channel if and only if no other links are probing
simultaneously. If link m probes the channel with probability
p(m), the duration of the n-th round of channel probing is
Tn = τKn, where Kn is the number of probings before the
channel is won by some link. Hence Kn has a geometric
distribution Geom(ps) with parameter ps, where

ps =

M∑
m=1

p(m)
∏
j �=m

[
1− p(j)

]
(1)

is the successful probing probability. Throughout this paper,
we use superscript (m) to denote variables related to the m-th
link, and subscript n to denote variables related to the winner
in the n-th round of channel probing. We also use the terms
“n-th round of channel probing” and “time n” interchangeably.
At the end of the n-th round, winner sn has an option to send
data through the channel at the current available rate Rn or
to give up this opportunity. Based on the current rate Rn,
sn makes a decision on whether or not to utilize the channel
for data transmission in order to optimize the overall network
throughput. If sn gives up the opportunity, all links re-contend
again. This procedure repeats until some link finally utilizes
the channel. The goal is that all links cooperate indirectly to
make the channel accessible by some link with a good enough
channel quality.

The performance analysis in [15] relies on an important
assumption: the winners’ channel rates Rn are independent
with respect to time n in the channel probing phase but can
be locked for a constant duration T in the data transmission
phase. It should be noted that the independence of R(m) within
one block does not necessarily imply the independence of the
winners’ rates Rn. In fact, possible dependencies do exist
between the winners’ channel rates Rn, since some link m̃
might win the channel for multiple times within one block.
This assumption can generally hold when the network size
(i.e. the number of links in the network) is infinitely large. It
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is not necessarily true for a network with a finite size M . On
the other hand, although opportunistic scheduling has been
shown to improve the system performance dramatically for
large networks [2], [8], [15], there are other factors we need
to consider for design of such systems. For example, we could
take a look at the average waiting time for any link to access
the medium [21]. Suppose the channel fading are i.i.d. for
all M links in the network. Then based on the distributed
opportunistic scheduling scheme [15], [17], any link m is able
to access the current block with a probability 1

M . Hence it
takes roughly M blocks before link m is able to send data over
the channel. This will lead to a long delay for large networks.
Hence for such kind of systems, one practical approach is to
consider multi-cell or multi-channel schemes [16], [22], [23]
to trade-off several design goals (e.g. throughput, delay). In
line with that, we argue that it is important to consider this
problem for a network with a finite size M , which is the basis
for a more complex multi-cell or multi-channel system.

To investigate how the dependencies of the winners’ channel
rates in the channel probing phase affect the system perfor-
mance, we study this problem for the popular block-fading
channel model. We assume the channel rates are flat fading
within one block. Hence the channel rate R(m) for any link
m does not change within one block. The total block length
Ts is separated into two parts as Ts = Tp + Td, where Tp

is for channel probing and Td is for data transmission. At
the end of the n-th round of channel probing, the total time
duration for channel probing is Tp =

∑n
i=1 Ti. We consider

the CAT model [16], [17], where the transmitter has a fixed
duration Ts = T in total, leaving the available duration for
data transmission as Td = T −∑n

i=1 Ti. If we decide to send
data at the end of the n-th round, the normalized network
throughput is

Yn =
Rn · (T −∑n

i=1 Ti)

T
. (2)

III. THE OPTIMAL STOPPING PROBLEM FORMULATION

In this section, we formulate the distributed opportunistic
scheduling problem as an optimal stopping problem. In par-
ticular, we present the concept of effective observation points
to facilitate the mathematical treatment of our problem.

The theory of optimal stopping [18]–[20] is about the
problem of choosing a time to take a given action based on
sequentially observed random variables in order to maximize
an expected payoff. The stopping rule problem is defined by
a sequence of random variables X1,X2, . . . whose joint dis-
tribution is known and a sequence of real-valued reward func-
tions Y0, Y1(x1), . . .. Let (Ω,B, P ) be the probability space,
and Fn be the sub-σ-field of B generated by X1, . . . ,Xn.
We have a sequence of σ-fields as F0 ⊂ F1 ⊂ . . . ⊂ Fn ⊂
. . . ⊂ B. A stopping rule is defined as a random variable
N ∈ {0, 1, . . . ,∞} such that the event {N = n} is in Fn. Our
goal is to choose a stopping rule N∗ to maximize the expected
reward E[YN ]. If there is no bound on the number of stages
at which one has to stop, this is an infinite horizon problem
and the optimal return can be computed via the optimality
equation. When there is a known upper bound on the number
of stages, it is a finite horizon problem and the optimal return

1: for each link m do
2: m probes the channel with a fixed probability p(m);
3: if m wins the channel then
4: m makes a decision on whether or not to send

data over the channel;
5: if m decides to utilize the channel then
6: m sends data through the channel for a dura-

tion of T−∑n
i=1 Ti (CAT) or T (CDT), where

n is the current index of channel probing;
7: end if
8: end if
9: end for

Fig. 1. The distributed opportunistic scheduling protocol

can be solved by backward induction. Details on this topic
can be found in [18]–[20].

At the end of the n-th round, winner sn observes the prob-
ing duration Tn and the available channel rate Rn. Recalling
that Tn = τKn and the fact that τ is a constant, we denote the
observations at time n as a random vector Xn = (Rn,Kn)
and one realization of Xn as xn = (rn, kn). The σ-fields can
be denoted as

Fn = {X1,X2, . . . ,Xn} = {R1,K1; R2,K2; . . . ; Rn,Kn} .
(3)

Then sn makes a decision on whether or not to stop based on
Fn, to maximize the overall network throughput (2). Here
a decision to “stop” means that sn decides to utilize the
remaining time duration for data transmissions. A decision
to “continue” means that sn decides to give up the current
opportunity. Another round of channel probing and decision
making then begins. This probing and decision making be-
havior continues within this block until winner sN finally
utilizes the channel for data transmissions, where N is the
stopping time. It could be easily sensed and detected by all
other links at this point. Then none of these links send probing
signals anymore until the beginning of the next block. If this
procedure is repeated for I blocks independently, the decision
making process can be described as

Y ∗ = max
N∈Fn

E
[
RN ·

(
T − τ

∑N
i=1 Ki

)]
T

, (4)

where N is the stopping time. This procedure can be described
as in Fig. 1.

Now the problem is to find an optimal rule N∗ to maximize
the overall network throughput. To do this, we need to
characterize the joint distribution of Rn and Kn. We notice
that Rn and Kn are independent of each other, and Kn are
also independent with respect to time n. However, the winners’
channel rates Rn are not independent due to the block fading
assumption. The dependencies of Rn make the mathematical
treatment of this problem intractable. In this paper, we tackle
this problem by using effective observation points instead
of the original observation points in (3). The whole idea is
motivated from the following fact: at time n, if the winner sn
decides to give up the opportunity, the same decision will be
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repeated for all future ñ > n in this block when the channel
is won by sn again at time ñ. This is because utilizing the
channel at time ñ will only yield a smaller reward, i.e.

