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A Randomized Gossip Consensus Algorithm on Convex Metric Spaces

Ion Matei, Christoforos Somarakis, John S. Baras

Abstract— A consensus problem consists of a group of
dynamic agents who seek to agree upon certain quantities
of interest. This problem can be generalized in the context
of convex metric spaces that extend the standard notion of
convexity. In this paper we introduce and analyze a randomized
gossip algorithm for solving the generalized consensus problem
on convex metric spaces. We study the convergence properties
of the algorithm using stochastic differential equations theory.
We show that the dynamics of the distances between the states
of the agents can be upper bounded by the dynamics of a
stochastic differential equation driven by Poisson counters. In
addition, we introduce instances of the generalized consensus
algorithm for several examples of convex metric spaces.

1. INTRODUCTION

A particular distributed algorithm is the consensus (or
agreement) algorithm, where a group of dynamic agents seek
to agree upon certain quantities of interest by exchanging
information among them, according to a set of rules. This
problem can model many phenomena involving information
exchange between agents such as cooperative control of ve-
hicles, formation control, flocking, synchronization, parallel
computing, etc. Distributed computation over networks has
a long history in control theory starting with the work of
Borkar and Varaiya [1], Tsitsikils, Bertsekas and Athans
[23], [24] on asynchronous agreement problems and parallel
computing. Different aspects of the consensus problem were
addressed by Olfati-Saber and Murray [14], Jadbabaie et al.
[6], Ren and Beard [17], Moreau [12] or, more recently, by
Nedic and Ozdaglar [13].

The random behavior of communication networks mo-
tivated the investigation of consensus algorithms under a
stochastic framework [5], [9], [16], [18], [19]. In addition
to network variability, nodes in sensor networks operate
under limited computational, communication, and energy
resources. These constraints have motivated the design of
gossip algorithms, in which a node communicates with a
randomly chosen neighbor. Studies of randomized gossip
consensus algorithms can be found in [2], [20]. In particular,
consensus based gossip algorithms have been extensively
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used in the analysis and study of the performance of wireless
networks, with random failures [15].

In this paper, we introduce and analyse a generalized
randomized gossip algorithm for achieving consensus. The
algorithm acts on convex metric spaces. These are abstract
metric spaces endowed with a convex structure. We show
that under the given algorithm, the agents’ states converge
to consensus with probability one and in the 7 mean sense.
Additionally, for a particular network topology we investigate
in more depth the rate of convergence of the first and second
moments of the distances between the agents’ states and
we present instances of the generalized gossip algorithm
for three convex metric spaces. The results of this paper
complement our previous results in [7], [8]. This paper is a
brief version of a more comprehensive technical report [10].

The paper is organized as follows. Section II introduces
the main concepts related to convex metric spaces. Section III
formulates the problem and states our main results. Sections
IV and V give the proof of our main results, together with
pertinent preliminary results. In Section VI we present an
in-depth analysis of the rate of convergence to consensus
(in the first and second moments), for a particular network
topology. Section VII shows instances of the generalized
consensus algorithm for three convex metric spaces, defined
on the sets of real numbers, compact intervals and discrete
random variables, respectively.

Some basic notations: Given W € R"™" by [W];; we refer
to the (i, j) element of the matrix. The underlying graph of
W is a graph of order n without self loops, for which every
edge corresponds to a non-zero, off-diagonal entry of W. We
denote by yi4; the indicator function of the event A.

II. ConvEXx METRIC SPACES

In this section we introduce a set of definitions and basic
results about convex metric spaces. Additional information
about the following definitions and results can be found in
[21],[22].

Definition 2.1 ([22], pp. 142): Let (X,d) be a metric
space. A mapping y : XX X% [0, 1] = X is said to be a convex
structure on X if

d(u,y(x,y,A)) < Ad(u,x) + (1 - Dd(u,y),

for all x,y,u € X and for all 4 €[0,1].

Definition 2.2 ([22], pp.142): The metric space (X,d) to-
gether with the convex structure y is called a convex metric
space, and is denoted henceforth by the triplet (X,d,y).

In Section VII we present three examples of convex metric
spaces to which the generalized gossip algorithm is applied.
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Definition 2.3 ([22], pp. 144): A convex metric space
(X,d,y) is said to have Property (C) if every bounded
decreasing net of nonempty closed convex subsets of X has
a nonempty intersection.

