
 

Abstract-Securing group communications in resource 
constrained, infrastructure-less environments such as Mobile Ad 
Hoc Networks (MANETs) has become one of the most challenging 
research directions in the areas of wireless network security. 
MANETs are emerging as the desired environment for an 
increasing number of commercial and military applications, 
addressing also an increasing number of users. Security on the 
other hand, is an indispensable requirement of modern life for 
such applications. The inherent limitations of MANETs impose 
major difficulties in establishing a suitable secure group 
communications framework. This is even more so for the 
operation of Key Agreement (KA), under which all parties 
contribute equally to the group key. The logical design of efficient 
KA protocols has been the main focus of the related research. 
Such a consideration however, gives only a partial account on the 
actual performance of a KA protocol in a multi-hop network as 
protocols have been evaluated only in terms of the key related 
messaging in isolation from network functions that interact with 
the logical scheme (i.e. routing). In recent work, we contributed 
towards the latter by efficiently extending a number of Diffie-
Hellman group KA protocols in wireless multi hop ad hoc 
networks. In this work, we are extending a scheme that was left 
out in our previous work: Hypercube. Through analysis and 
simulations we demonstrate the superiority of the new, enriched 
H-Cube that takes into account the underlying routing by the use 
of a topologically aware communications schedule. 

I. INTRODUCTION 

A MANET is a collection of wireless mobile nodes, 
communicating among themselves over possibly multi-hop 
paths, without the help of any infrastructure such as base 

stations or access points. As the development of multicast 
services such as secure conferencing, visual broadcasts, 
military command and control grows, research on security for 
wireless multicasting becomes increasingly important. The role 
of key management (KM) is to ensure that only valid members 
have access to a valid group key at any time. The operation of 
Key Agreement (KA) is a subset of the broad KM functionality 
and imposes that all participants contribute almost equally to 
the group key establishment, by interacting among themselves 
in ways designated by the specific protocol. Compared to other 
tasks classified under KM, KA operates on an inherently more 
complicated communication regulation mechanism. MANETs 
constitute the major challenge for the design of suitable KM 
schemes, with even more severe impact on KA. We are dealing 
with dynamic, infrastructure-less networks of limited 
bandwidth, unreliable channels where topology is changing 
fast. Connections are temporary and unreliable. These 
constraints turn most of the existing protocols inefficient in 
MANETs. Along with the continuous quest for the design of 
more efficient schemes, the need for the new KA schemes to 
handle successfully network dynamics with low impact is now 

equally important. Upon failures or disruptions, it is often the 
case that the group key establishment must start over. 
Whenever this event occurs, a significant amount of relays get 
involved in the exchange of large messages, and considerable 
delay burdens the network. The overall protocol performance 
degrades even more because of the indirect impact of routing 
on additional network layers (i.e. QoS deteriorates due to more 
collisions at the MAC layer, bandwidth usage, resources 
consumption increase undesirably). For all these reasons, 
reducing the combined costs resulting from routing and 
communications becomes essential if we want to apply more 
sophisticated KA schemes on MANETs. The logical design 
and analysis of efficient KA protocols has been the main focus 
of related research to-date. Such a consideration however, gives 
only a partial account on the feasibility and actual performance 
of a KA protocol in a wire-less multi-hop network. This is so 
because the evaluation of protocols is conducted via a logical 
network abstraction in such a way that essential inseparable 
operations, such as the underlying routing, are left out.  
   In [22], we contributed towards efficiently extending a 
number of KA protocols on wireless multi-hop ad hoc 
networks (GDH.1-2, ING), and measuring their actual 
performance over these networks. Initially, we assumed a 
physical group member graph (each edge is a physical link). 
We extended the studied protocols by allowing the formation 
of their communication schedules with respect to routing. The 
original versions do not exploit members’ topological 
proximity. A pre-agreed schedule is used, based on members’ 
attributes, like their IDs. After extending each KA protocol 
blindly without topological considerations, we observed that 
the routing structure of each protocol posed a different 
optimization problem (usually NP-complete) for every metric. 
Given that, we focused on providing efficient approximations 
that greatly improved the performance of the schemes, under 
the assumption of a physical graph. The work of [22] is 
extended in [25], where we address far more generic scenarios: 
now the group member graph represents a logical topology (i.e. 
each edge is a logical link, bounded from the number of hops 
between two vertices provided by the routing). Our new 
heuristics achieve now better approximations of the metric 
functions to optimize. In this work we extend [25] to include 
Hypercube, as it requires different manipulation from the ones 
extended so far. 
Section 2 gives an overview of related work on KA and 

section 3 describes the original H-Cube. Section 4 gives an 
outline of our previous and current work, network model and 
assumptions. In section 5 we provide a detailed description of 
our new algorithms and in 6 we present the analysis of our 
auxiliary framework. In section 7 we present our simulations 
set-up and results. In section 8 we conclude the paper. 
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II. RELATED WORK 