Yñ =
Rñ(T − τ

∑ñ
i=1 Ki)

T
<

Rn(T − τ
∑n

i=1 Ki)

T
= Yn,

(5)
where we used the fact that Rñ = R(sñ) = R(sn) = Rn. It
implies that an effective decision is always made at the time
instances when a link wins the channel for the first time. If
we only take observations at these time instances, the channel
rates R̃n are independent. We denote the σ-fields at these time
instances as

F̃n =
{
R̃1, K̃1; R̃2, K̃2; . . . ; R̃n, K̃n

}
. (6)

Lemma 1. The solutions to the optimal stopping problem
based on F̃n and Fn have different distributions for the
stopping time N . However, both solutions have the same
network throughputs and distributions for the elapsed probing
durations L =

∑N
i=1 Ki.

Hence if we do not care how many times a given link m has
given up its opportunity upon winning the wireless medium,
the problem is equivalent to analyzing the problem using F̃n

instead of Fn. For the rest of this paper, we always refer to
the σ-fields at the effective observation points unless noted
otherwise. Hence we use the notations Fn, Tn, Kn instead of
F̃n, T̃n, K̃n for short for the rest of the paper.

IV. A RIGOROUS PERFORMANCE ANALYSIS: THE FINITE
HORIZON APPROACH

In this section, we characterize the optimal stopping rules
and the network throughputs. We analyze the protocol using
σ-fields (6) recorded at those effective observation points.
By this notation, the number of effective probing links is
monotonically decreasing as time n moves on, even though
physically all links are still probing the wireless medium as
in Fig. 1. On the other hand, since no recall is allowed, if
link m gives up its opportunity at some point, link m cannot
reclaim it at a later time. As a result, the “last” winner must
utilize the wireless medium for data transmission, otherwise
the channel will be completely wasted in this block. Hence the
stopping rule problem always has an implicit horizon at M ,
where M is the network size. The problem should be treated
as a finite horizon problem and be solved by the backward
induction approach [18]–[20].

We denote the optimal expected reward based on obser-
vations until the n-th round of channel probing as λ∗

n =
λ∗
n(x1, . . . ,xn). We will use the term “the n-th round of

channel probing”, “time n” or “stage n” interchangeably in
this section. The backward induction can be described as

λ∗
M (x1, . . . ,xM ) = YM (x1, . . . ,xM ) (7)

and

λ∗
n(x1, . . . ,xn) = max

{
Yn(x1, . . . ,xn),

E
[
λ∗
n+1(X1, . . . ,Xn,Xn+1)

∣∣X1 = x1, . . . ,Xn = xn

]}
,

(8)

where n = 0, 1, . . . ,M − 1, and Yn(x1, . . . ,xn) is the instant
reward based on Fn. At stage n, it is optimal to stop if
Yn(x1, . . . ,xn) ≥ λ∗

n(x1, . . . ,xn) and to continue otherwise.
The optimal return at stage n is the instant payoff if the
decision is to stop and the expected payoff if the decision
is to continue. The optimal network throughput is λ∗

0, i.e. the
optimal expected reward before taking any observations.

However, it is not practical to directly solve this problem
using (7) and (8) for two reasons. First, the channel rates rn are
generally continuous variables. We have to discretize rn to use
(7) and (8). Second, the instant observation xn at time n is a
two dimensional vector. To directly apply backward induction
on xn, there will be too many states in the state space. The
overwhelming computational complexity will restrict us to
solve problems only with a small M . In this paper, we develop
one approach to reduce the computational complexity for this
procedure. First we notice that the last item in (8) only depends
on x1, . . . ,xn since the expectation is taken with respect to
Xn+1. Hence we can denote it as

wn(x1, . . . ,xn)

= E
[
λ∗
n+1(X1, . . . ,Xn,Xn+1)

∣∣X1 = x1, . . . ,Xn = xn

]
(9)

for short. Now the problem in (7) and (8) reduces to the calcu-
lation of wn(x1, . . . ,xn). Next, we show that the calculation
of wn(x1, . . . ,xn) does not need all of these observations
x1, . . . ,xn. To show this, we define the total number of
probings up to time n as Ln =

∑n
i=1 Ki. Note that Ln is

a random variable. We denote one realization of Ln as ln.

Lemma 2. Suppose the network size is M ≥ 2, the expected
reward at time n can be characterized as

wn(x1, . . . ,xn) =

⎧⎨
⎩

wM (rM , lM ) if n = M,
wn(ln) if n = M − 1, . . . , 1,
w0 = λ∗

0 if n = 0.
(10)

Proof: Since the network size is M , the backward
induction has a horizon at stage M . The reward at stage
M is wM (x1, . . . ,xM ) = max

{
0, rM(T−τlM )

T

}
. Hence

wM (x1, . . . ,xM ) only depends on rM and lM , and it can
be denoted as wM (rM , lM ) for short.

Now we let n = M − 1 in (9). We can see that the
expectation in (9) is taken with respect to XM , i.e. RM and
KM . We have showed that wM (x1, . . . ,xM ) only depends on
rM and lM , but is independent of rM−1. Hence after taking
the expectation, wM−1(x1, . . . ,xM−1) is still independent of
rM−1. On the other hand, wM−1(x1, . . . ,xM−1) does depend
on lM−1, since lM−1 remains in the expression after taking
expectation with respect to KM , where LM = LM−1 +KM .
Hence wM−1 only depends on lM−1. We can iterate this
procedure from n = M − 2 to n = 1. As a result, for
n = M − 1, . . . , 1, wn(x1, . . . ,xn) can be denoted as wn(ln)
for short.

Finally, the network throughput is the optimal expected
reward before taking any observations. That is to say n = 0. In
this case, ln can only be 0. Hence we can write it as w0 = λ∗

0

for short.
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Following Lemma 2, we can use ln as the only state for
the backward induction procedure. The problem is reduced
to a one-dimensional problem. To calculate w0, we need to
calculate w1(l1) for all possible l1, and then w2(l2) for all
possible l2, and so on until stage M . Hence the problem is to
compute wn(ln) for n = 1, . . . ,M − 1 and wM (rM , lM ).
Theorem 1. The optimal stopping rule for the distributed
opportunistic scheduling problem is

N∗ = min

{
n ≥ 1 : Rn ≥ λ∗

n · T

T − τ
∑n

i=1 Ki

}
. (11)

The optimal network throughput is w0 = λ∗
0. Suppose the

network size is M . The finite horizon analysis reduces to the
calculation of w0, which eventually iterates all wn(ln) for
n = 1, . . . ,M − 1 and wM (rM , lM ). The expected reward
can be calculated recursively as

wn−1(ln−1) =
∑

k∈Ωn(ln−1)

[
(1− ps,n)

k−1ps,n · qn(ln−1, k)

]

(12)
qn(ln−1, k) = Pn(k) · En(k) + [1− Pn(k)] · wn(ln−1 + k),

(13)

where qn(ln−1, k) is the conditional expected reward given
Kn = k. Kn can take values in

Ωn(ln−1) = {k | τ · (ln−1 + k) < T, k ∈ N} ,
and Pn(k) and En(k) can be calculated as

Pn(k) = P

[
Rn >

wn(ln−1 + k) · T
T − τ(ln−1 + k)

]

En(k) = E

[
Rn

∣∣∣∣Rn>
wn(ln−1 + k) · T
T − τ(ln−1 + k)

]
·T − τ(ln−1 + k)

T
.