The class of such convex metric spaces is rather large
since by Smulian’s Theorem ([3], page 443), every weakly
compact convex subset of a Banach space has Property (C).

The following definition introduces the notion of convex
set in a convex metric space.

Definition 2.4 ([22], pp. 143): Let (X,d,y) be a convex
metric space. A nonempty subset K C X is said to be convex
if y(x,y,A) €K, ¥Yx,ye K and YA €[0,1].

Let P(X) be the set of all subsets of X. We define the set
valued mapping ¥ : P(X) = P(X) as

Y(A) = {y(x,y,d) | Yx,y € A,¥YA€[0,1]},

where A is an arbitrary subset of X.

In Proposition 1, pp. 143 of [22] it is shown that in a
convex metric space, an arbitrary intersection of convex sets
is also convex and therefore the next definition makes sense.

Definition 2.5 ([21], pp. 11): Let (X,d,y) be a convex
metric space. The convex hull of the set A C X is the
intersection of all convex sets in X containing A and is
denoted by co(A).

An alternative characterization of the convex hull of a set
in X is given in what follows. By defining A,, = ¥(An-1)
with Ag = A for some A C X, it is discussed in [21] that
the set sequence {A,,};>0 is increasing and limsup,,_,, A, =
liminf,, e A = limyy o Ay = Upr_o Ami-

Proposition 2.1 ([21], pp. 12): Let (X,d,y) be a convex
metric space. The convex hull of a set A C X is given by

co(A) = lim A,, = UA,,,.
=0

m—o0

m=!
It follows immediately from above that if A, = A,, for
some m, then co(A) = A,,.

III. PROBLEM FORMULATION AND MAIN RESULTS

Let (X,d,v) be a convex metric space. We consider a set
of n agents indexed by i, with states denoted by x;(¢) taking
values on X, where ¢ represents the continuous time.

A. Communication model

The communication among agents is modeled by a di-
rected graph G = (V,E), where V ={1,2,...,n} is the set of
agents, and E = {(j,) | j can send information to i} is the set of
edges. In addition, we denote by N; the inward neighborhood
of agent i, i.e.,

Ni={j 1 (D €E}

where by assumption node i does not belong to the set N;.
We make the following connectivity assumption.

Assumption 3.1: The graph G = (V,E) is strongly con-
nected.

B. Randomized gossip algorithm

We assume that the agents can be in two modes: sleep
mode and update mode. Let N;(f) be a Poisson counter
associated to agent i. In the sleep mode, the agents maintain
their states unchanged. An agent i exits the sleep mode and
enters the update mode, when the associated counter N;(f)
increments its value. Let #; be a time-instant at which the
Poisson counter N;(f) increments its value. Then at #;, agent
i picks agent j with probability p; ;, where j € N; and updates
its state according to the rule

xi(1]) = wxi(t), x (1), i), (D

where 4; € [0, 1), y is the convex structure and 3 jep;, pij = 1.
By x;(¢]) we understand the value of x;(f) immediately after
the instant update at time #;, which can be also written as

x(H) = Lm x(),
! t—t, >t

which implies that x;(¢) is a right-continuous function of ¢.
After agent i updates its state according to the above rule, it
immediately returns to the sleep mode, until the next increase
in value of the counter N;(1).

Assumption 3.2: The Poisson counters N;(f) are indepen-
dent and with rate y;, for all i.

A similar form of the above algorithm (the Poisson coun-
ters are assumed to have the same rates) was extensively
studied in [2], in the case where X = RR.

We first note that since the agents update their state at
random times, the distances between agents are random
processes. Let d(x;(1), x;(?)) be the distance between the states
of agents i and j, at time ¢. The following theorems state our
main convergence results.

Theorem 3.1: Under Assumptions 3.1 and 3.2 and under
the randomized gossip algorithm, the agents converge to
consensus in " mean, that is

lim E[d(xi(0.x;0) | = 0.Y . ). i# .
Theorem 3.2: Under Assumptions 3.1 and 3.2 and under
the randomized gossip algorithm, the agents converge to
consensus with probability one, that is

Pr( lim max d(x;(?),x;(#))=0]= 1.

oo |,

The above results SflOW that the distances between the
agents’ states converge to zero. The following Corollary
shows that in fact, for convex metric spaces satisfying
Property (C), the states of the agents converge to some point
in the convex metric space.