   Proposals related to secure group KA protocols abound in the 
literature, and can be usually found under the broad category of 
contributory schemes. Most of them correspond to a logical 
consideration in terms of design, or address wire-line networks 
and cannot operate as such in MANETs.  
  Becker et al. [1], derived lower bounds for contributory key 
generation systems for the gossip problem and proved them 
realistic for Diffie-Hellman (DH) based protocols. They used 
the basic DH distribution [3] extended to groups from the work 
of Steiner et al. [2], where three new protocols are presented: 
GDH.1-2-3. Ingemarsson et al. [4] presented another efficient 
DH-based KA scheme, ING, logically implemented on a ring 
topology. Burmester et al. [5] introduced a new DH protocol, 
denoted as BD, while Kim et al. [7] introduced a hybrid DH 
scheme: TGDH. It is an efficient protocol that blends binary 
key trees with DH key exchanges. Becker in [1], introduced 
Hypercube, that requires the minimum number of rounds. He 
also introduced Octopus that requires minimum number 
messages and derived 2d-Octopus that combined Octopus with 
Hypercube to a very efficient scheme that works for arbitrary 
number of nodes. Related work can be found in [6, 8, 9]. 
 There exist some more recent proposals of KA for wireless ad-
hoc networks. Even these, do not seem to scale well or handle 
successfully the network dynamics [14-19]. Amir et al. [12, 
13], focus on robust KA, and attempt to make GDH protocols 
fault-tolerant to asynchronous network events. Their scheme is 
designed mainly for the Internet, and requires an underlying 
reliable group communication service and message ordering to 
guarantee the preservation of virtual semantics. In [21], 
Octopus protocols for robust group communications in 
MANETs are proposed. The focus is on their logical 
evaluation, in isolation from interacting network functions. In 
[22] and [25], we study the extension of certain KA protocols 
(GDH.1-2, ING) over MANETs. We estimate their combined 
routing-communication costs and then improve the metrics of 
interest applying a new communications schedule on each 
protocol, subject to the underlying routing. We distinguished 
two cases: the group members graph represents a physical 
topology in [22], and a logical topology in [25].   

III. ORIGINAL HYPERCUBE SCHEME (OVERVIEW) 
Notation_1: B(x) = ax is the blinding (modular exponentiation 
ME under base a) of value x and ϕ (x) = x mod n. 

Although the protocol is very well documented in [1, 8], we 
provide a brief description of the schemes for completeness. 

Hypercube (H-cube): 2d parties agree upon a key within d 
simple rounds performing pair-wise Diffie-Hellman Key 
Exchanges (DHKEs) on the edges of a logical d-dimensional 
cube. Every party is involved in exactly one DHKE per round. 
Each party uses the intermediate secret key Ki-1 generated at the 
end of its DHKE in round (i-1), to compute the intermediate 
secret key Ki for round i: each party processes Ki-1 and sends its 
peer in the clear the value B(ϕ (Ki-1)). The 2d parties are 
identified on the d-dimensional space GF(2)d and a basis b1,…, 
bd ∈GF(2)d is selected to be used for the direction of 
communications per round. In every round, the parties 
communicate on a maximum number of parallel edges (round i, 

direction bi). Members that acquire a common key from the 
previous round use the same “logical” direction of 
communications in the following round.  
1st round: Every member Mi generates a random number Ni and 
performs a DHKE with member Mk, where i, k∈GF(2)d, for 
example k=i ⊕ 2j-1, using values Ni and Nk respectively.  
jth round: Every member Mi does a DHKE with member Mk, 
where k=i ⊕ 2j-1, where both members use the value generated 
in round i-1 as the secret value for the key establishment.  

 

 
 

 
Fig 1.a: Hypercube with d=3  

IV. NETWORK MODEL, SPECIFICATIONS AND REQUIREMENTS 

In this section we introduce our extensions to H-cube over 
multi-hop ad hoc networks when the group member graph 
represents a logical topology. Each edge is a logical link and its 
weight is bounded by the number of hops between two edges, 
provided by the routing. Intermediate relays are not necessarily 
group members. We impose that two nodes that are within each 
other’s radio range have distance of 1-hop. Hence, any direct 
link has weight 1. The prefixes “nt” and “wt” abbreviate the 
extension of KA schemes on a wireless multi-hop network with 
“no topology” and “with topology” considerations respectively. 

Notation_2: Let n be the number of members in the secure 
group, m the number of network nodes (size S), D the diameter 
diam(G) of the network graph G; that is, the max number of 
hops between a pair of nodes in V. Let R (Ni, Ni+1) = Ri,i+1  be 
the number of hops in the path between members Ni and Ni+1. 
Let K be the bit size of an element in the algebraic group used 
(where the decision DH problem is assumed hard). 

A. Existing Work, Approach, Requirements and Objectives 

 The performance of H-cube on a logical plane is known and 
can be found in [1, 8, 19]. In [22] we re-evaluated it, executing 
it blindly on a multi-hop network, where multi-path routing is 
required for group members to communicate, and where not all 
members can be directly reached via single broadcast. We ran 
it on this framework using a communication schedule based 
merely on arbitrary member IDs. This nt approach may lead in 
overwhelming routing, high communication cost, as seen from 
Table I of our relevant results. Under the worst case, the 
resulting group member graph becomes bipartite with links of 
D hops, while under the best case, the physical graph is 
optimized w.r.t. the underlying routing. 
   TABLE 1.  H-CUBE PERFORMANCE  

 Logical Lt Logical CCost nt-Lt nt-CCost 
HCube log2n nlog2n Dlog2n nDlog2n 

Table 1: Performance of HCube: (a) over logical networks, (b) nt-extension 
over multi-hop ad hoc networks under the worst case scenario, 

   Next, we integrate the underlying routing into the design by 
the definition of a new wt communication schedule that 
improves the metrics of bandwidth and latency for the logical 
member graph representation. We assume that each message 
from a group member is reliably and timely received by all 
neighbors. Our scheme inherits the security properties of its 

A B

C D

E F

HG

A B

C D

E F

HG

237

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 5, 2009 at 13:35 from IEEE Xplore.  Restrictions apply. 