Proof: To calculate wn−1(ln−1), we use n to substitute
n− 1 in (9) and take expectation on both sides of (8) as

wn−1(ln−1)

= E [max{Yn(x1, . . . ,xn−1,Xn), wn(x1, . . . ,xn−1,Xn)}] ,
(14)

where the expectation is taken with respect to Xn. We further
take its conditional expectation with respect to Kn and write
it as

wn−1(ln−1) =
∑

k∈Ωn(ln−1)

{
P [Kn = k] · qn(ln−1, k)

}
,

where qn(ln−1, k) is the conditional expectation of (14) given
Kn = k. As we showed in Section V, Kn has a geometric
distribution Geom(ps,n). Hence we have P [Kn = k] = (1 −
ps,n)

k−1ps,n. On the other hand, combing (2) and Lemma 2,
we have

qn(ln−1, k)

= E

[
max

{
Rn (T − τ(ln−1 + k))

T
,wn(ln−1 + k)

}]
.

Now if we take its conditional expectation with respect to the
following event{

Rn (T − τ(ln−1 + k))

T
> wn(ln−1 + k)

}
,

we can immediately have (13). This proves the theorem.

We can also bound the computational complexity of the
procedure described in Theorem 1.

Proposition 1. To calculate the optimal network throughput
w0 and the expected reward based on a set of given obser-
vations {r1, k1; . . . ; rM , kM} with a relative error less than ε
(0 < ε � 1), the computational complexity of the procedure
in Theorem 1 is

min

{
M �T/τ� ,

M∑
n=1

n

⌈
log ε

1+ε

log(1 − ps,n)

⌉}
. (15)

Proof: For a network with size M , the backward in-
duction procedure in Theorem 1 has M stages. In the n-th
stage, the procedure involves the calculation of all possible
wn(ln). For the CAT problem, ln can simply be bounded as
1 ≤ ln ≤ �T/τ�. Hence the computational complexity in
the n-th stage is at most �T/τ�, and the total computational
complexity is at most M�T/τ�.

On the other hand, since qn(ln−1, k) is the conditional
expected reward if the probing duration is Kn = k at time n,
qn(ln−1, k) is a decreasing function of k. For a given integer
kε, we have∑

k>kε
P [Kn = k] · qn(ln−1, k)∑

k≤kε
P [Kn = k] · qn(ln−1, k)

<

∑
k>kε

P [Kn = k] · qn(ln−1, kε)∑
k≤kε

P [Kn = k] · qn(ln−1, kε)
=

1

1− (1 − ps,n)kε
− 1,

(16)

where we used the fact that Kn has a geometric distribution
Geom(ps,n). To ensure the relative error in the calculation
of wn−1(ln−1) is less than ε, we let the right hand side of
(16) be less than ε. After some manipulation, we have kε ≥

log ε
1+ε

log(1−ps,n)
. Hence we only need to iterate

⌈
log ε

1+ε

log(1−ps,n)

⌉
items

in the n-th stage. Iterating this procedure from the top level
n = 0 to n = M and noticing that l0 = 0, we immediately
have our conclusion.

V. AN APPROXIMATION FOR PERFORMANCE ANALYSIS:
THE INFINITE HORIZON APPROACH

As we saw in Section IV, the computational complexity
of backward induction can quickly become overwhelming as
M increases. In contrast, the infinite horizon analysis based
on the optimality equation [18]–[20] has a much smaller
computational complexity. Hence we would like to see if the
performance analysis in Section IV can be approximated using
the infinite horizon approach. In this section, we analyze the
protocol using the infinite horizon approach and develop a
metric as a guideline to choose the appropriate approach for
a given network.

Lemma 3. For the same stopping rule problem described
in Section III, the infinite horizon analysis yields an optimal
network throughput slightly larger than that from the finite
horizon analysis. The gap decreases to 0 as the network size
M → ∞.

If the network size M is large enough, this problem does not
have a finite horizon and can be analyzed using the optimality
equation [18]–[20]. We make the following assumptions:
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[A1] The total number of links M in the network is large
enough;

[A2] The channel rates only take values in (0,+∞);
[A3] Each link m probes the wireless medium with probabil-

ity p(m) = p;
[A4] The channel rates for all links have the same cumulative

distribution function (CDF) FR(r).
Here [A1] ensures the problem does not have a finite horizon,
and [A2]-[A4] facilitate our mathematical analysis. We first
characterize the distribution of Kn. By the n-th round, n− 1
links in total have given up their opportunities in previous
rounds. Hence only the rest of the M − n + 1 links can
contribute to an effective channel probing. If we ignore the
events when the channel is won by any of these n− 1 links,
Kn has a geometric distribution Geom(ps,n), where

ps,n = (M − n+ 1) · p(1− p)M−1 (17)

is the successful probing probability in the n-th round. We
introduce some notations that will be used frequently in our
proof. We define a sequence of parameters fn � ps,n

ps,1
=

M−n+1
M and a sequence of random variables K̃n = fnKn.

Since fn is a constant, K̃n also has a geometric distribution
with mean E[K̃n] = fnE[Kn] = E[K1]. Hence K̃n and K1

can be considered equal in distribution [24], [25].