Corollary 3.1: Under Assumptions 3.1 and 3.2 and under
the randomized gossip algorithm operating on convex metric
spaces satisfying Property (C), for any sample path w of
state processes, there exits x* € X (that depends on w and
the initial conditions x;(0)) such that

lim d(x;(t, w), x"(w)) = 0, for all i.

t—00
In other words, the states of the agents converge to some
point of the convex metric space with probability one.
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IV. PRELIMINARY RESULTS

In this section we construct the stochastic dynamics of the
vector of distances between agents. Let #; be a time-instant at
which counter N;(f) increments its value. Then according to
the gossip algorithm, at time ¢ the distance between agents
i and j is given by

d(xi(r]), x(1)) = dy(xi(t;), xi(1;), A1), x (1)), ()

with probability p;;.

Let 6;(r) be an independent and identically distributed
(i.i.d.) random process, such that Pr(6;(r) = [) = p;; for all
[ e N; and for all ¢. It follows that (2) can be equivalently
written as

d(xi(t]), xj(1)) = ZX{O,«(ti)=l}d(W(xi(ti)vXl(ti)a/li),xj([i))s

leN;

3)
where y(; denotes the indicator function. Using the inequal-
ity property of the convex structure introduced in Definition
2.1, we further get

d(xi(r]), x(r)) < 4id(xi(1), x (1)) +
+(1= ) D Xio=nd (i), x,(1). “)
leN;

Assuming that 7; is a time-instant at which the Poisson
counter N;(¢) increments its value, in a similar manner as
above we get that

d(xi(f}r),xj(l}r)) < Ad(xi(t)), x(t)) +

A=) Y xiojap=pdCat), xi(1)). (5)
leN;
Consider now the scalars #;;(f) which follow the same
dynamics as the distance between agents i and j, but with
equality, that is,

ni,j (60 = Ami (1) + (1 - ;) ZX{Hi(ti):l}le,l(ti), (6)
leN;

and

Tli,j(t}r) =Am; () +(1-4;) ZX{aj(r,«):lmi,l(lj), @)
[eN;
with 7],',1'(0) = d(x,(O),xj(O))

Remark 4.1: Note that the index pair of n refers to the
distance between two agents i and j. As a consequence 7; ;
and n;; will be considered the same objects, and counted
only once.

Proposition 4.1 ([10]): The following inequalities are sat-
isfied with probability one:

1i,j(#) =0, 3
n;,j(1) < Hll_é}X 7:,;(0), )
d(x; (1), xj(1)) < m; (),

for all i # j and t > 0.
We now construct the stochastic differential equation sat-
isfied by n; ;(#). From equations (6) and (7) we note that

(10)

n;;(¢) at time ¢ and ¢; satisfies the solution of a stochastic
differential equation driven by Poisson counters. Namely, we
have

dn; j(®) = -1 =) j(O+ (1= 4) Z)({e,m:zmj,l(l) dN;(H)+
leN;

~(A =m0+ (=27 D Xigsw=mmin(@ |AN;@0). (1)

meN

Let us now define the 7 dimensional vector 1 = (1;;),
where 71 = @ (since (i, j) and (j,i) correspond to the same
distance variable). Equation (11) can be compactly written
as

A= O O)MOdND+ > Wi (00)mOdN (D).
si#] @@ ))i#]
(12)
where the 7i X 7 dimensional matrices ®@; ;(6;(¢)) and ¥; ;(0;(1))
are defined as:

-(1-2) at entry [(i,j)(.i,j)]
@) =| Ao ees [EDEDL 3
0 all other entries ,
and
—(1-4;) at entry [(i, )@, /)]
W, 10,(1) = (I =2)xp,0=m)  at entries [(i, ))(m,D)], (14)

meN;,m# jm#i,
0 all other entries .

The dynamics of the first moment of the vector n(¢) is
given by

d
—E{n(n} =

0 D7 B[ 0mu + ¥ 0,00}

@ )si#]
(15)
Using the independence of the random processes 6;(f), we
can further write

d
7 Eln@) = WEn()},

where W is a nxn dimensional matrix whose entries are
given by

(16)

—(1 =i = (A=A
(L= 2A)pipiy

(1= Aj)/-tjpj,m

0

l=iand m=j
leN;, m=j, l#],
I=i, meNj, m#i,
otherwise.

