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Abstract. Real time applications over wireless multihop networks, demand routing/scheduling algorithms that
achieve desirable delay-throughput trade-offs, with high throughput and low end-to-end delay. The backpressure
algorithm, has received much attention by the research community in the past few years, as it satisfies the throughput
optimal requirement. The backpressure algorithm performsrouting and scheduling based on congestion gradients,
by allowing transmission to the links that maximize the differential backlog between neighboring nodes. However,
by deploying routing without using any information about the position or distance to the destination, it explores all
possible source-destination paths leading to undesirablehigh delays. In this paper, we propose a method of restricting
the number of paths used by the backpressure algorithm, withthe aid of the greedy embedding of a network in the
hyperbolic space. We propose two algorithms, the “Greedy” backpressure and the “Greediest” backpressure for
both static and dynamic networks, which consider the network embedded in the hyperbolic space and combine the
greedy routing in hyperbolic coordinates with the backpressure scheduling. We prove analytically their throughput
optimality and study through simulations the induced improvement in the delay-throughput trade-off compared with
the backpressure algorithm.
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1. Introduction. Real time applications over wireless multihop networks demand rout-
ing/scheduling algorithms that achieve desirable delay-throughput trade-offs, with high through-
put and low end-to-end delay. The backpressure algorithm, introduced in its original form
in [1], has received much attention by the research community in the past few years (i.e.
[2, 3, 4]), as it satisfies the throughput optimal requirement. The backpressure algorithm
performs routing and scheduling based on congestion gradients, by allowing transmission to
the links that maximize the sum of differential queue backlogs in the network. However, by
deploying routing without any information about the position or distance to the destination,
the backpressure explores all possible source-destination paths leading to high delays even in
the case of light traffic.

Several approaches have been developed for reducing the delay imposed by the pure
backpressure scheduling/routing. The authors in [4] combine backpressure and shortest path
routing by imposing hop-count constraints on each flow, assuming that each node knows a-
priori its hop distance from all others. However, using thiscondition increases the computa-
tional complexity especially in dynamic network conditions. Following another approach, the
authors in [5] use shadow queues for the backpressure scheduling/routing, improving in this
way the delay of the backpressure algorithm while simultaneously reducing the number of
real queues needed to be stored at each node to only one queue per neighboring node. In this
paper, we propose an alternative method of restricting the number of paths used by the back-
pressure algorithm, with the aid of the greedy embedding of anetwork in hyperbolic space.
A greedy embedding in hyperbolic space is a correspondence between nodes and hyperbolic
coordinates such that the greedy routing algorithm, employed in the hyperbolic space, does
not have local minima, i.e. every node can find at least one neighbor closer than itself to all
possible destinations [6, 7]. In [6], a distributed implementation of a greedy embedding is
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proposed, which can assign hyperbolic coordinates to new nodes without re-embedding the
whole network. In this work, we consider a greedy embedding of the network following [6]
and we impose routing constraints on the backpressure algorithm, by determining as possible
next-hop neighbors for a specific destination only “greedy”neighbors, i.e. those that strictly
reduce the hyperbolic distance to the destination.

We propose two algorithms, the “Greedy” backpressure and the “Greediest” backpres-
sure for both static and dynamic networks. The first one performs routing by choosing as
next hop node one of the greedy neighbors, while the Greediest backpressure chooses the
greedy neighbor with the least hyperbolic distance to the destination. Both algorithms per-
form backpressure scheduling and as a result routing/scheduling is based on both congestion
and distance gradients.

The rest of this paper is organized as follows. In Section 2 wesummarize the properties
of the hyperbolic space and the greedy embedding, while in sections 3, 4, 5, we describe and
analyze the system model and the proposed algorithms. Section 6 provides numerical results,
demonstrating the induced improvement in the throughput-delay trade-off.

2. Greedy Network Embedding in Hyperbolic Space.The whole infinite hyperbolic
plane can be represented inside the finite unit discD = {z∈ C||z| < 1} of the Euclidean space;
the Poincaré Disc model. The greedy embedding used in this work is based on the Poincaré
Disc model. The hyperbolic distance functiondH(zi ,zj ), for two pointszi ,zj , in the Poincaré
Disc model is given by [6, 8]:

coshdH(zi ,zj) =
2|zi −zj |

2

(1− |zi |
2)(1− |zj |

2)
+1(2.1)

The Euclidean circle∂D = {z ∈ C||z| = 1} is the boundary at infinity for the Poincaré Disc
model. In addition, in this model, the shortest hyperbolic path between two nodes is either a
part of a diameter ofD, or a part of a Euclidean circle inD perpendicular to∂D.