 

ancestor. Our main objective is to meet efficiency requirements 
for the group key establishment during the initial state of key 
generation. We assume that routing establishes end to end 
paths, avoiding intermediate link failures and did not consider 
dynamic cases (i.e. link failure, mobility) under which the 
network could be partitioned. Under the nt schedule, members’ 
placement and the routes formed are random. This arbitrary 
factor that emerges when we merge the key generation blindly 
with the underlying routing is what we try to capture, model, 
and quantify with our analysis. We conclude that H-cube poses 
two different optimization problems as its routing structure 
defines a specific optimization function for each of the two 
metrics of latency (Lt) and combined communication cost 
(CCost). In [22] we defined these metrics (scaled down by K) 
and in this work we focus on minimizing them:  

CCost = 1
1 1

2

, ( 2 )j

dd

i i
j i

R ϕ −
=

⊕
=
∑ ∑ (1),          

Lt  = max i{
1

1, ( 2 )j

d

j
i i

R ϕ −
=

⊕∑ }  (2),     

We see that the solutions to the metrics that correspond to H-
cube are mapped to an NP-complete Traveling Salesman 
Problem (TSP) version with a number of constraints. These 
constraints diversify the solution to H-cube metrics from 
solutions that correspond to the rest of KA protocols. Finding 
approximations of the optimal solutions for the latter metrics is 
the only feasible way to improve the protocols. 

V. HCUBE PHYSICAL MEMBER GRAPH: NOVEL HEURISTICS 

As shown in [22], we created an auxiliary framework that 
includes the generation of a tree that spans all n members of the 
secure group, to approximate the simple TSP. This spanning 
tree (ST) has the following property by definition of the 
associated network graph G: the weight of any link that directly 
connects any two tree members is 1. In this case, the ST is in 
fact a minimum ST (MST). This equivalence allows us to use 
approximations based on the existence of an MST over the 
group members. We simulate Hamiltonian paths and cycles, by 
just performing a full walk of the rooted ST. Any of the well-
known tree visits traverses every edge exactly twice, resulting 
in a cost twice the number of tree members. Using these 
approximations to set up a td schedule, the performance of all 
the studied KA schemes improves by at least a factor of D or n.  

VI. LOGICAL HCUBE MEMBER GRAPH – NOVEL HEURISTICS 
  A. Logical Group Member Graph case: Approach.   

  We now allow non-member relays as well in the routing path 
between two group members. We assume a generic Dijkstra 
routing protocol that finds the shortest paths between members. 
Through the underlying routing, each member obtains the 
routing path(s) to its closest neighbor(s). We dynamically 
determine the proximity with respect to the number of hops 
between two members. If no neighbors are found in the 
proximity, the search diameter (TTL) is gradually expanded 
until a pre-agreed number of members are found. Assuming 
that a direct link between two network nodes has weight 1, the 
virtual link between two virtually connected members may take 
any value x ≤ Th (TTL). Hence, we allow the existence of 
arbitrary weights between two “connected” group members.   

In [22] we generated a ST formed strictly by the n group 
members. The value of any link weight was always 1, and an 
MST would coincide with any ST. Implementing a full walk 
over an MST guarantees solutions that are better or equal than 
twice the optimal. The optimal in that case was the size of the 
secure group n, which was indeed what we were after. 
However, in the current setting, the same approximations 
would provide us with solutions that are better or equal than 
twice the size of the virtual ST, or MST with arbitrary weights, 
which could be the size of the whole network in the worst case. 
Moreover, the edge weights between two virtually connected 
tree members depend on the size of the minimum path shared 
which is most likely greater than 1, unless there is a direct link 
between two members. In this case, a ST is no longer 
equivalent to an MST. So, in our new setting we will need to 
compute an MST and not just any ST. In fact, we will need to 
find the MST of all MSTs originating from every single group 
member, if we want to apply an equivalent to our previous 
method. Using a core framework that computes the MSTs from 
all group members is an over-kill. This factor discourages us 
from applying the previous techniques to our new setting.  
 Next, we introduce a novel algorithm that redefines a new 
communication schedule and consists of several heuristics. 
Only one of these heuristics, this designed for the MST 
generation, has been already introduced in [25]. Although it is 
described there in detail, we will provide a brief overview in 
VI.B for the sake of completion. All other heuristics are 
introduced here for the first time, and we are going to provide 
detailed descriptions and analysis in section VII. 

B. Auxiliary Scheme:  MST Generation [25] 

  We generate a MST starting from any member, by applying a 
distributed version of Prim’s method [24], which is based on a 
greedy strategy, captured by a generic algorithm which grows 
the MST one edge at a time. To implement the algorithm as 
such, all members must have global information of the link 
weights of all other members. We adjust the algorithm to our 
distributed environment, by having each member that joins the 
current ST instance report its candidate links to the root. At 
each step, the root determines the next member J to join by 
examining all unused candidate links of all members that 
belong to the current tree. Then the root sends a Join Flag to 
member J, then J joins, etc. The improved running time of the 
algorithm is shown to be: Lt1 = O(E + Vlog2V).  

