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Abstract. Real time applications over wireless multihop networksnded routingscheduling algorithms that
achieve desirable delay-throughput tradis,owith high throughput and low end-to-end delay. The baekgure
algorithm, has received much attention by the research aoritynin the past few years, as it satisfies the throughput
optimal requirement. The backpressure algorithm perfawnting and scheduling based on congestion gradients,
by allowing transmission to the links that maximize th&etiential backlog between neighboring nodes. However,
by deploying routing without using any information aboug hosition or distance to the destination, it explores all
possible source-destination paths leading to undesitadptedelays. In this paper, we propose a method of restgictin
the number of paths used by the backpressure algorithm théthid of the greedy embedding of a network in the
hyperbolic space. We propose two algorithms, the “Greedyckpressure and the “Greediest” backpressure for
both static and dynamic networks, which consider the nétweanbedded in the hyperbolic space and combine the
greedy routing in hyperbolic coordinates with the backpues scheduling. We prove analytically their throughput
optimality and study through simulations the induced invproent in the delay-throughput trad&-compared with
the backpressure algorithm.
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1. Introduction. Real time applications over wireless multihop networks dedrout-
ing/scheduling algorithms that achieve desirable delay-tjinput trade-f's, with high through-
put and low end-to-end delay. The backpressure algorithtrgduced in its original form
in [1], has received much attention by the research commiumithe past few years (i.e.
[2, 3, 4]), as it satisfies the throughput optimal requiremerhe backpressure algorithm
performs routing and scheduling based on congestion gresjiey allowing transmission to
the links that maximize the sum offtBrential queue backlogs in the network. However, by
deploying routing without any information about the pasitior distance to the destination,
the backpressure explores all possible source-destinadiths leading to high delays even in
the case of light tréic.

Several approaches have been developed for reducing thg idgbosed by the pure
backpressure schedulifmguting. The authors in [4] combine backpressure and sstgpseth
routing by imposing hop-count constraints on each flow, m#sg that each node knows a-
priori its hop distance from all others. However, using tosidition increases the computa-
tional complexity especially in dynamic network conditsor-ollowing another approach, the
authors in [5] use shadow queues for the backpressure datggdouting, improving in this
way the delay of the backpressure algorithm while simubbasey reducing the number of
real queues needed to be stored at each node to only one qerengighboring node. In this
paper, we propose an alternative method of restricting timeter of paths used by the back-
pressure algorithm, with the aid of the greedy embeddingradtavork in hyperbolic space.
A greedy embedding in hyperbolic space is a correspondesteesbn nodes and hyperbolic
coordinates such that the greedy routing algorithm, engalag the hyperbolic space, does
not have local minima, i.e. every node can find at least ongheir closer than itself to all
possible destinations [6, 7]. In [6], a distributed implemtagion of a greedy embedding is
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proposed, which can assign hyperbolic coordinates to neleswithout re-embedding the
whole network. In this work, we consider a greedy embeddirth® network following [6]
and we impose routing constraints on the backpressureitiggby determining as possible
next-hop neighbors for a specific destination only “greealgighbors, i.e. those that strictly
reduce the hyperbolic distance to the destination.

We propose two algorithms, the “Greedy” backpressure aad@reediest” backpres-
sure for both static and dynamic networks. The first one per$arouting by choosing as
next hop node one of the greedy neighbors, while the Greeblizkpressure chooses the
greedy neighbor with the least hyperbolic distance to thatigigtion. Both algorithms per-
form backpressure scheduling and as a result ro(sfgduling is based on both congestion
and distance gradients.

The rest of this paper is organized as follows. In Section Zweamarize the properties
of the hyperbolic space and the greedy embedding, whiledtioses 3, 4, 5, we describe and
analyze the system model and the proposed algorithms o8expirovides numerical results,
demonstrating the induced improvement in the throughpldydrade-€f.

2. Greedy Network Embedding in Hyperbolic Space.The whole infinite hyperbolic
plane can be represented inside the finite unit dise {z € C||Z < 1} of the Euclidean space;
the Poincaré Disc model. The greedy embedding used in ik is based on the Poincaré
Disc model. The hyperbolic distance functidn(z, z;), for two pointsz, z;, in the Poincaré
Disc model is given by [6, 8]:

(2.1) coshdy(z,z)) = szlz +
T a-EPa-izP

The Euclidean circlédD = {z€ C||Z = 1} is the boundary at infinity for the Poincaré Disc

model. In addition, in this model, the shortest hyperbotithpbetween two nodes is either a

part of a diameter oD, or a part of a Euclidean circle i perpendicular té@D.