The greedy embedding is constructed by choosing a spanning tree of the graph of the
initial network and then embedding the spanning tree into the hyperbolic space according to
the algorithm of [6]. If a spanning tree of the graph is greedily embedded in the hyperbolic
space then the whole graph is also embedded [7]. From definition, the greedy embedding
ensures the existence of at least one greedy path between each source-destination pair in the
case of static networks. Every pair of nodesi, j is connected through a unique path, let us
denote it asi, i1, i2, ... ik, j, lying on the spanning tree which is embedded in the hyperbolic
space. Due to the particular embedding,i1 is at least one greedy neighbor ofi for j andik is
a greedy neighbor ofj for i.

3. System Model and Capacity Region.We consider slotted timet and a wireless
multihop network withN(t) nodes at each timet. We consider the case whereN(t) is constant
(static network) and the case of node churn, where existing nodes can leave and new nodes
can join the network. The number of packets that arrive in node i for destinationd at timet is
Ad

i (t), with expected valueλd
i for everyt. We suppose that each nodei stores a queueqd

i (t) for
each destinationd. We denote withµi j (t) the communication traffic between the neighboring
nodesi, j at timet, and with theN×N matrix, [µi, j (t)], the traffic over all the links, at time
t. Also, we denote withµd

i j (t) the communication traffic on the link between nodesi, j for
destinationd at timet. The arrival and service rates are considered bounded. We denote with
distH(i,d) the hyperbolic distance between nodesi,d (Section 2) and withN(i), the one-hop
neighborhood of nodei. Finally, we use the termIS(t) to refer to the set of service rate vectors
of all possible independent sets of the graph at timet, i.e. maximal sets of links that do not
interfere with each other.IS(t) = IS is a constant set if the network is static and the channel
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conditions do not change. For brevity and simplicity, we do not always specify the range of
the summations which is considered as the number of nodesN(t).

We adapt the capacity region of [9], so as to include the routing constraints of the pro-
posed algorithms. Let us denote as “greedy” paths, the pathsconsisting of nodes with strictly
decreasing distances to the destination. Therefore, the capacity region should allow routing
only through greedy paths. The capacity regionΛG is the set of all input rate matrices (λd

i )
with λd

i , 0 if i , d and (i,d) is a source destination pair, such that there exists a rate matrix
[µi j ] satisfying the following constraints:

• Efficiency constraints:µd
i j ≥ 0,µd

ii = 0,µd
d j = 0,

∑

dµ
d
i j ≤ µi j , ∀ i,d, j.

• Flow constraints:λd
i +
∑

l µ
d
li ≤
∑

l µ
d
il ,∀ i,d : i , d.

• Routing constraints for the Greedy backpressure:µd
i j = 0 if i has at least one greedy

neighbor ford and j is not one of thei′sgreedy neighbors;
and for the Greediest backpressure:µd

i j = 0 if i has at least one greedy neighbor
for d and j is not i′s greedy neighbor with the shortest hyperbolic distance to the
destination.

As aforementioned, we used the greedy embedding of [6] whichworks for both static
and dynamic networks. At this point, we define the notion of strong stability of the queues,
which will be used in the proofs that follow. According to theDefinition 3.1 of [9], a queue,
qd

i is strongly stable if limsupt−>∞
1
t

∑t−1
τ=0 E(qd

i (τ)) <∞. If all the queues of the network are
strongly stable, then the whole network is strongly stable.

4. Static Networks. In this section, we develop our algorithms in the case of static
wireless networks, i.e. the number of nodes and their positions are fixed. The proposed
algorithms differ from the classic backpressure algorithm in the definitionof the weightPi j (t)
for each linki j , due to their greedy routing constraints. Algorithm 1 describes how the pure
backpressure algorithm is modified to follow only greedy paths.

It is important to mention that due to the greedy embedding that ensures the existence
of a greedy path for every source-destination pair, the routing constraints of Algorithm 1 are
well defined and there does not exist local minima that can cause the packets to get stack at
a specific node. Therefore, with probability one the packetswill be routed to the destination
under Algorithm 1. The following theorem shows the throughput optimality of Algorithm 1
for static networks.