Theorem 2. The average network throughput λ∗
O of Fig. 1 is

the solution of

E

[
1 +

M(M + 1)

(M + 0.5)2
· τK̃1

T
− λ

R0

]+

=
M(M + 1)

(M + 0.5)2
· τ

Tps,1
,

(18)
where E[·]+ is defined as E[X ]+ = E[max(X, 0)]. The
optimal stopping rule is

N∗ = min

{
n ≥ 1 : Rn ≥ λ∗

n · T

T − τ
∑n

i=1 Ki

}
, (19)

where λ∗
n is the solution of

E

[
1− τ

T

{
n∑

i=1

Ki − M(M + n+ 1)

(M + 0.5)2
K̃1

}
− λ

Rn

]+

=
M(M + n+ 1)

(M + 0.5)2
· τ

Tps,1
. (20)

Proof: By [A2], we can rewrite the network throughput
(2) as Yn =

T−τ
∑n

i=1 Ki

T/Rn
. This problem can be solved as a

maximal rate of return problem. For a fixed rate λ, we define
a new reward at time n as

Vn(λ) = T − τ

n∑
i=1

Ki − λT

Rn
. (21)

The problem is then to characterize the optimal rate λ∗
n and

the stopping rule to achieve λ∗
n. First, we need to show

the existence of the optimal stopping rule. We notice that
E{supn Vn(λ)} < T < ∞. On the other hand, we can easily
see that lim supn→∞ Vn(λ) → −∞ and Vn(λ) → −∞ a.s..
Putting them together leads to lim supn→∞ Vn(λ) → V∞(λ)
a.s.. Hence an optimal stopping rule exists and can be de-
scribed by the optimality equation. By definition of K̃n, we

notice that Ki =
M

M−i+1 K̃i. Substituting it into (21) and using
the i.i.d. property of K̃i, we have

Vn(λ) = T − τ

n∑
i=1

M

M − i+ 1
K̃i − λT

Rn

= T − τK̃1

n∑
i=1

M

M − i+ 1
− λT

Rn
.

Note that the above equation holds in distribution. Since the
network size M is large enough and the problem can be
solved as an infinite horizon problem, the number of rounds
n is usually much smaller compared to M . To calculate the
above summation, we approximate M

M−i+1 +
M

M−(n+1−i)+1 as
2M

M−n/2+0.5 . By repeating this procedure for all i ≤ n/2, we
can approximate Vn(λ) as

Vn(λ) ≈ T − τK̃1 · Mn

M − n/2 + 0.5
− λT

Rn
.

Similarly, the payoff at time n+ 1 can be written as

Vn+1(λ) ≈ T − τK̃1 · M(n+ 1)

M − (n+ 1)/2 + 0.5
− λT

Rn+1
.

Meanwhile, note that Rn are i.i.d. by [A4]. Hence in the sense
of distribution the difference between Vn(λ) and Vn+1(λ) can
be written as

ΔVn(λ) = Vn+1(λ)− Vn(λ)

= −τK̃1 · M

M + 0.5

[
n+ 1

1− (n+1)/2
M+0.5

− n

1− n/2
M+0.5

]
.

By [A1], we can approximate the item in the above square

bracket as

(n+1)

{
1 +

n+1
2

M + 0.5

}
−n

{
1 +

n
2

M + 0.5

}
=

M + n+ 1

M + 0.5
.

(22)
Substituting it into the optimality equation V ∗

n =
max

{
Yn, E(V ∗

n+1

∣∣Fn)
}

[18]–[20], we have

V ∗
n (λ) = E

[
max

{
T − τ

n∑
i=1

Ki − λT

Rn
,

V ∗
n (λ)− τK̃1 · M(M + n+ 1)

(M + 0.5)2

}]
.

According to optimal stopping theory [18]–[20], the optimal
rate λ∗

n that maximizes the rate of return should yield 0 for
(21). If we substitute V ∗

n (λ
∗
n) = 0 into the above equation

and note that E[K̃1] = 1/ps,1, we can rewrite the equation as
(20). The uniqueness of λ∗

n can be easily verified. The optimal
stopping rule can be written as

N∗ = min

{
n ≥ 1 : T − τ

n∑
i=1

Ki − λ∗
nT

Rn
≥ V ∗

n (λ
∗
n) = 0

}
,

which leads to (19) after some manipulation. The optimal
network throughput is the expected rate of return before taking
any observation. Hence we get the optimal network throughput
λ∗
O if we let n = 0 in (20), which immediately yields (18).
The optimal network throughput (18) can be further sim-

plified under certain conditions.
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Proposition 2. Assuming τ � T , the network throughput λ∗
O

of Fig. 1 can be approximated as the solution of

E

[
1− λ

R0

]+
=

M(M + 1)

(M + 0.5)2
· τ

Tps,1
. (23)

Proof: By [A1], we have M(M+1)
(M+0.5)2 ≈ 1. Since τ

T � 1,

the term τ
T · M(M+1)

(M+0.5)2 K̃1 can be ignored compared to 1 on
the left hand of (18). This completes the proof.

An immediate question following Lemma 3 and Theorem
2 is: how good is the approximation compared to the rigorous
analysis in Section IV, in particular for networks at a finite
size M? In fact, we prefer to design stopping rules based on
the results from Theorem 2 due to their low computational
complexity even for a finite network size M . What will the
actual achievable network throughput be like?

To answer these questions, we present one metric which
serves as a guideline when we decide whether or not we could
use the infinite horizon analysis. For a given network, if the
problem can be treated as in Section V, in a probabilistic sense
the optimal stopping time N∗ should be much smaller than
the network size M . Hence one necessary condition is that
the probability P [N∗ > M ] should be small enough.

Theorem 3. For a network with size M , suppose the infinite
horizon analysis in Theorem 2 yields a sequence of optimal
expected network throughputs λ∗

n for Fig. 1. If τ � T , the
probability P [N∗ > M ] can be approximated as

P [N∗ > M ] ≈
M∏
n=1

FR(λ
∗
n). (24)

If this probability is not small enough, it is not recommended
to design stopping rules based on the infinite horizon analysis.

Proof: For a given integer k > 0, we have

P [N∗ > k]

= P

[
min

{
n ≥ 1 : Rn ≥ λ∗

n · T

T − τ
∑n

i=1 Ki

}
> k

]
.

(25)

Since τ � T and the optimal stopping time N∗ is much
smaller than M , we consider τ

T · ∑n
i=1 Ki � 1 for approxi-

mation. Substituting it into (25), we have

P [N∗ > k] ≈ P [min {n ≥ 1 : Rn ≥ λ∗
n} > k]

=
∏
n≤k

P [Rn < λ∗
n], (26)

where we used the fact that Rn are i.i.d.. To get (25), simply
let k = M in (26).

On the other hand, if P [N∗ > M ] is not small enough,
it implies that the stopping rule problem cannot be treated
as an infinite horizon problem. In this case, if we design a
stopping rule based on Theorem 2 nevertheless, the protocol
will quickly reach the last stage and be forced to stop then.
In this case, the actually achieved network throughput is
generally not optimal.

Theorem 4. Suppose the infinite horizon analysis yields a
sequence of λ∗

n for a network of size M . Suppose we design

a stopping rule N̂ based on these rates and (19). If τ � T ,
the achievable network throughput based on N̂ is

λ̂∗ =

M∑
n=1

{
E [Rn |Rn ≥ λ∗

n]
T − τ

∑n
i=1 1/ps,i
T

× [1− FR(λ
∗
n)]

n−1∏
i=1

FR(λ
∗
i )

}
. (27)

Proof: According to the stopping rule (19), the expected
reward can be written as

λ̂∗ =

M∑
n=1

{
E [Yn(X1, . . . ,Xn) · P (N = n |X1, . . . ,Xn)]

}
.