The greedy embedding is constructed by choosing a span@iagf the graph of the
initial network and then embedding the spanning tree inéohtyperbolic space according to
the algorithm of [6]. If a spanning tree of the graph is greedmbedded in the hyperbolic
space then the whole graph is also embedded [7]. From definithe greedy embedding
ensures the existence of at least one greedy path betweles@ace-destination pair in the
case of static networks. Every pair of nodggis connected through a unique path, let us
denote it as, iy, i2,... ik, j, lying on the spanning tree which is embedded in the hyparbol
space. Due to the particular embeddings at least one greedy neighboridbr j andiy is
a greedy neighbor of for i.

3. System Model and Capacity Region.We consider slotted time and a wireless
multihop network withN(t) nodes at each timte We consider the case whe¥¢t) is constant
(static network) and the case of node churn, where existintps can leave and new nodes
can join the network. The number of packets that arrive irenddr destinatiord at timet is
Ad(t), with expected valug? for everyt. We suppose that each nddstores a queugf(t) for
each destinatiod. We denote withuij (t) the communication tféic between the neighboring
nodesi, j at timet, and with theN x N matrix, [u; j(t)], the trafic over all the links, at time
t. Also, we denote Withzﬂ (t) the communication tféic on the link between nodesj for
destinatiord at timet. The arrival and service rates are considered bounded. Weelwith
disty(i,d) the hyperbolic distance between nodes(Section 2) and withV(i), the one-hop
neighborhood of node Finally, we use the terrty) to refer to the set of service rate vectors
of all possible independent sets of the graph at tiniee. maximal sets of links that do not
interfere with each othells) = Is is a constant set if the network is static and the channel
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conditions do not change. For brevity and simplicity, we @b aways specify the range of
the summations which is considered as the number of nd(tes

We adapt the capacity region of [9], so as to include the ngutonstraints of the pro-
posed algorithms. Let us denote as “greedy” paths, the patisisting of nodes with strictly
decreasing distances to the destination. Therefore, {he&cis region should allow routing
only through greedy paths. The capacity regiafiis the set of all input rate matricesido
with /lid #0ifi#dand {,d) is a source destination pair, such that there exists a ratexm
[1ij] satisfying the following constraints:

e Efficiency constraintspﬂ- >0,ud = O,pgj =0, Zdﬂidj < ij, ¥ i,d, .

e Flow constraintsad + ¥ ufl < ¥ ud ¥ i,d: i #d.

e Routing constraints for the Greedy backpresspﬂe:: 0 if i has at least one greedy
neighbor ford and j is not one of the’s greedy neighbors;
and for the Greediest backpressurx%: =0 if i has at least one greedy neighbor
for d andj is noti’s greedy neighbor with the shortest hyperbolic distance ¢o th
destination.

As aforementioned, we used the greedy embedding of [6] wivimtks for both static
and dynamic networks. At this point, we define the notion odrgg stability of the queues,
which will be used in the proofs that follow. According to tBefinition 31 of [9], a queue,
qid is strongly stable if limsup. ., % Z‘T;% E(qid(r)) < oo, If all the queues of the network are
strongly stable, then the whole network is strongly stable.

4. Static Networks. In this section, we develop our algorithms in the case ofcstat
wireless networks, i.e. the number of nodes and their postare fixed. The proposed
algorithms difer from the classic backpressure algorithm in the definicthe weightP;j (t)
for each linkij, due to their greedy routing constraints. Algorithm 1 dises how the pure
backpressure algorithm is modified to follow only greedyhgat

It is important to mention that due to the greedy embeddiag éimsures the existence
of a greedy path for every source-destination pair, themgutonstraints of Algorithm 1 are
well defined and there does not exist local minima that case#uwe packets to get stack at
a specific node. Therefore, with probability one the packéitde routed to the destination
under Algorithm 1. The following theorem shows the througthgptimality of Algorithm 1
for static networks.

Tueorem 4.1. If we assume that the arrival rate§d lie inside the capacity regiong,
then the queues of the network are strongly stable, undestbedy (Greediest) backpressure
algorithm for static networks.

Proof. We define two indicator functions dependent on the type eflthckpressure
algorithm (Greedy or Greediest).