(Wi, j).m =
(17)

The following Lemma studies the properties of the matrix
W, introduced above.

Lemma 4.1 ([10]): Let W be the nxn dimensional ma-
trix defined in (17). Under Assumption 3.1, the following
properties hold:

(a) Let G be the directed graph (without self loops) corre-
sponding to the matrix W, that is, a link from (/,m) to
(i, j) exists in G if [W] j,am > 0. Then G is strongly
connected.
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(b) The row sums of the matrix W are non-positive, i.e.,

D WG jpam <0, VG, i # J.
(I,m),l#m

(c) There exits at least one row (i*, j*) of W whose sum is
negative, that is,

Z (Wi, jyam < 0.

Lm),l#m
Let & = (1-A)u; e(lnd) &; = (1-2))u; and consider now the

matrix Q =1+ €W, where [ is the identity matrix and € is a

positive scalar satisfying 0 < € < ————.

The following Corollary follow;rl ;;gr(r‘?:ﬁg previous Lemma

and describes the properties of the matrix Q.

Corollary 4.1 ([10]): Matrix Q has the following proper-
ties:

(a) The directed graph (without self loops) corresponding
to matrix Q (that is, a link from (/,m) to (i, j) exists if
[Q]ii.j),am > 0) is strongly connected.

(b) Q is a non-negative matrix with positive diagonal ele-
ments.

(c) The rows of Q sum up to a positive value not larger than
one, that is,

D Qi pam <1, VG, ).

(l,m),l#m

(d) There exits at least one row (i*, j*) of @ which sums up
to a positive value strictly smaller than one, that is,

Z (@i, jam < 1.

(Lm),l#m
Remark 4.2: The above Corollary says that the matrix Q

is an irreducible, substochastic matrix. In addition, choosing
Y 2 max; ; m, it follows that we can find a non-negative,
irreducible matrix Q such that yQ = I+ Q. Using a result
on converting non-negativity and irreducibility to positivity
([11], page 672), we get that (I + Q)" =y 1Q"! >0, and
therefore Q is a primitive matrix. The existence of y is
guaranteed by the fact that @ has positive diagonal entries.

We have the following result on the spectral radius of Q,
denoted by p(Q).

Lemma 4.2 ([10]): The spectral radius of the matrix Q is
smaller than one, that is,

p@) < 1.

V. PROOF OF THE MAIN RESULTS

In this section we prove our main results introduced in
Section III.

A. Proof of Theorem 3.1

We first show that the vector n(f) converges to zero in
mean. By Lemma 4.2 we have that the spectral radius of Q
is smaller than one, that is

p@) <1,
where p(Q) = max;|4;ol, with 2, i=1,...,in being the
eigenvalues of Q. This also means that

Re(d;9) <1, Vi. (18)

But since W = %(Q—I), it follows that the real part of the
eigenvalues of W are given by

1 -
Re(Lw)=—(Re(4;9)—1)<0, Vi,
e(liw) = - (Re(tig)~1) i
where the last inequality follows from (18). Therefore, the
dynamics

d
7 Eln(@0) = WEin()

is asymptotically stable, and hence 7n(f) converges in mean
to zero.

We now show that n(f) converges in r”* mean, for any
r>1. We showed above that 7; ;(f) converges in mean to zero,
for any i # j. But this also implies that 7; ;(#) converges to
zero in probability (Theorem 3, page 310, [4]), and therefore,
for any 6 >0

h

tlim Pr(n; j(t) > 6)=0. (19)

Using the indicator function, the quantity #;;(f) can be
expressed as

1i,j(0) = 1i, j(OX s j0<6) + Mij(OX i j0)>6)»

for any ¢ > 0. Using (9) of Proposition 4.1 we can further
write

.
i,/ ()" <0 X <o) + (Hll_éjl_x i, j(O)) X j(H>6)>

where to obtain the previous inequality we used the fact that
X jn<o\X i jn>6) = 0. Using the expectation operator, we
obtain

r
E{n; j(t)"} < 8" Pr(n; (1) < 6) + (H}é}X Ui,j(o)) Pr(n;, j(1) > ).
Taking ¢ to infinity results in
lim sup E{n; j(1)"} < 6", ¥6 >0,

—o00

and since ¢ can be made arbitrarily small, we have that
tlim E{n; i)} =0, Vr>1.
Using (10) of Proposition 4.1, the result follows.