(28)
The condition to stop at time n is Rn ≥ λ∗

n · T
T−τ

∑
n
i=1 Ki

.
When τ � T , this condition can be simplified as Rn ≥ λ∗

n.
Hence the expected reward at time n can be written as a
conditional expectation, i.e.

E

[
Rn · T − τ

∑n
i=1 Ki

T

∣∣∣∣Rn ≥ λ∗
n

]

= E [Rn |Rn ≥ λ∗
n] ·

T − τ
∑n

i=1 1/ps,i
T

,

where we used the fact that Ki has a distribution Geom(ps,i)
and is independent from Rn. On the other hand, by (26) the
probability to stop at time n can be approximated as

P (N = n |X1, . . . ,Xn) =

n−1∏
i=1

FR(λ
∗
i )−

n∏
i=1

FR(λ
∗
i )

= [1− FR(λ
∗
n)]

n−1∏
i=1

FR(λ
∗
i ). (29)

Substituting it into (28) together with the expected reward at
time n, we have (27).

VI. AN ENERGY EFFICIENT IMPROVEMENT OF THE
PROTOCOL

In this section, we present an improved protocol, which
is directly motivated by the concept of effective observation
points introduced in Section III.

According to (23), the network throughput λ∗
O decreases as

the successful probing probability ps,1 decreases. Hence to im-
prove the network throughputs, we need to improve ps,1. For a
given network with size M , we can first tune the parameter p
to maximize ps,1. To do this, we let n = 1 in (17) and take its
first-order derivative as ∂ps,1

∂p = M(1− p)M−2(1−Mp) = 0.
The non-trivial solution in (0, 1) is p∗ = 1/M . Hence
to maximize ps,1, on average there is exactly Mp∗ = 1
link probing the channel. The maximal successful probing
probability is ps,1 = 1

1− 1
M

·(1− 1
M

)M for M ≥ 2, which is a
decreasing function of M . Hence the optimal throughput λ∗

O

is a decreasing function as M increases. From the perspective
of channel probing costs, a smaller M is preferred for better
system performance. On the other hand, from (5) we can see
that if link m ever gives up the current opportunity, m will
always repeat the same decision in the current block. Hence if
link m ever decides to send data in the current block, it should
happen when m wins the channel for the first time. If after that
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1: Link m sets its state as TRUE, where m = 1, . . . ,M ;
2: for each link m whose state is TRUE do
3: m probes the channel with a fixed probability p(m);
4: if m wins the channel then
5: m makes a decision on whether or not to send

data over the channel;
6: if m decides to utilize the channel then
7: m sends data through the channel for a dura-

tion of T−∑n
i=1 Ti (CAT) or T (CDT), where

n is the current index of channel probing;
8: else
9: m sets its state as FALSE;

10: end if
11: end if
12: end for

Fig. 2. The improved distributed opportunistic scheduling protocol

m still contends the medium, it would not lead to an effective
decision, and meanwhile it lowers the successful probability
ps,n. Based on this observation, we have an improved protocol
as shown in Fig. 2 [17].

Suppose at time n the set of active probing links is Mn.
This is the set of links whose current state is TRUE in Fig.
2. Denoting its cardinality as Mn � |Mn|, we have Mn =
M − n + 1 following line 9 of Fig. 2. We can see that Mn

is decreasing as time n increases. The shrinking of Mn is an
important feature of the improved protocol. It not only reduces
the probing costs, but also ensures the winner sn is different
at each time n. Hence the winners’ rates Rn are independent
in Fig. 2. At time n, the successful probing probability can
be written as

ps,n = Mnp(1− p)Mn−1. (30)

We now characterize the performance of the improved
protocol shown in Fig. 2. First of all, the finite horizon
analyses described in Section IV can be applied in a similar
way here. The computational complexity can also be estimated
similarly. The only difference is that the successful probing
probability ps,n in (12) should be calculated according to (30).
Now we analyze this problem assuming that it can be treated
as an infinite horizon problem. By [A1], we can approximate
the successful probing probability (30) as

ps,n ≈ Mp(1− p)Mn−1 = Mp(1− p)M−n. (31)

We can see that ps,1 < ps,2 < . . . < ps,n. Similar to Theorem
2, we introduce a sequence of parameters gn � ps,n

ps,1
= (1 −

p)−(n−1) and a sequence of random variables K̃n = gnKn.
It is easy to verify that K̃n and K1 can be considered equal
in distribution and {K̃n} are i.i.d..

Theorem 5. The network throughput λ∗
P of Fig. 2 is the

solution of

E

[
1 +

τ

T
· (1 − p)2K̃1 − λ

R0

]+
= (1− p)2

τ

Tps,1
. (32)

The optimal stopping rule is

N∗ = min

{
n ≥ 1 : Rn ≥ λ∗

n · T

T − τ
∑n

i=1 Ki

}
, (33)

where λ∗
n is the solution of

E

[
1− τ

T

{
n∑

i=1

Ki − (1 − p)n+1K̃n+1

}
− λ

Rn

]+

= (1− p)n+1 τ

Tps,1
. (34)

Proof: We use Vn defined in (21) in our proof. The
existence of the optimal stopping rule can be verified in the
same way as in Theorem 2. To compute the optimal reward
V ∗
n , we take a look at the reward after l steps since time

n. By definition of gn, we can write Kn = (1 − p)n−1K̃n.
Substituting it into (21), we have

Vn+l(λ) = T − τ

n∑
i=1

(1− p)i−1K̃i

−
[
τ

n+l∑
i=n+1

(1− p)i−1K̃i +
λT

Rn+l

]
.

If we start from time n+ 1, the reward after l rounds is

Vn+l+1(λ) = T − τ

n∑
i=1

(1− p)i−1K̃i − τ(1 − p)nK̃n+1

−
[
τ

n+l+1∑
i=n+2

(1− p)i−1K̃i +
λT

Rn+l+1

]
.

The item in the above square bracket is the recursive part for
l rounds of observations since time n+ 1. We rewrite it as

(1− p)

{
τ

n+l∑
i=n+1

(1− p)i−1K̃i+1 +
λT

Rn+l+1

}
+ p · λT

Rn+l+1
.

By [A1], p should be reasonably small; otherwise the average
number of probing links Mp will be much larger than 1,
leading to increased probing costs. Hence we can ignore the
last term and write the optimality equation as

V ∗
n (λ) = E

[
max

{
T − τ

n∑
i=1

Ki − λT

Rn
,

(1− p) (V ∗
n (λ) − τKn+1)

}]
.