For the Greedy backpressure:

l1 = {disty (i, d) > distu(j,d) A(j € N(D)}, 12 = {dist(i,d) < disty(j,d) A € N(}))},
while for the Greediest backpressure:

I ={disty(i,d) > disty(j.d) A dist(j,d) = mineyg) disti(l,d) A(j € N (i)}

I2 = {disty(i,d) < disty(j,d) A disty(i,d) = mineyj disty(l,d) A € N(j))}
where we observe théi equalsl if we replacd, j with j,i correspondingly.

The queue dynamics in the case of Algorithm 1 are

(4.1) al(t+1) = maxtg(t) - >" u(©), 01+ > (1) + (D).

iy inz2

We denote by(t) = (qid(t)), the vector of queues of the network. We define the Lyapunov
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Algorithm 1: Greedy (Greediest)-backpressure algorithm for Staticel&s Net-
works, performed at time slat

1 for each directed linkKi, j) do

2 for each destination ddo

3 %Greedy backpressute
4

5

if dista(i,d) > disty(j,d) then
| PO = a0 - a);

6 (%OR Greediest backpressite

7 if disty(i,d) > disty(j,d) and disti(j,d) = miniea) distq (1, d) then
8 | PO =a'-a(0):)

9 else
10 | P =~

11 %De fine the weight B(t) as follows:
12 | Pij(t) = max(max P (t),0);
13| d°(i,]) = argmax P (1);

14 Choose the communication traf fic matrix through the mazation:
15 [uij (V)] = arguers maxy j ui; Pij (t)

16 for each directed linKi, j) do

17 if uij(t) > Othen

18 L the link(ij) serves (i, j) with M?j*(t) = ij (t);

19 | Ford=d*we setuidj =0

functionL(Q(t)) = Xig qid(t)2 and take the expected value of th&elience
L(Q(t+1))- L(Q(t)) so as to compute the Lyapunov Drift:

3t 17- > o> 'Q(t)} ,
id id

2 2
[Z uf’,— (t)] +[Z¢j’i (t)+A,-d(t)] 'Q(t)l}

illy jll2

E(L(Q(t+1)- L(QM)IQM) = E

“Wy {qf’(t)2 +E

i,d
-> {Zqid(t)E
i,d

(4.2) <B+2> qf®1-2) ql(hE
i,d i,d

[Z#ﬂ CROWY: <t>—#\»“<0]|Q<‘>]}-qu‘“)z’
i jil2 id
[Z IR (t)J]Q(t)

illy ill2

s

Wherepi‘} (t) are the service rates computed by Algorithm 1 &ne 0 is an upper bound of

2 2
B[S 0) + (S0 + A0) Q0]
If the /lid lie inside the capacity region, then from corollar® & [9], there exist rateﬁidj“(t)
determined according to the network topology and indepethglef the queue backlog satis-

fying A%+ e = E[ %, 4 (0 - Xy, 25 ()] v i.d, e>0.
The Greedy (Greediest) backpressure maximizesi’(t)E [(Zjlllﬂidj (0 = 2, 45 ®) ‘Q(t)],
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SO

(4.3) Z POE

id

S0~ Yo

il ill2

> > ql(mE
i.d

Therefore the Lyapunov drift (Eq. (4.2)) becomes

PIHORDWIC

il ill2

(4.4) E[L(Q(t+1))- LQIIQW] < B-2>" > d(t)e,
d i

and from lemma 4 of [9], the network is strongly stable. 0O

The delay performance of a schedufirmyiting algorithm for each flow, is closely related
to the sum of queues of the nodes on the source-destinatibn pa stated in [5] the total
backlog of a path increases with the increase of its hoptlterfgs the spanning tree used for
the hyperbolic embedding of the network determines thedyrpaths used by the flows, it is
therefore expected that the choice of the spanning treexfiigitt the number and hop-length
of the greedy paths and therefore the delays experiencduelijoivs. As a result, éierent
types of spanning trees like minimum weight spanning treshartest path spanning tree
should be studied for theiffect on the delay performance.