C. MST Manipulation [25] 

Pre-order MST traversal: The CCost expression for GDH.1-2 
is minimized if inequality 1, 2, 1 1,2....n n n nR R R− − −≤ ≤ ≤ holds. 
In GDH.1-2, the messages communicated successively in the 
up-flow stage (parameter i) is incremental. Hence, the routing 
paths of successive members should be selected to be non-
increasing. If we fix the GDH.1 backward schedule first, so 
that the first edge selected in the MST is assigned to relay the 
maximum number of messages (n-1), the second edge to relay 
(n-2) messages, etc., the “non-incremental” requirement is 
satisfied. We want to identify the appropriate traversal method 
to visit all vertices of a ST and establish the GDH.1 backward 
schedule first. By examining the common traversal methods, 
we select the pre-order tree walk. An intuitive reason for this is 
that a pre-order tree walk visits the root before the values in 
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either sub-tree. So, it uses a greedy approach by adding the 
“best nodes” first, the earliest possible in the backward 
schedule. By visiting the vertices indicated by the pre-order 
walk backwards, we obtain the forward GDH.1 schedule.  

Heuristic Overview: We start with the following observation: if 
the generated MST was in fact a chain, then the desired 
Hamiltonian path would be directly provided and would result 
in the same cost as this of the MST. The more the resulting 
MST resembles a single chain, the less the cost of the resulting 
Hamiltonian path is. So, we manipulate the MST using the 
following transformation: During the formation of the MST the 
two longest distinct paths from all group members to the root 
are located. The group member that marks the end of the 
longest path becomes now the new root of the transformed 
MST, and the associations between parents and offspring in the 
existing MST are sequentially altered to accommodate the 
transformed tree. This process results in unfolding the MST to 
its longest path or else in extracting the largest “path” from the 
MST (Fig. 2(b), 2(c)). Next, each member that belongs to the 
new ST, recursively rearranges its offspring in the order of 
decreasing distances from their tree leaves (Fig. 2(d)). 
Obviously, the backbone of the tree, which is the previously 
unfolded path, is accessed first by a pre-order tree traversal. So, 
if we generate a Hamiltonian path from this ST, all members 
that belong to the “unfolded” path will be visited only once. 
This modification results in the reduction in the routing 
overhead for the Hamiltonian path formed. Among siblings, the 
following invariant is true: the higher the newly assigned id of 
a sibling (parameter i), the fewer hops (relays) a message 
originating from this sibling will go through until the 
destination is reached.  
 
 
 
 
 
Fig 2: Manipulation of a MST: Transformation by unfolding it to the longest 
path and recursive re-ordering of each member’s offspring. 
Fig 2(a): Initial MST Prim. Fig 2(b): Identification of the largest path to unfold 
 
 
 
 
 
 
 
Fig 2(c): MST unfolded to its largest path 
Fig 2(d): Re-arrange offspring from smaller to largest path 

Notation_3: Let Rmax = maxi,j(Rj, i) be the longest virtual link 
between any two virtually connected members.  

VII. WT-ADAPTATION OF H-CUBE ON LOGICAL MEMBER GRAPH 

In this section, we introduce a new heuristic for generating an 
efficient wt-H-cube. We assume that a starting point is pre-
agreed, and as the network operation progresses, the leader 
election process provides members with new and auxiliary 
starting points. The knowledge of the starting point is 
propagated to the rest of group members via a simple broadcast 
tree. We provide a detailed description of the algorithm that 
generates the core framework and is used for the assignment of 
session ids to the group members. 

   We will identify the 2d parties on the d-dimensional space 
GF(2)d by selecting such a basis b1,…, bd ∈GF(2)d for the 
direction of communications per round, that results in 
optimizing the desired metrics of interest CCost, RCost, Lt. The 
previous method (MST manipulation) does not apply to this 
case because the group members communicate in pairs. If we 
used an MST, we would also need to define a deterministic 
method for extracting pairs out of an MST, which is not 
straight-forward. Furthermore, the selection of peers for the 1st 
H-cube round and the selection of a unique basis in GF(2)d, 
limits the degrees of freedom for the selection of peers for the 
subsequent rounds. So, similar solutions for the subsequent 
rounds may not apply in most cases. What is more, the initial 
selection of peers, even though optimal for the current round, 
may prove to be very unfortunate for the overhead incurred, 
after the end of all d rounds. Therefore, the use of MSTs as a 
core framework is highly unlikely to produce efficient H-cube 
schedules. This solution is abandoned, and we are looking for 
more lightweight frameworks that can potentially improve the 
metrics of interest even further. It is clear how complex the 
problem is. The optimal solution can be found with the 
exhausting method of trial and error, but this is out of the 
question, and in particular for the environment of interest. 