Theorem 4.1. If we assume that the arrival ratesλd
i lie inside the capacity regionΛG,

then the queues of the network are strongly stable, under theGreedy (Greediest) backpressure
algorithm for static networks.

Proof. We define two indicator functions dependent on the type of the backpressure
algorithm (Greedy or Greediest).
For the Greedy backpressure:
I1 = {distH(i,d) > distH( j,d)

∧

( j ∈ N(i))}, I2 = {distH(i,d) < distH( j,d)
∧

(i ∈ N( j))},
while for the Greediest backpressure:
I1 = {distH(i,d) > distH( j,d)

∧

distH( j,d) =minl∈N(i) distH(l,d)
∧

( j ∈ N(i))}
I2 = {distH(i,d) < distH( j,d)

∧

distH(i,d) =minl∈N( j) distH(l,d)
∧

(i ∈ N( j))}
where we observe thatI2 equalsI1 if we replacei, j with j, i correspondingly.
The queue dynamics in the case of Algorithm 1 are

qd
i (t+1)=max{qd

i (t)−
∑

j|I1

µd
i j (t),0}+

∑

j|I2

µd
ji (t)+Ad

i (t).(4.1)

We denote byQ(t)= (qd
i (t)), the vector of queues of the network. We define the Lyapunov
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Algorithm 1: Greedy (Greediest)-backpressure algorithm for Static Wireless Net-
works, performed at time slott

1 for each directed link(i, j) do
2 for each destination ddo
3 %Greedy backpressure%
4 if distH(i,d) > distH( j,d) then
5 Pd

i j (t) = qd
i (t)−qd

j (t);

6 (%OR Greediest backpressure%
7 if distH(i,d) > distH( j,d) and distH( j,d) =minl∈N(i) distH(l,d) then
8 Pd

i j (t) = qd
i (t)−qd

j (t); )

9 else
10 Pd

i j (t) = −∞;

11 %De f ine the weight Pi j (t) as f ollows:
12 Pi j (t) =max(maxd Pd

i j (t),0);

13 d∗(i, j) = argmaxd Pd
i j (t);

14 Choose the communication tra f f ic matrix through the maximization:
15 [µi j (t)] = argµ′∈IS max

∑

(i, j) µ
′
i j Pi j (t)

16 for each directed link(i, j) do
17 if µi j (t) > 0 then
18 the link(i j ) serves d∗(i, j) with µd∗

i j (t) = µi j (t);

19 For d, d∗ we setµd
i j (t) = 0

functionL(Q(t)) =
∑

i,d qd
i (t)2 and take the expected value of the difference

L(Q(t+1))− L(Q(t)) so as to compute the Lyapunov Drift:

E(L(Q(t+1))− L(Q(t))|Q(t)) = E



















∑

i,d

qd
i (t+1)2−

∑

i,d

qd
i (t)2

∣

∣

∣

∣

∣

Q(t)



















,

(4.1),[9]
≤
∑

i,d



















qd
i (t)2+E







































∑

j|I1

µd
i j (t)



















2

+



















∑

j|I2

µd
ji (t)+Ad

i (t)



















2
∣

∣

∣

∣

∣

Q(t)







































−
∑

i,d



















2qd
i (t)E





































∑

j|I1

µd
i j (t)−

∑

j|I2

µd
ji (t)−Ad

i (t)



















∣

∣

∣

∣

∣

Q(t)





































−
∑

i,d

qd
i (t)2,

≤ B+2
∑

i,d

qd
i (t)λd

i −2
∑

i,d

qd
i (t)E





































∑

j|I1

µd
i j (t)−

∑

j|I2

µd
ji (t)



















∣

∣

∣

∣

∣

Q(t)



















,(4.2)

whereµd
i j (t) are the service rates computed by Algorithm 1 andB> 0 is an upper bound of

∑

i,d E
[

(

∑

j|I1 µ
d
i j (t)
)2
+
(

∑

j|I2 µ
d
ji (t)+Ad

i (t)
)2
∣

∣

∣

∣

∣

Q(t)
]

.