5. Dynamic Networks. In dynamic networks the topology of the network (and the ca-
pacity region) changes due to the addition and deletion déaoWe assume that the network
remains always connected and that nodes come and leave ioltastower rate than the rate
of the schedulingouting process. In this case, new nodes admit a greedy etirtgeith hy-
perbolic space according to the embedding of [6]. HowevBema node leaves, the greedy
property can be locally destroyed and the greedy routing tmeigdapted in order to avoid
possible local minima, without re-embedding the whole mekw Thus, we adapt Algorithm
1, so as to perform the classic backpressure when the greegdeny is locally lost: if a
node has a greedy neighbor for a particular destinatiorriopas either Greedy or Greediest
backpressure while if the greedy property is lost for thecBjmedestination, it performs the
classic backpressure algorithm. As a result, the 1in8s9410 of Algorithm 1 for the Greedy
backpressure are replaced with the following ones:

if i has at least one greedy neighbor for a destinatiainen

if distq(i,d) > disty(j,d) then
| PI®O =g -af);
else

| P =

if i has not greedy neighbor for a destinatiortteen
| PO =gl -a);

For the Greediest backpressure, linesID change similarly, with the fference that the sec-
ond in row if-condition becomestisty (i, d) > disty (j, d) and disty (j,d) = minicag) disty (1, d)

ProrosrTion 5.1. If we assume a finite time interval T then the queues of theonkete-
main bounded for this finite time interval (Finite Time Stiy), under the Greedy (Greediest)
backpressure for both static and dynamic networks.

Proof. The arrival and service rates are considered boundedtiemch timg, we have
that Y4 Zjlllﬂidj (1) < e Zdzj“zﬂ?i (t) < 4 pax AN g AY() < Aimax. We will prove the
Finite Time Stability (FTS) by using the definition of finitente stability used in [10]. From
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our state equation, we have that

al(t+ 1) = maxal() - > u(0),00+ > kG 0+ A < 6O+ ) GO+ > 1)+ A,
il ill2 iy ill2
(5.1) < Q(0) + 1t £ Avmax= (D) + Blyae

whereB}, ., = pﬁr‘:}ax+p}[‘max+ Aimax. It follows thatgd(t) < qd(0) + Bl t. Therefore if the
initial queues are bounded?((O) < ), the queues at time are also bounded and this proves
the FTS of our systentl

The following theorem shows under certain assumptionstiraughput optimality of
the Greedy (Greediest) backpressure for dynamic netwdnkstder to prove Theorem 5.2,
we assume that at each time instant only one node can be addetketed, also that a new
node does not change any pre-existing connections in theoretind finally that there is
a controller that adapts the arrival rates to lie inside @gacity region, after a node churn
process. It is important to mention that we use per destinajueues, and therefore it is
less likely to deal with the finite flow problem [11] when a nddaves, as other nodes will
continue to communicate with the destinations of the delatale.

Tueorem 5.2. Let T; be a time interval during which the number of noded )l stays
constant. In addition, assume that the arrival rates ofiné T;, denoted bylid(Ti), lie within
the capacity regiomg(T;), also dependent on; TThen the queues‘f@) are strongly stable.

Proof. We first prove Theorem 5.2 in the case of the Greedy backmmeafgorithm. Let
us consider consecutive time intervalsi = 1...co, with constant number of nodes(T;), at
each intervall;. We suppose that the nodes get informed about a node additideletion
just after the last slot of an interval and before the first gfdche next. We first prove that the
Lyapunov drift becomes negative at edghwhen the sum of queues exceeds a certain bound
Br,, dependent on the interval. We define four indicator functions:
l1 = {distu(i,d) > disty(j,d) A(j € N(i))}, 12 = {disty(i,d) < disty(j,d) A(i € N(}))}

I3 ={(Node i has no greedy neighbor for destinatiomdj € N(i))}

I4={(Node j has no greedy neighbor for destination\di € N(j))}

where we observe thég equald1 andl, equald s, if we replace, j with j,i correspondingly.
Also, 11Nz =0, 12N, =@. The queue dynamics are

(5.2) g+ 1) =maxg’®- >, uf®.0+ > uf®+AlW,

JTHENLEY; il2l4}

whereE(A?(t)) = /lid(Ti) is constant for the periodl; and assumed to lie inside the capacity
region Ag(T;) for this time period. By following the same steps as in Tlaord.1, the
Lyapunov drift takes the form

N(Ti)

(5.3) E[L(q(t+ 1)~ L(a®)ia®] < Br,— > of(®)e.
d=1i=1

We have proved that for each intervialwith constant number of nod@®T;), if the arrival
rates are adapted through a controller to lie inside thedaigpgion of this intervahg(T;),
the sum of queues is bounded. Now we check the Lyapunov dtifieetransitions between
two intervals with diferent number of nodes and since we have assumed that at@asition
only one node can be added or deleted, two consecutive &isettifer only by one node. If
a node is added at tintehen, the other nodes get informed about its arrival and ey t®
send data to the new node. If a node is deleted, the netwaskrgetmed about this event and
erase the queues destined to the deleted node. To simpithéoretical proofs, we assume
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that the IDs of the nodes can be rearranged so that they talsecative integer values when
a node leaves the network.