   A. Overview 
  The goal of our algorithm is to determine the most efficient 
pairing for the 1st round. In other words, the peers selected for 
the 1st round must considerably improve the metrics of interest. 
Towards this end, we use a greedy strategy under which each 
member makes the best matching selection possible (1st Pass) 
and then a “corrective operation” is initiated (2nd Pass) that 
goes around “dead-ends” and ensures that all members obtain a 
peer. We virtually place each member of a 1st round pair in one 
of the two columns: left or right. The selection of these peers is 
close to the optimal for the given round, as we will show next, 
irrespectively of its impact to the subsequent rounds. However, 
we keep the message exchanges between the peers of this 
round active in every subsequent round, by doing the following 
modification to the original H-cube: only half of the initial n 
group members, those either in the left or in the right column, 
participate actively to all subsequent rounds, as designated by 
the original scheme. The members that belong to the non-active 
column become passive recipients in the subsequent rounds. 
Without loss of generality, we assume that the members in the 
left column are the active participants and those in the right 
column become the passive ones. The active members are 
assigned new sequential session ids ∈  [0, 2

n -1] after the 2nd 
Pass. Before the start of the following rounds, the active 
members decide on a unique basis, and execute H-cube for the 
next (d-1) rounds. In our case, we select a basis that designates 
the new pairs at any given round j, where 0 ≤ j ≤ (d-2), 
according to the following formula: in round j, party i interacts 
with party i ⊕ 2j-1. In each such round, each active member 
communicates the newly calculated blinded value to its 
corresponding passive peer (member of right column). So, all 
group members participate indirectly to all rounds, since all 
receive the intended KM data, and process it as indicated by H-
cube. In the end, all members obtain the same group key.  
  Given the previous observation, we can apply our algorithm 
on every round and not just the first one. Then, from the active 
parties of round j, only half remain active during round (j+1) 
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and the other half become passive. Our greedy algorithm of 
two passes is applied once again to the currently active 
members, to determine the lowest weight pairings among them. 
So, instead of using a pre-agreed common basis for the 
direction of communications, we dynamically construct such a 
basis, based on the topological proximity of the active group 
members. However, this approach only works, if we de-
activate half of the active participants of the current round, for 
all subsequent rounds. However, applying the heuristic as many 
times as the total number of H-cube rounds is an over-kill. 
Also, the resulting protocol is quite different from H-cube in 
nature, with features that may not be desirable for our network. 
An efficient and flexible solution is to apply the heuristic only 
for the first few R rounds. Threshold R can be dynamically set.  
  Given these considerations, we conduct the following analysis 
by setting R = 1, to limit the overhead from the backbone 
framework. We will show that H-cube performance improves 
substantially by this modification alone. Having defined our 
generic algorithm, it is trivial to change R and measure the 
improvement in the protocol. In this work, we find it sufficient 
to present only the results collected from R = 1, since: (a) the 
results are very satisfactory and the overhead of the auxiliary 
framework is low, (b) by increasing R the overhead of the H-
cube application is decreased while this of the backbone 
framework increases, and (c) by increasing R the H-cube nature 
is shifted from totally distributed to centralized.  

1st Pass (Greedy Approach):  
  This process resembles the construction of an MST in that it 
follows a greedy strategy as well. The main difference is that 
only one member or one pair of members (that already belong 
to the structure being generated) is allowed to select the next 
candidate that will join the structure generated during the 1st 
Pass. Ideally, in the case that no corrective process is required 
(2nd Pass) the outcome of the 1st Pass is the following: a peer 
for every member is designated, with respect to the proximity 
among nodes. We denote the outcome of the 1st Pass as Set1. 
Towards the construction of Set1, a single token is circulated 
among members, and at each step, the token is passed to one 
member only. The details of the process follow: 
  Initially, the starting point is handed the token for the first 
time. The first time that a member is handed the token, will 
attempt to make the best selection available and find the closest 
in terms of number of hops peer. Assume that member A 
currently possesses the token. If there is such a peer F 
available, then members A and F will form a valid pair for the 
process, schematically represented with a horizontal line in the 
virtual sketch of Set1. If A is the starting point, there is always 
a peer matched to it, since all selections are available at this 
point, and also every member is “connected” to a number of 
members in a “connected” graph. If A is not the starting point, 
then there is a chance that its nearest neighbors have been 
reserved by other members, and A cannot find any peer 
available. We distinguish two cases: 
Case (a): A finds peer F available: A enlists F as its peer and 
together form a horizontal line on the virtual sketch of Set1 
(Fig. 3). Now both A and F merge their proximity lists (those 
that contain the members in their proximity) and arrange their 
elements in increasing order of hop distance. The exchange of 
merged lists has size 2D× KS, where D is the upper bound of 
elements in a proximity list, and KS is the bit size of any of the 