Again, the optimal reward λ∗
n that maximizes the rate of return

must satisfy V ∗
n (λ

∗
n) = 0. We substitute this into the optimality

equation and rewrite it as

E

[
1− τ

T

{
n∑

i=1

Ki − (1− p)Kn+1

}
− λ∗

n

Rn

]+

= (1− p) · τ
T
E[Kn+1].

If we further notice that Kn+1 = 1/gn+1K̃n+1 = (1 −
p)nK̃n+1 and that K̃n+1 and K1 are i.i.d., we can rewrite the
above equation as (34). The optimal stopping rule N∗ can be
derived in the same way as in Theorem 2. To get the optimal
system throughput λ∗

P , we let n = 0 in (34) and rewrite the
equation as (32).
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Similar to Section V, we further simplify the network
throughput as Proposition 3 if τ � T . Based on Proposition
3, we show that the modified protocol improves the network
throughput as in Proposition 4. The proofs are straight forward
and are skipped due to space limitations.

Proposition 3. If τ � T , the network throughput λ∗
P can be

approximated as the solution of

E

[
1− λ

R0

]+
= (1 − p)2 · τ

Tps,1
. (35)

Proposition 4. The improved protocol in Fig. 2 yields a higher
network throughput compared to the protocol in Fig. 1, i.e.
λ∗
P > λ∗

O .

In the improved protocol any link who decides to give up
the current opportunity for data transmission will not probe the
channel anymore until the beginning of the next block. Hence
these links can temporarily switch to a sleep mode until the
beginning of the next block and reduce the energy used for
channel probing. This could be very useful for mobile ad-hoc
or sensor networks where most of their mobile nodes have
limited battery life.

Similar to the analyses for throughputs, we focus on the
total energy savings in the channel probing phase for all links,
not for a specific link. Suppose each probing signal consumes
roughly a constant energy of c. Then the energy consumed
during the channel probing phase can be written as c

∑N
i=1 Zi,

where Zi is the number of probing signals sent during the i-th
round of channel probing, and N is the stopping time. Hence
the average energy spent during the channel probing phase is
z = cE

[∑N
i=1 Zi

]
. Using the law of total expectation, we can

write

z = cE

[
E

[
N∑
i=1

Zi

∣∣∣∣∣N
]]

= c
∑
n

{
P [N = n] ·

n∑
i=1

E[Zi]

}
.

(36)

Theorem 6. The average energy consumed by the channel
probing of Fig. 1 can be given as

zO =
c

(1− p)M−1

M∑
n=1

{
P [N∗

O = n] ·
n∑

i=1

M

M − i+ 1

}
,

(37)
where N∗

O is the optimal stopping rule for Fig. 1, and the
average probing energy of Fig. 2 can be given as

zP =
c

(1− p)M−1

M∑
n=1

{
P [N∗

P = n] · 1− (1− p)n

1− (1− p)

}
,

(38)
where N∗

P is the optimal stopping rule for Fig. 2.

Proof: As we mentioned in Section III, we will use the
notation of F̃n in the proof. For the protocol in Fig. 1, in the
i-th round there are a total of K̃i probings, each of which
has a duration of τ and on average Mp links sending probing
signals. Hence there are on average E[Zi] = Mp · E[K̃i]

probing signals sent in the i-th round. We can write

E[Zi] = Mp · 1

(M − i+ 1)p(1− p)M−1

=
1

(1− p)M−1
· M

M − i+ 1
.

If we substitute the above equation into (36), we can imme-
diately have (37).

On the other hand, for the improved protocol in Fig. 2,
in the i-th round there are a total of K̃i probings, and each
of them has on average (M − i + 1)p links sending probing
signals. This is because in the improved protocol once a link
gives up its opportunity, he would not probe again until the
beginning of the next block. Hence we can write

n∑
i=1

E[Zi] =
n∑

i=1

(M − i+ 1)p · 1

(M − i+ 1)p(1− p)M−i

=
1

(1− p)M−1
· 1− (1 − p)n

1− (1− p)
.

Combining the above equation with (36), we have (38).
In Theorem 6, the probability P [N∗ = n] can be approxi-

mated in the same way as (29).

VII. THE CONSTANT DATA TIME PROBLEM

Our analyses in Section IV, V and VI can be applied to
the CDT problem in a similar way. In the CDT problem [15],
[16], the transmitter has a fixed duration Td = T for data
transmission, regardless of the duration Tp elapsed for channel
probing. The normalized network throughput at the end of the
n-th round is

Yn =
Rn · T

T +
∑n

i=1 Ti
. (39)

We list our analytical results for the CDT problem in this
section and compare its numerical results to that of the CAT
problem in Section VIII. The proofs are skipped here due to
page limit and can be found in our full paper [26].

First of all, due to the block fading assumption, the CDT
problem also has an implicit horizon at M . Hence the CDT
problem for the original protocol in Fig. 1 or the improved
protocol in Fig. 2 should be treated as a finite horizon problem.

Theorem 7. The network throughput of the CDT problem is
w0 = λ∗

0, and the optimal stopping rule is

N∗ = min

{
n ≥ 1 : Rn ≥ λ∗

n ·
(
1 +

τ

T

n∑
i=1

Ki

)}
. (40)

The finite horizon analysis reduces to the calculation of w0,
which eventually iterates all wn(ln) for n = 1, . . . ,M − 1
and wM (rM , lM ). The expected reward can be calculated
recursively as

wn−1(ln−1) =
∑
k∈N

[
(1− ps,n)

k−1ps,n · qn(ln−1, k)
]

(41)

qn(ln−1, k) = Pn(k) ·En(k) + [1− Pn(k)] · wn(ln−1 + k),
(42)
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where qn(ln−1, k) is the conditional expected reward given
Kn = k, and Pn(k) and En(k) can be calculated as

Pn(k) = P

[
Rn > wn(ln−1 + k) · T + τ(ln−1 + k)

T

]

En(k) = E

[
Rn

∣∣∣∣Rn > wn(ln−1 + k) · T + τ(ln−1 + k)

T

]

× T

T + τ(ln−1 + k)
.

Proposition 5. For the CDT problem, to calculate the optimal
network throughput w0 and the expected reward for given
observations {r1, k1; . . . ; rM , kM} with a relative error less
than ε (0 < ε � 1), the computational complexity of the
procedure in Theorem 7 is at most

∑M
n=1 n

⌈
log ε

1+ε

log(1−ps,n)

⌉
.

Similar to Section V, we prefer to analyze the CDT problem
using the infinite horizon approach when it can yield a good
approximation to the finite horizon approach.

Theorem 8. The average network throughput λ∗
O of the CDT

problem is the solution of

E

[
R0

λ
+

M(M + 1)

(M + 0.5)2
· τK̃1

T
− 1

]+

=
M(M + 1)

(M + 0.5)2
· τ

Tps,1
.