If the λd
i lie inside the capacity region, then from corollary 3.9 in [9], there exist rates ˆµd

i j (t)
determined according to the network topology and independently of the queue backlog satis-
fying λd

i + ε = E
[

∑

j|I1 µ̂
d
i j (t)−

∑

j|I2 µ̂
d
ji (t)
]

∀ i,d, ε > 0.

The Greedy (Greediest) backpressure maximizes
∑

i,d qd
i (t)E

[

(

∑

j|I1 µ
d
i j (t)−

∑

j|I2 µ
d
ji (t)
)

∣

∣

∣

∣

∣

Q(t)
]

,
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so

∑

i,d

qd
i (t)E



















∑

j|I1

µd
i j (t)−

∑

j|I2

µd
ji (t)
∣

∣

∣

∣

∣

Q(t)



















>
∑

i,d

qd
i (t)E



















∑

j|I1

µ̂d
i j (t)−

∑

j|I2

µ̂d
ji (t)



















.(4.3)

Therefore the Lyapunov drift (Eq. (4.2)) becomes

E[L(Q(t+1))− L(Q(t))|Q(t)] ≤ B−2
∑

d

∑

i

qd
i (t)ε,(4.4)

and from lemma 4.1 of [9], the network is strongly stable.
The delay performance of a scheduling/routing algorithm for each flow, is closely related

to the sum of queues of the nodes on the source-destination path. As stated in [5] the total
backlog of a path increases with the increase of its hop-length. As the spanning tree used for
the hyperbolic embedding of the network determines the greedy paths used by the flows, it is
therefore expected that the choice of the spanning tree willaffect the number and hop-length
of the greedy paths and therefore the delays experienced by the flows. As a result, different
types of spanning trees like minimum weight spanning tree orshortest path spanning tree
should be studied for their effect on the delay performance.

5. Dynamic Networks. In dynamic networks the topology of the network (and the ca-
pacity region) changes due to the addition and deletion of nodes. We assume that the network
remains always connected and that nodes come and leave in a much slower rate than the rate
of the scheduling/routing process. In this case, new nodes admit a greedy embedding in hy-
perbolic space according to the embedding of [6]. However, when a node leaves, the greedy
property can be locally destroyed and the greedy routing must be adapted in order to avoid
possible local minima, without re-embedding the whole network. Thus, we adapt Algorithm
1, so as to perform the classic backpressure when the greedy property is locally lost: if a
node has a greedy neighbor for a particular destination it performs either Greedy or Greediest
backpressure while if the greedy property is lost for the specific destination, it performs the
classic backpressure algorithm. As a result, the lines 4,5,9,10 of Algorithm 1 for the Greedy
backpressure are replaced with the following ones:

if i has at least one greedy neighbor f or a destination dthen
if distH(i,d) > distH( j,d) then

Pd
i j (t) = qd

i (t)−qd
j (t);

else
Pd

i j (t) = −∞;

if i has not greedy neighbor f or a destination dthen
Pd

i j (t) = qd
i (t)−qd

j (t);

For the Greediest backpressure, lines 7−10 change similarly, with the difference that the sec-
ond in row if-condition becomes:distH(i,d)> distH( j,d) and distH( j,d)=minl∈N(i) distH(l,d)

Proposition 5.1. If we assume a finite time interval T then the queues of the network re-
main bounded for this finite time interval (Finite Time Stability), under the Greedy (Greediest)
backpressure for both static and dynamic networks.

Proof. The arrival and service rates are considered bounded, i.e.at each timet, we have
that
∑

d
∑

j|I1 µ
d
i j (t) ≤ µ

out
i,max,

∑

d
∑

j|I2 µ
d
ji (t) ≤ µ

in
i,max and

∑

d Ad
i (t) ≤ Ai,max. We will prove the

Finite Time Stability (FTS) by using the definition of finite time stability used in [10]. From
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our state equation, we have that

qd
i (t+1)=max{qd

i (t)−
∑

j|I1

µd
i j (t),0}+

∑

j|I2

µd
ji (t)+Ad

i (t) ≤ qd
i (t)+

∑

j|I1

µd
i j (t)+

∑

j|I2

µd
ji (t)+Ad

i (t),

≤ qd
i (t)+µout

i,max+µ
in
i,max+Ai,max= qd

i (t)+Bi
max,(5.1)