control messages. Member A still holds the token, and will give 
it to the first member from the merged and ordered proximity 
list that is still available (i.e. not already a part of Set1). Hence, 
A sends a Join control Flag to each member in the merged list 
sequentially, until it finds the first available member (say H), in 
which case it receives an Accept control Flag. Member H 
broadcasts this Accept control Flag and information about its 
new peer to all neighbors in its own proximity list. This way, 
neighbors know the status of H beforehand and do not need to 
query it when they become initiators. Members that are 
unavailable respond with a Refuse control Flag.  
   Then, member A provides the token to H. Member H 
becomes the initiator of a similar process, in order to find a 
peer of its own, and so on and so forth. If however, H does not 
find a peer, it gives back the token to its ancestor, member A. H 
becomes “grounded”, and it is represented via a “vertical line” 
on the sketch of Set1 (Fig. 3). Member A continues scanning its 
merged list and holds the token until it finds another available 
member (say member C) that will produce a peer (say member 
G). Schematically, member C is placed at the end of a vertical 
link whose other end starts from the middle of the horizontal 
link formed by members A and F. Members C and G form a 
horizontal link. Any successor of the merged lists of C and G 
(grounded or paired) will be placed on a vertical link whose 
other end starts from the middle of the horizontal link formed 
by C and G. If the merged list is exhausted and member A has 
not found a successor to hand the token to, then it recursively 
gives the token to its predecessor. The same method is 
followed until all members are visited. As long as the members 
are connected as defined at the beginning, this method 
produces no deadlocks, i.e. all members are visited before the 
process ends. Assume that S1 is the subset of members that 
have been visited during the 1st Pass, and S2 is the subset of 
members that could not be visited during the 1st Pass. At least 
one member in S2 must have a link to one or more members in 
S1 otherwise the graph is not connected. Let this member be J. 
Now, all members in S1 are part of either a horizontal line or a 
vertical one. Clearly, no members that belong to a vertical line 
have a link to member J, otherwise such a member could form 
a pair with J on a horizontal line. The members that hold the 
token exhaust their merged lists until they find a successor. If at 
some point the process stalls, in the sense that no successors 
can be found, the token recursively goes up the whole structure 
(Set1). At each step, all elements in the associated merged lists 
are scanned and the neighbors of all members that belong to 
Set1 are examined. Then, the link to J is eventually found, and 
J joins S1 and is also handed the token for the first time. So, all 
members are eventually visited. 
Case (b): Member A does not find any peer available: As stated 
in the previous case, A provides the token to its predecessor 
member, which follows the same process and recursively 
provides the token to its own predecessor under case (b) or to a 
successor under case (a). The predecessor has already found its 
peer, and consequently, it looks through its merged list to find 
the next potential element to provide the token to. The process 
ends when all members have been visited, and the token 
recursively goes back to the starting node.  

2nd Pass (Corrective Operation): 
 The purpose of the 2nd pass is to locally re-arrange the 
grounded members and the pairs established during the 1st Pass 
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so that all members obtain a peer at the end of this process. 
This time we access the structure (Set1) obtained after the end 
of the 1st Pass from down-up and we build the final H-cube 
structure, denoted as Set2. We start with the horizontal links 
that have the following property: all members vertically 
attached to them (if any) are grounded. We denote the 
horizontal links with this property as leaf links. We start by re-
arranging all associated members with the leaf horizontal links. 
Then, we go up one predecessor horizontal line at each step, 
until we reach the top, i.e. the horizontal link formed by the 
starting point. All paths starting from all leaf horizontal links 
eventually end up to the starting point. We denote the members 
that have been given the token and have also designated a peer 
for themselves during the 1st Pass as initiators. So, we start 
with leaf initiators and we go up one initiator at each step until 
we reach the starting point. The initiator is always paired and 
represented as a vertex on a horizontal link. During this pass 
however, we re-arrange the initiator, its peer, and all their 
vertical links, when they become ready. After this step, the 
initiator may end up either without peer or with a different 
peer.  
   Each member that lies at the end of a vertical link (initiator or 
grounded) uses two control flags: the ActPass Flag and the 
Arranged Flag. If for a member ActPass = 1, then the member 
is active at this point during the 2nd Pass process, and actively 
participates to this step of the algorithm that involves it. If 
ActPass = 0, then the member becomes inactive for all 
subsequent steps of the process. When ActPass is switched to 0 
it remains 0 throughout the process. If Arranged = 1, then the 
status of this member is determined for the current step of the 
algorithm. The status of a member is determined by the value 
of ActPass flag. If Arranged =1 and ActPass = 1, then the 
member participates in the step that involves it actively, 
because no peer has been assigned to it. If Arranged =1 and 
ActPass = 0, then the member has been assigned a permanent 
peer, and consequently it is not active for the step that involves 
it and any subsequent step. In this case, the status of a member 
does not depend on the outcome of the execution or previous 
steps of the algorithm. If however Arranged = 0, then the status 
of the ActPass flag is unknown. Then, the member must wait 
for the outcome of the step that involves the initiator of the 
previous step, virtually placed below its own initiator. For 
example, initially, all grounded members participate in the 
process with the following values in their control flags: 
ActPass = 1, Arranged = 1. This is because the status of the 
grounded members is known – they have no peers assigned – 
and they will actively participate in the step that involves them. 
The matched peers of the initiators from the 1st Pass are also 
going to participate in the step that involves them, and they set 
their flags to the same values as these of the grounded 
members. However, the status of the initiators (the matched 
members that are represented as vertices on the left of the 
horizontal links) is unknown. Initially, they participate in the 
step that involves them with the following values in their 
control flags: ActPass = 1, Arranged = 0. After getting 
feedback from initiators that lie below them, they change the 
values of their control flags to: ActPass = {0, 1}, and Arranged 
= 1. We now give a detailed description of a single step of the 
2nd Pass algorithm: 
  At any step of the 2nd Pass, every initiator monitors its own 
horizontal line until all vertices placed at the other end of the 