(43)
The optimal stopping rule N∗ is

N∗ = min

{
n ≥ 1 : Rn ≥ λ∗

n ·
(
1 +

τ

T

n∑
i=1

Ki

)}
, (44)

and λ∗
n is the solution of

E

[
Rn

λ
− τ

T

{
n∑

i=1

Ki − M(M + n+ 1)

(M + 0.5)2
K̃1

}
− 1

]+

=
M(M + n+ 1)

(M + 0.5)2
· τ

Tps,1
. (45)

Proposition 6. If τ � T , the network throughput λ∗
O for the

CDT problem can be approximated as the solution of

E

[
R0

λ
− 1

]+
=

M(M + 1)

(M + 0.5)2
· τ

Tps,1
. (46)

In one block, the available duration for data transmission
is T − τ

∑n
i=1 Ki for the CAT problem and T for the CDT

problem respectively. Hence intuitively the protocol in Fig. 1
should yield a higher network throughput for the CDT model.

Proposition 7. Denote λ∗
CAT and λ∗

CDT as the optimal net-
work throughput for the CAT and CDT problem respectively,
we have λ∗

CAT < λ∗
CDT .

Proof: For any r > λ∗
CAT , we have 0 < 1 − λ∗CAT

r <
r

λ∗
CAT

−1. By taking integration on both sides of the inequality,
we have

E

[
R0

λ∗
CAT

− 1

]+
> E

[
1− λ∗

CAT

R0

]+
=

M(M + 1)

(M + 0.5)2
· τ

Tps,1

= E

[
R0

λ∗
CDT

− 1

]+
,

where the first and second equality is from Proposition 2 and
Proposition 6 respectively. If we compare the first and last
item in the above inequality, we have λ∗

CAT < λ∗
CDT .

Theorem 9. Suppose the infinite horizon analysis yields a
sequence of rates λ∗

n for a network of size M . If τ � T , the
probability P [N∗ > M ] can be approximated as

P [N∗ > M ] ≈
M∏
n=1

FR(λ
∗
n). (47)

If this probability is not small enough, it is not recommended
to design stopping rules based on the infinite horizon analysis.
Otherwise if we use the stopping rule based on these rates and
(44), the achievable network throughput is

λ̂∗ =

M∑
n=1

{
E [Rn |Rn ≥ λ∗

n]
T

T + τ
∑n

i=1 1/ps,i

× [1− FR(λ
∗
n)]

n−1∏
i=1

FR(λ
∗
i )

}
. (48)

Theorem 10. The network throughput λ∗
P of Fig. 2 for the

CDT problem is the solution of

E

[
R0

λ
+

τ

T
· (1 − p)2K̃1 − 1

]+
= (1 − p)2

τ

Tps,1
. (49)

The optimal stopping rule N∗ is

N∗ = min

{
n ≥ 1 : Rn ≥ λ∗

n ·
(
1 +

τ

T

n∑
i=1

Ki

)}
, (50)

where λ∗
n is the solution of

E

[
Rn

λ
− τ

T

{
n∑

i=1

Ki − (1− p)n+1K̃n+1

}
− 1

]+

= (1− p)n+1 τ

Tps,1
. (51)

Proposition 8. If τ � T , we can approximate the network
throughput λ∗

P as the solution of

E

[
R0

λ
− 1

]+
= (1− p)2

τ

Tps,1
. (52)

VIII. NUMERICAL RESULTS

In this section, we show numerical results based on our
discussions from Section IV to Section VII. We consider an
ad-hoc network where the wireless medium is Rayleigh fading
within each block. The channel rate can be given as

R(h) = log2(1 + ρh) bits/s/Hz,

where ρ is the average signal-to-noise ratio (SNR), and h
is the channel gain corresponding to Rayleigh fading. The
probability density function (PDF) of h can be given as

f(h) =
h

σ2
e−

h2

2σ2 , h ≥ 0.

We use T = 1 throughout all simulations in this section.
We compare numerical results from the finite horizon and
the infinite horizon analyses with various settings of the
parameters M , p, τ and ρ. For performance comparison
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Fig. 3. Numerical results for ad-hoc networks with M links, where the
parameters are p = 1/M , τ = 0.01, ρ = −10dB and σ = 1: (a) network
throughputs; (b) P [N∗ > M ]; (c) energy consumed by probing signals.

purposes, we also show network throughputs from a pure
random access approach, where the first winner of the wireless
medium always utilizes the channel for data transmission,
regardless of the available channel rates.

In Fig. 3, we show numerical results from both the infinite
horizon and finite horizon analyses, where the network size is
M and other parameters are p = 1/M , τ = 0.01, ρ = −10dB
and σ = 1. In Fig. 3(a), the dashed line shows the network
throughputs for the pure random access scheme. Clearly we
can see that the distributed opportunistic scheduling schemes
show considerable improvements in network throughputs, e.g.
an improvement of 57% at M = 30.

On the other hand, we notice that the finite horizon and
infinite horizon analyses yield quite different network through-
puts, especially when the network size M is not large enough.
Fig. 3(a) shows the network throughputs for the protocol
described in Fig. 1, where the line with “◦” is from the finite
horizon analysis and the line with “�” is from the infinite
horizon analysis. We can see that the network throughputs
show opposite trends as the network size M increases. The
network throughput from the infinite horizon analysis de-
creases while the network throughput from the finite horizon
analysis increases. This is because in the infinite horizon
analysis, there is enough multiuser diversity to be exploited.
In the finite horizon analysis, there is not enough multiuser
diversity to be exploited when the network size M is small,
which is constrained by the finite horizon. Hence the infinite
horizon analysis always shows a larger network throughput
than the finite horizon analysis, and the gap between these two
lines gradually decreases to 0 as the network size M increases.
For example, the two lines show a gap of 8.7% at M = 10,
and the gap drops to 4.9% at M = 20. In Fig. 3(b), we show
the estimated probability P [N∗ > M ] based on Theorem 3.
We can see that P [N∗ > M ] is as high as 20% at M = 10, but
drops quickly to 5% at M = 20. Hence for a given network,
the estimated P [N∗ > M ] serves as a measure of how well
the problem can be treated as an infinite horizon problem. In
line with this guideline, the line with “
” in Fig. 3(a) shows
the actual achievable network throughput based on Theorem 4
if the stopping rule is designed based on the results from the
infinite horizon analysis. To our surprise, the actual achieved
network throughput is much smaller than the one from the
infinite horizon analysis. This gap is pretty large when the
network size M is not large enough, say M ≤ 20 in Fig.
3(a). This observation agrees with the trend of P [N∗ > M ]
in Fig. 3(b). Hence if the problem is not suitable to be treated
as an infinite horizon problem, it is not recommended to design
stopping rules based on the infinite horizon analysis; otherwise
the actual achievable network throughputs may deviate a lot
from the infinite horizon analyses for small and medium-size
networks.