B. Proof of Theorem 3.2

In the following we show that () converges to zero al-
most surely. Equations (6) and (7) show that with probability
one 7; () is non-negative and that for any 1, < f;, with
probability one 7; ;(t2) belongs to the convex hull generated
by {nim(t1) | for all pairs (/,m)}. But this also implies that
with probability one

maxy; j(t2) < max 1i,j(t1). (20)
Hence for any sample path of the random process n(t), the
sequence {max; ;j1; j(H)};>0 is monotone decreasing and lower
bounded. Using the monotone convergence theorem, we have
that for any sample path w, there exits 7j(w) such that
lim max 7; ;(f, w) = fHw),
J

t—oo |,
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or similarly
Pr{ lim maxn; j(1) = 7| = 1.
—00 {j

In the following we show that 77 must be zero with
probability one. We achieve this by showing that there exits a
subsequence of {max; ;n; ;(t)}~0 that converges to zero with
probability one.

In Theorem 3.1 we proved that n(¢) converges to zero in
the 7" mean. Therefore, for any pair (i, j) and (I,m) we have
that E{n; j()n,,()} converge to zero. Moreover, since

E{ni jOnm®)} < nll,a}x 0, (O E{n,,(0)},

and since E{n;,,(¢)} converges to zero exponentially, we have
that E{n; j(t)n,,()} converges to zero exponentially as well.

Let {tx}x>0 be a time sequence such that #; = kh, for some
h > 0. From above, it follows that E{|l(t)|*} converges
to zero geometrically. But this is enough to show that the
sequence {n(tx)}r>0 converges to zero, with probability one
by using the Borel-Cantelli lemma (Theorem 10, page 320,
[4]). Therefore, i must be zero. Using (10) of Proposition
4.1, the result follows.

VI. THE RATE OF CONVERGENCE OF THE GENERALIZED GOSSIP
CONSENSUS ALGORITHM UNDER COMPLETE AND UNIFORM
CONNECTIVITY

Under specific assumptions on the topology of the graph,
on the parameters of the Poisson counters and on the convex
structure, in the following we obtain more explicit results on
the rate of convergence of the algorithm.

Assumption 6.1: The Poisson counters have the same rate,
that is u; = u for all i. Additionally, the parameters used by
the agents in the convex structure are equal, that is 4; = 4,
for all i. In the update mode, each agent i picks one of the
rest n—1 agents uniformly, that is N; = N —{i} and p; ; = ﬁ,
for all je N;.

The following two Propositions give upper bounds on the
rate of convergence for the first and second moments of the
distance between agents, under Assumption 6.1.

Proposition 6.1 ([10]): Under Assumptions 3.1, 3.2 and
6.1, the first moment of the distances between agents’ states,
using the generalized gossip algorithm converges exponen-
tially to zero, that is

E{d(xi(D), xj())} < c1e™", for all pairs (i, ),

2(1- . . .
where a; = -2 n_/ll)" and ¢ is a positive scalar depending of

the initial conditions.

Proposition 6.2 ([10]): Under Assumptions 3.1, 3.2 and
6.1, the second moment of the distances between agents’
states, using the generalized gossip algorithm converges
exponentially to zero, that is

2L

E{d(xi(1), x (1)} < c2¢™', for all pair (i, ),

- 2 . .. .
where a; = —,u% and ¢; is a positive scalar depending
of the initial distances between agents.

Remark 6.1: As expected, the eigenvalues @ and )

approach zero as n approaches infinity, and therefore the rate

of converges decreases. Interestingly, in both the first and
the second moment analysis, we observe that the minimum
values of @ and ay are attained for A =0, that is when an
awaken agent never picks its own value, but the value of a
neighbor.

VII. THE GENERALIZED GOSSIP CONSENSUS ALGORITHM FOR
PARTICULAR CONVEX METRIC SPACES

In this section we present several instances of the gossip
algorithm for particular examples of convex metric spaces.
We consider three cases for X: the set of real numbers, the set
of compact intervals and the set of discrete random variables.
We endow each of these sets with a metric d and convex
structure i in order to form convex metric spaces. We show
the particular form the generalized gossip algorithm takes for
these convex metric spaces.