vertical links have set their Arranged flag to 1. Then, the status 
of all associated members (grounded, initiators) is known and 
the process that will determine the status of the current initiator 
can now be activated. The initiator scans all these members to 
see how many have set the value of the control flag ActPass to 
1. Those with ActPass=0, have obtained permanent peers from 
the previous steps and do not participate to the process any 
longer. So, they can be ignored by the current initiator.  
(a) If the number of members with ActPass =1 is odd, then the 
current initiator will obtain a permanent peer in this round, and 
will become inactive for the remaining steps. So, the initiator 
can set its own control flags (previously set as follows: ActPass 
=1, Arranged=0) to the following: ActPass=0, Arranged =1.  
(b) If the number of members with ActPass =1 is even, the 
current initiator will not obtain a permanent peer in this round, 
and will become active for the remaining steps. Hence, the 
initiator can set its own control flags (previously set as follows: 
ActPass =1, Arranged = 0) to the following values: ActPass = 
1, Arranged = 1. In this case, the initiator gives priority to all 
the rest of members in its vicinity to obtain peers. This can be 
done, since the number of these members is even. The peer that 
was previously matched to this initiator will now be matched to 
one of the members that lie on the vertical links.  
 The current initiator, say A, determines the matching of its 
associated members according to the following method: first, it 
matches its ex-peer, say B, with its closest neighbor based on 
B’s proximity list. Then, if case (a) holds, it matches itself with 
the closest neighbor available, from its own or the merged 
ordered proximity list. It matches the vertices (members) on the 
vertical links, with the following algorithm:  
   Member A scans its own proximity list, and the first two 
elements available are always matched together. Then, the next 
two remaining elements are matched together, and so on and so 
forth. Then, member A scans the proximity list of member B 
and matches the first two available elements every time, until 
all or all except the last elements (if the number of elements is 
odd) are exhausted. Finally, the two remaining elements on 
each of the two proximity lists of A and B, (if any) are matched 
together. The reason behind this is the following: the two 
elements that are matched together are always those that are 
available and have the minimum hop distance from their 
associated horizontal link. This means that they both have the 
minimum hop distance either from the initiator or from its ex-
peer (except for the last remaining pair). The idea is that these 
distances set up a threshold for the maximum distance between 
the newly matched members from the vertical links. This 
threshold is the min. possible compared to a different matching.  
   Now all members associated with a given initiator (and the 
associated horizontal link) are matched. Since the initiator 
signals its known status (ActPass, Arranged = 1) to the upper 
level, the initiator associated with the upper level is ready to 
perform exactly the same steps and accommodate all members 
associated with it, following exactly the same approach. At the 
end, all members are accommodated if the number of members 
is even. This is so because the process for any given level is not 
executed unless all associated levels below this are 
accommodated (i.e. all members in them are paired).  

    B. Hypercube Structure Manipulation 
  After the 2nd Pass ends, all members are matched in pairs. 
This would suffice if we were strictly interested in improving 
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the performance of the 1st H-cube round only. However, we 
still want to improve the overall performance of the protocol. 
The H-cube structure becomes equivalent to a ST if we map 
every pair of members to one tree node. In fact, that is what we 
do in reality, since in all subsequent rounds after the 1st, only 
one peer of every pair participates, hence we want to generate a 
communications schedule only for the members that are active 
after the 1st round. The other half (inactive after the 2nd round) 
have been accommodated for the remaining rounds: they 
remain recipients of the BKs computed by the active senders, 
during all rounds. Only these active members participate in H-
cube structure manipulation and obtain new IDs. The resulting 
H-cube structure does not only provide pairs for the 1st round, 
but connects all active members via a structure exactly similar 
to this of MST. We will use the previous methods for the MST 
manipulation to provide a schedule that improves its 
performance. The method is similar as before: we apply the 
MST manipulation to H-cube (fig.3). We unfold the structure 
to its longest path, recursively arrange the offspring of each 
node in this structure in decreasing order of hops, and perform 
a pre-order traversal of the transformed structure to assign the 
new ids to the active members. The improvement is similar to 
this of the previous schemes. As for the subsequent rounds, 
there is still improvement compared to an arbitrary assignment 
of ids, but the higher the rounds, the more uncertain this 
improvement becomes. In reality, the resulting values for these 
metrics may be much lower, since members may find paths of 
lower distances than these designated by the transformed 
structure.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Example of the formation of a H-cube structure from a network graph 
with arbitrary configuration of the group members: The 1st and 2nd pass are first 
executed on the network, and if the structure contains more than one path, MST 
manipulation is triggered. 
 
   C. Performance Analysis 
1st Pass: All subgroup members except for the peers of the 
initiators become initiators themselves and attempt to find a 
peer or a successor initiator. Let the number of subgroup 
members be n. The peers of initiators are denoted as x < 1

2 n. 
The Join flag is sent only from the initiators to the members in 
their proximity lists that are scanned. Members that accept the 
request to join broadcast their decision and make it known to 
their proximity lists. By making use of the multicast advantage, 
the Accept control flag packet is transmitted once to their 
proximity, but goes through all the virtual links reported in 

their proximity lists. Initiators may scan more than one 
member, in order to find one to join (because they are using the 
merged proximity lists, and cannot directly check the status of 
certain members). Hence, we assume that in average, an 
initiator scans half of the members reported in its proximity 
list. Members that get scanned respond by “Refuse” until one 
that accepts is found. The overhead incurred from the exchange 
of control flags and other data is computed as follows: 
Join Flag: sent by (n-x), received by 1

2 (n-x)D members at max. 