In the case of a node addition, let us suppose that at ttvwe haveN nodes, while at
timet+1 we haveN + 1 nodes. AlsogN*1(t) = 0 andgd, ,(t) = 0,vd.i, as at time the node
with ID N+ 1 enters the network. The change in the Lyapunov functiomydsen slotg,t+ 1,
is computed as follows

N+1IN+1 N N N+1IN+1 N+1IN+1
GALE+1)-LO= Y > @ t+1)P- > > @)= > D@+ - > > (@)
i=1 d=1 i=1d=1 i=1 d=1 i=1 d=1

By using the constarBr,,, (which is computed a8y, but for theN + 1 nodes ofTi,1),
instead ofBt,, we can mimic the computation of the drift done in Eq. (5.3ptove that the
Lyapunov drift is negative if the sum of queue backlogs isregough and if thelid,Vi,d lie
inside the capacity region of the intervil.1.

In the case of node deletion, from interviglto theT;, 1, at timet € T; we haveN nodes,
and at timet’ € Ti;1 we haveN — 1 nodes. By taking out the terms corresponding to the
deleted node and rearranging indices, the change in theuogagfunction is computed as

N-1N-1 N-1N-1
(5.5) Lt+1)-LM) < > > @+ 1= > > (@)
i=1 d=1 i=1 d=1

Similarly with node addition, we mimic the computation oétdrift done in Eq. (5.3) by
using the constarr,,, which is computed aBr; but for theN — 1 nodes ofTj.;. Therefore
by choosing the highest consta®it , denoted aBmax = maxT,{Br;}, at each time that the

sum of queue backlogs is higher thﬁfgﬁx, the Lyapunov drift will be negative.

Bmax— Z qid(t)f} )
d,i

t=T
E(L(A(T + 1))~ E(LEO) < T Bnax—ECY. > c(t)e) = ~E(L(A(0))) < T B

E[E[L(a(t+1))- L(a®)IQM]] < E

t=0 di
=21 N(T) NT.)  xel N xel

G6) -E[D| D> D d®e+rIn D, 'O Terlk Y, O Toe|,
| S:Zij]’lT)&li:lyd:l i=1d=1 x=0 i=1,d=1 x=0

whereln = (LNT)-N(T,1)=L11#K} + LiNT)-N(T,.1)=-112K}), Wherel is the indicator function
andTp = 0. Alsol spans as many integeks so that we hav@l:f Ty =T andN(Tk41) =
N(Tk). By dividing the previous upper bound Byand takingT (or I) — o, we conclude
the strong stability of the queuds.

Remark 1. The analysis can be repeated for the Greediest backpresdgogithm by
redefining the first two indicator functions as:
I1 = {disty(i,d) > disty(j.d) A disty(j,d) = minex) dist (I, d) A(j € N(0))}
2 = {disty(i,d) < disty(j,d) A dist(i,d) = minexj) dista (1,d) Al € N())}

6. Simulation Results. In this section, we present some MATLAB simulation results
that clarify the Pareto dominance of our algorithms overdlassic backpressure algorithm
concerning the throughput-delay trad-oWe consider a 4x4 grid topology, where each
node at each time slot generatediicafor a random destination, with probability equal for
all node pairs ranging from = 0.025 to1 = 0.775 with step increase.@®5. For eachl
we run the algorithms for 5000 slots. Each link can transmé packet during a time slot.
We consider the one-hop interference model. Throughpwisessed as the percentage of
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Fic. 6.1. Throughput-Delay Tradegbfor the wireless network topology.

packets that reach their destination divided by those sent the source for each flow and
both throughput and delay are expressed as averages favasl fsource-destination pairs).

In Fig. 6.1(a), the static network embedded in the hypectspiace runs the Greedy,
Greediest and classic backpressure algorithms. In Figb 4 nodes have been deleted from
the grid while the network is still connected, thus the gyeebperty is locally lost and the
network runs the version of the Greedy (Greediest) backpredor dynamic networks. The
bullets on the curves represenffdrent values oft. We observe that for all and especially
for light traffic, the Greedy and Greediest backpressure algorithms a&chlstter throughput
delay trade-ff than the classic backpressure algorithm, as for the samewaf throughput
they lead to lower delay. Finally, in the dynamic networkesathe curves of the proposed
algorithms resemble the form of the curve of the classic peesdsure, but being on the left
and upper side of the latter, they correspond to higher tilrpput and lower delay.
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