whereBi
max= µ

out
i,max+µ

in
i,max+Ai,max. It follows thatqd

i (t) ≤ qd
i (0)+Bi

max· t. Therefore if the

initial queues are bounded (qd
i (0)<∞), the queues at timeT are also bounded and this proves

the FTS of our system.
The following theorem shows under certain assumptions the throughput optimality of

the Greedy (Greediest) backpressure for dynamic networks.In order to prove Theorem 5.2,
we assume that at each time instant only one node can be added or deleted, also that a new
node does not change any pre-existing connections in the network and finally that there is
a controller that adapts the arrival rates to lie inside the capacity region, after a node churn
process. It is important to mention that we use per destination queues, and therefore it is
less likely to deal with the finite flow problem [11] when a nodeleaves, as other nodes will
continue to communicate with the destinations of the deleted node.

Theorem 5.2. Let Ti be a time interval during which the number of nodes N(Ti) stays
constant. In addition, assume that the arrival rates of interval Ti, denoted byλd

i (Ti), lie within
the capacity regionΛG(Ti), also dependent on Ti . Then the queues qd

i (t) are strongly stable.
Proof. We first prove Theorem 5.2 in the case of the Greedy backpressure algorithm. Let

us consider consecutive time intervalsTi , i = 1...∞, with constant number of nodes,N(Ti), at
each intervalTi . We suppose that the nodes get informed about a node additionor deletion
just after the last slot of an interval and before the first slot of the next. We first prove that the
Lyapunov drift becomes negative at eachTi , when the sum of queues exceeds a certain bound
BTi , dependent on the intervalTi . We define four indicator functions:
I1 = {distH(i,d) > distH( j,d)

∧

( j ∈ N(i))}, I2 = {distH(i,d) < distH( j,d)
∧

(i ∈ N( j))}
I3 = {(Node i has no greedy neighbor f or destination d)

∧

( j ∈ N(i))}
I4 = {(Node j has no greedy neighbor f or destination d)

∧

(i ∈ N( j))}
where we observe thatI2 equalsI1 andI4 equalsI3, if we replacei, j with j, i correspondingly.
Also, I1∩ I3 = �, I2∩ I4 = �. The queue dynamics are

qd
i (t+1)=max{qd

i (t)−
∑

j|{I1||I3}

µd
i j (t),0}+

∑

j|{I2||I4}

µd
ji (t)+Ad

i (t),(5.2)

whereE(Ad
i (t)) = λd

i (Ti) is constant for the periodTi and assumed to lie inside the capacity
regionΛG(Ti) for this time period. By following the same steps as in Theorem 4.1, the
Lyapunov drift takes the form

E[L(q(t+1))− L(q(t))|q(t)] ≤ BTi −

N(Ti )
∑

d=1,i=1

qd
i (t)ε.(5.3)

We have proved that for each intervalTi with constant number of nodesN(Ti), if the arrival
rates are adapted through a controller to lie inside the capacity region of this intervalΛG(Ti),
the sum of queues is bounded. Now we check the Lyapunov drift at the transitions between
two intervals with different number of nodes and since we have assumed that at each transition
only one node can be added or deleted, two consecutive intervals differ only by one node. If
a node is added at timet then, the other nodes get informed about its arrival and may start to
send data to the new node. If a node is deleted, the network gets informed about this event and
erase the queues destined to the deleted node. To simplify the theoretical proofs, we assume
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that the IDs of the nodes can be rearranged so that they take consecutive integer values when
a node leaves the network.

In the case of a node addition, let us suppose that at timet we haveN nodes, while at
time t+1 we haveN+1 nodes. Also,qN+1

i (t) = 0 andqd
N+1(t) = 0,∀d, i, as at timet the node

with ID N+1 enters the network. The change in the Lyapunov function, between slotst, t+1,
is computed as follows

L(t+1)− L(t) =
N+1
∑

i=1

N+1
∑

d=1

(qd
i (t+1))2−

N
∑

i=1

N
∑

d=1

(qd
i (t))2 =

N+1
∑

i=1

N+1
∑

d=1

(qd
i (t+1))2−

N+1
∑

i=1

N+1
∑

d=1

(qd
i (t))2.(5.4)

By using the constantBTi+1 (which is computed asBTi but for theN + 1 nodes ofTi+1),
instead ofBTi , we can mimic the computation of the drift done in Eq. (5.3) toprove that the
Lyapunov drift is negative if the sum of queue backlogs is high enough and if theλd

i ,∀i,d lie
inside the capacity region of the intervalTi+1.