A. The set of real numbers

Let X =R and consider as metric the standard Euclidean
norm, that is d(x,y) = |lx—yll2, for any x,y € R. Consider
the mapping ¥(x,y,4) = Ax+ (1 — )y for all x,y € R and
A €[0,1]. It can be easily shown that (R,|-|,¥) is a
convex metric space. For this particular convex metric space,
the generalized randomized consensus algorithm takes the
following form.

Note that this algorithm is exactly the randomized gossip

Algorithm 1: Randomized gossip algorithm on R
Input: xi(O), /l,‘, Pi,j
for each counting instant t; of N; do
Agent i enters update mode and picks a neighbor j
with probability p; ; ;
Agent i updates its state according to

xi(1]) = Aixi(1) + (1 = A)x(t);

Agent i enters sleep mode;

algorithm for solving the consensus problem, which was
studied in [2].

B. The set of compact intervals

Let X be the family of closed intervals, that is X =
{[a,b] | —o0 <a < b <oo}. For x; =[a;,b;], x; =[aj,b;] and
A €[0,1], we define a mapping v by y(x;,x;,4) = [da; + (1 -
Aa;j, Ab;+(1-A)b;] and use as metric the Hausdorff distance
given by d(x;,x;) = max{|a; — ajl,|b; — b;l}. Then, as shown
in [22], (X,d,y) is a convex metric space. For this convex
metric space, the randomized gossip consensus algorithm is
given bellow.

C. The set of discrete random variables

In this section we apply our algorithm on a particular
convex metric space that allows us the obtain a probabilistic
algorithm for reaching consensus on discrete sets.

Let S ={sy,52,..., 5} be a finite and countable set of real
numbers and let (2,7 ,%) be a probability space. We denote
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Algorithm 2: Randomized gossip algorithm on a set of
compact intervals
Input: x;(0), A;, p;;
for each counting instant t; of N; do
Agent i enters update mode and picks a neighbor j
with probability p; ; ;
Agent i updates its state according to

xi(t]) = [Aiai(t;) + (1 = Apaj(t), ibi(t) + (1= )b (1)];

Agent i enters sleep mode;

by X the space of discrete measurable functions (random
variable) on (Q,%,%P) with values in §.
We introduce the operator d : X X X — R, defined as

d(X,Y) = Ep[p(X,Y)], (22)

where p: R xR — {0, 1} is the discrete metric, i.e.

1 x#y

p(x,y)={ 0 x=y

and the expectation is taken with respect to the measure P.
It can be readily shown that the above mapping d(-,-) is a
metric on X and therefore (X,d) is a metric space.

Let v € {1,2} be an independent random variable defined
on the probability space (2,7 ,%), with probability mass
function Pr(y=1)=A and Pr(y=2)=1-A4, where 1€[0,1].
We define the mapping y: XX X x[0,1] = X given by

W(X],Xz,/l) = ]lh,=1}X] +]1{y:2}X2,VX],X2 € X,/l € [0, 1]
(23)

Proposition 7.1 ([8]): The mapping y is a convex struc-
ture on X.
From the above proposition it follows that (X,d,y) is a
convex metric space. For this particular convex metric space
the randomized consensus algorithm is summarized in what
follows.

Algorithm 3: Randomized gossip algorithm on count-
able, finite sets

Input: x;(0), A;, p;;

for each counting instant t; of N; do
Agent i enters update mode and picks a neighbor j
with probability p; ; ;
Agent i updates its state according to

+_ ) xi)
-xi(ti ) - { xj(tl)

Agent i enters sleep mode;

with probability A;
with probability 1—4;

VIII. CoNCLUSIONS

In this paper we analyzed the convergence properties of a
generalized randomized gossip algorithm acting on convex
metric spaces. We gave convergence results in almost sure

and ' mean sense for the distances between the states of the
agents. Under specific assumptions on the communication
topology, we computed explicitly estimates of the rate of con-
vergence for the first and second moments of the distances
between the agents. Additionally, we introduced instances of
the generalized gossip algorithm for three particular convex
metric spaces.
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