In addition, Fig. 3(a) shows the network throughputs for
the improved protocol described in Fig. 2, where the line
with “�” is from the finite horizon analysis and the line
with “�” is from the infinite horizon analysis. We can see
that the improved protocol always yields a slightly better
performance. For example, the line with “�” steadily shows
a 2% performance improvement over the line with “◦” based
on the finite horizon analysis. This coincides with our theo-
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retical result in Proposition 4. Even though the performance
improvement is not significant, it is still worth mentioning
since there is no additional cost in the protocol design of Fig.
2. This performance improvement can be considered as a “free
ride” based on the concept of effective observation points. On
the other hand, in Fig. 3(c) we show the energy savings in
probing signals that can be achieved by the improved protocol,
where the y-axis is zP /zO. We can see that the improved
protocol can considerably reduce the total number of probing
signals sent in the system. For example, at M = 30 the
improved protocol only needs 67% of the probing signals
sent in the original protocol in Fig. 1. This results in 33%
energy savings for probing signals. Hence with only a simple
modification, the improved protocol can slightly improve the
network throughputs while considerably saving energy used
for probing signals. This is of particular interest for mobile
ad-hoc networks or sensor networks where many nodes in the
network have limited battery life.

In Fig. 4(a)-(d), we compare network throughputs with
different parameters, where we vary one parameter at a time
from the default parameter settings. We first show the network
throughputs under two different scenarios for p in Fig. 4(a) and
Fig. 4(b) respectively. Fig. 4(a) shows the network throughputs
for p = 0.01, which represents an “under-probed” scenario
since Mp < 1. We can see that the protocols yield smaller
throughputs compared to Fig. 3(a). On the other hand, the
improved protocol has almost the same performance as the
original protocol. In this case, it would not help too much to
reduce the probing costs since the system is already under-
probed. Fig. 4(b) shows the opposite scenario with p = 0.1
where the medium is “over-probed” since Mp > 1. The
network throughputs are also smaller compared to Fig. 3(a).
However, the improved protocol shows a 5% performance
improvement compared to the original protocol. Recall that
this quantity is 2% in Fig. 3(a). In this case, it helps to reduce
the probing costs since the network is over-probed. In Fig.
4(c), we show the network throughputs with a larger probing
cost τ = 0.05. With larger probing costs the protocols yield
smaller network throughputs. Meanwhile, there is a larger gap
between the results from the finite horizon and infinite horizon
analyses. This is because with larger τ/T , a smaller horizon
is imposed for the CAT problem, which makes it less likely
to be treated as an infinite horizon problem. Fig. 4(d) shows
the network throughputs with ρ = 10dB. With higher SNR,
the protocols have much better network throughputs. However,
compared to the random access scheme, the performance gain
from opportunistic scheduling is only 13%. This shows that
the opportunistic scheduling scheme is particularly useful at
lower SNR regions, where the random access scheme does not
perform well in the first place.

In comparison, Fig. 5 shows numerical results for the CDT
problem with the same default parameters. Similar to the
CAT problem, in Fig. 5(a) we can see the infinite horizon
analysis always yields larger network throughputs than the
finite horizon analysis. The gap of the network throughputs
between them is more than 30%, but eventually decreases
to 0 as the network size M becomes large enough. On the
other hand, with the same parameters the CDT problem in
Fig. 5(a) yields slightly larger network throughputs than the

CAT problem in Fig. 3(a). This coincides with our theoretical
result in Proposition 7. On the other hand, we can see that the
line with “
” in Fig. 5(a) approaches the finite horizon analysis
faster than that of Fig. 3(a). It implies that the CDT problem
requires a smaller network size M than the CAT problem for
using the infinite horizon analysis. In addition, Fig. 5(a) shows
the network throughputs from the improved protocol. Similar
to Fig. 3(a), the improved protocol always yields a slightly
better performance from both analyses. Finally Fig. 5(b) shows
the network throughputs for a larger probing cost τ = 0.05.
We can see that the gap in the network throughputs between
the two analyses is 10.6%, while this gap for the CAT problem
is 14.7% in Fig. 4(c). It implies that for the same network the
CAT problem shows a smaller horizon compared to the CDT
problem. This coincides with our earlier observation: to safely
use the infinite horizon analysis, the CAT problem generally
requires a larger network size M . Furthermore, comparing
both lines with “
” in Fig. 4(c) and Fig. 5(b), we can see
that the actual network throughputs that can be achieved by
the stopping rules from the infinite horizon analyses are very
different. For the CAT problem, the expected actual network
throughput has a huge gap from the result based on the finite
horizon analysis. For the CDT problem, the expected actual
network throughput approximates the result based on finite
horizon analysis pretty well when the network size M is large
enough, say M = 15. This implies that when the probing
cost is high, it is particularly not recommended for the CAT
problem to design stopping rules based on the infinite horizon
analysis. The source of this difference lies in that there is
always a constant duration of T for data transmission in the
CDT problem.

IX. CONCLUSION

In this paper, we studied a distributed opportunistic schedul-
ing problem for wireless ad-hoc networks under the popular
block-fading model. In this problem, we considered the in-
evitable dependencies between the winners’ channel rates at
different time instances during the channel probing phase and
their impact on the transmission scheduling. We formulated
this problem using optimal stopping theory, but at carefully
chosen time instances when effective decisions are made by
selectively merging repeated decisions. We mainly introduced
our results using the CAT model. Since the problem has
an implicit finite horizon, we first characterized its perfor-
mance using backward induction. We presented one recursive
approach to reduce its computational overhead and derived
an upper bound on its computational complexity. Due to
the computational complexity, we proposed an approxima-
tion based on the infinite horizon analysis and developed a
metric to check how well the problem can be treated as an
infinite horizon problem. We estimated the achievable network
throughputs if we ignore the finite horizon constraint and use
the stopping rule based on the infinite horizon analysis never-
theless. We then presented an improved protocol to reduce the
probing costs which requires no additional design cost. We
showed that the modified protocol can slightly improve the
network throughputs and considerably save energy consumed
by probing signals.
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Fig. 4. Numerical results for ad-hoc networks with M links, where the default parameters are p = 1/M , τ = 0.01, ρ = −10dB and σ = 1: (a) network
throughputs with p = 0.01; (b) network throughputs with p = 0.1; (c) network throughputs with τ = 0.05; (d) network throughputs with ρ = 10dB.
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Fig. 5. Numerical results for the CDT problem for ad-hoc networks with M links, where the parameters are p = 1/M , ρ = −10dB and σ = 1: (a) network
throughputs with τ = 0.01; (b) network throughputs with τ = 0.05.
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