In the case of node deletion, from intervalTi to theTi+1, at timet ∈ Ti we haveN nodes,
and at timet′ ∈ Ti+1 we haveN − 1 nodes. By taking out the terms corresponding to the
deleted node and rearranging indices, the change in the Lyapunov function is computed as

L(t+1)− L(t) ≤
N−1
∑

i=1

N−1
∑

d=1

(qd
i (t+1))2−

N−1
∑

i=1

N−1
∑

d=1

(qd
i (t))2.(5.5)

Similarly with node addition, we mimic the computation of the drift done in Eq. (5.3) by
using the constantBTi+1 which is computed asBTi but for theN−1 nodes ofTi+1. Therefore
by choosing the highest constantBTi , denoted asBmax=max∀Ti {BTi }, at each timet that the
sum of queue backlogs is higher thanBmax

ε
, the Lyapunov drift will be negative.

E
[

E[L(q(t+1))− L(q(t))|Q(t)]
]

≤ E



















Bmax−
∑

d,i

qd
i (t)ε



















,

E(L(q(T +1)))−E(L(q(0)))≤ T Bmax−E(
t=T
∑

t=0

∑

d,i

qd
i (t)ε)⇒−E(L(q(0)))≤ T Bmax

−E























∑

l























s=
∑x=l

x=0 Tx−1
∑

s=
∑x=l−1

x=0 Tx+1

N(Tl )
∑

i=1,d=1

qd
i (s)ε +1N

N(Tl+1)
∑

i=1,d=1

qd
i (

x=l
∑

x=0

Tx)ε +1l=K

N(Tl )
∑

i=1,d=1

qd
i (

x=l
∑

x=0

Tx)ε













































,(5.6)

where1N = (1{N(Tl)−N(Tl+1)=1,l,K} + 1{N(Tl)−N(Tl+1)=−1,l,K}), where1 is the indicator function
andT0 = 0. Also l spans as many integersK, so that we have

∑l=K
l=1 Tl = T andN(TK+1) =

N(TK). By dividing the previous upper bound byT and takingT (or l)→∞, we conclude
the strong stability of the queues.

Remark 1. The analysis can be repeated for the Greediest backpressurealgorithm by
redefining the first two indicator functions as:
I1 = {distH(i,d) > distH( j,d)

∧

distH( j,d) =minl∈N(i) distH(l,d)
∧

( j ∈ N(i))}
I2 = {distH(i,d) < distH( j,d)

∧

distH(i,d) =minl∈N( j) distH(l,d)
∧

(i ∈ N( j))}

6. Simulation Results. In this section, we present some MATLAB simulation results
that clarify the Pareto dominance of our algorithms over theclassic backpressure algorithm
concerning the throughput-delay trade-off. We consider a 4x4 grid topology, where each
node at each time slot generates traffic for a random destination, with probability equal for
all node pairs ranging fromλ = 0.025 toλ = 0.775 with step increase 0.025. For eachλ
we run the algorithms for 5000 slots. Each link can transmit one packet during a time slot.
We consider the one-hop interference model. Throughput is expressed as the percentage of
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(a) Greedy (Greediest) for static networks.
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(b) Greedy (Greediest) for dynamic networks.

Fig. 6.1.Throughput-Delay Trade-off for the wireless network topology.

packets that reach their destination divided by those sent from the source for each flow and
both throughput and delay are expressed as averages for all flows (source-destination pairs).

In Fig. 6.1(a), the static network embedded in the hyperbolic space runs the Greedy,
Greediest and classic backpressure algorithms. In Fig. 6.1(b), 4 nodes have been deleted from
the grid while the network is still connected, thus the greedy property is locally lost and the
network runs the version of the Greedy (Greediest) backpressure for dynamic networks. The
bullets on the curves represent different values ofλ. We observe that for allλ and especially
for light traffic, the Greedy and Greediest backpressure algorithms achieve a better throughput
delay trade-off than the classic backpressure algorithm, as for the same values of throughput
they lead to lower delay. Finally, in the dynamic network case, the curves of the proposed
algorithms resemble the form of the curve of the classic backpressure, but being on the left
and upper side of the latter, they correspond to higher throughput and lower delay.
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