CCost (Join) <
2

1
( , )j

n x
D

i
m a x R i j

−

=
∑ × KS. 

Refuse Flag: transmitted at max. by 1
2 (n-x) D members. 

CCost (Refuse) <
( )

2 1
1

( ) m ax ( , )j

n x
D

i
R i j

−

=
−∑ ×KS. 

Accept Flag: broadcast by all members but the starting point. 

CCost (Accept) <
1

1
m ax ( , )j

n

i
R i jD

−

=
∑ ×KS. 

Exchange of Proximity Lists: The x pairs exchange and merge 
their proximity lists. Also, let PKS = D×KS denote the bit size 
of the packet that carries a member’s proximity list. Then:  
CCost (List Exchange LE) = 2×

1
m a x ( , )j

x

i
R i j

=
∑ ×PKS,   

Latency: Lt  <  
2

1
m ax ( , )j

D
x

i
R i j

=
∑ . 

Therefore, the total CCost due to 1st Pass becomes:  
CCost (1st Pass) = CCost (Join + Refuse + Accept + LE). 
CCost(1stPass) < [2×

2
1
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n x
D

i
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−

=
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1
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+ 1

1
m a x ( , )j

n
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 +2×
1

m a x ( , )j

x

i
D R i j

=
∑ ]×KS 

CCost (1stPass) < [D (2n+x-1) + (x-n)] ,max ( , )j i R i j ×KS . 
2nd Pass: Whenever the status of all members locally 
associated with one paired initiator becomes known, the 
initiator matches all members that are available in its merged 
proximity list. It individually notifies each member about its 
new peer. The merged lists may contain at maximum 2D 
elements. However, some of the elements are duplicates, or in 
practice each individual list contains less than D elements. To 
simplify the case, if we assume that each proximity list 
contains the same number of active members, then there are y = 

2
n
x < 2D active elements in each. Hence, each initiator notifies 

(y+1) members of their new peers. The status of an initiator 
becomes known, when all the members of all initiators that are 
“schematically” found below the given one, are 
accommodated. The overall latency of the 2nd Pass is defined 
by the longest path of initiators, from the starting point to any 
leaf initiator. We can now compute the metrics related to the 
2nd Pass algorithm: 

CCost(2ndPass)<
1

m ax ( , )j
i

x
y R i j

=
∑ PKS= 

21
m a x ( , )j

n
xi

x
R i j

=
∑ PKS< 2

n ×D× ,max ( , )j i R i j KS 

Lt (2nd Pass) = m a x Z 21
m ax ( , )j

n
xi

z
R i j

=
∑ , where z ≤ x. 
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MST Manipulation: Here, only half the members actively 
participate. The HCube structure replaces the MST in the 
previous heuristic and the overhead results from manipulating 
the structure similarly to an MST. We quote this overhead, 
which has been computed in [25], and adjust it to the current 
HCube MST framework (HMST):  

CCost (HCube_aux) = 2×Wgt(HMST)×KS , 

Lt (HCube_aux) = 2× m ax( )W gt P , where Pmax is the max. path 

in the unfolded HCube structure that consists of 1
2 n members.  

We now compute the overall overhead of the auxiliary scheme:  
CCost(aux) = CCost (1st + 2nd Pass)  + CCost (HCube_aux). 

CCost(aux)<[(D(2n+x-1)+(x-n)) ,m ax ( , )j i R i j + 

2
n D ,max ( , )j i R i j +2 1

2 n ,max ( , )i j R i j ]KS 

CCost (aux) < (3D +1)×n × ,m ax ( , )j i R i j ×KS. 

Lt (aux) = Lt (1st Pass) + Lt (2nd Pass) + Lt (HCube_aux). 

Lt(aux)<n*( 4
D
y +

2
1)* ,max ( , )i j R i j <O(n*O(1)) * ,max ( , )i j R i j  

   D. Simulations 
Simulations Set-Up: We compare the routing cost of wt vs. 
original HCube over ad hoc multi-hop networks. We use 
various topology graphs to generate the secure subgroups and 
analyze the performance of the heuristics. Our network graph 
represents a single cluster area where a single secure group is 
deployed. A number of nodes from this graph are randomly 
selected as group members. The group leader is randomly 
selected as well. At the end of the group “registration” period, 
the sponsor piggybacks the list of the legitimate members into 
the routing packets. As discussed earlier, we assume that 
generic Dijkstra routing finds the shortest paths between 
members. Through the underlying routing, each member 
obtains the routing path(s) to its closest neighbor(s). The 
proximity between two members is dynamically determined. 
  We assume that while the backbone framework is being 
formed, the relative placement of members and hence the 
proximity lists do not change significantly. Such a change 
could result in a different “optimal” solution, and the one 
currently generated would become outdated. It is expected that 
the higher the nodes’ mobility, the worse the performance of 
our algorithm is. Even though the wt-version is more sensitive 
to mobility and may be operating sub-optimally, it still 
outperforms the original. On the other hand, the backbone can 
be periodically reconfigured to capture all dynamic changes, 
with frequency that depends on network dynamics, resources 
available, and our own requirements. For example, the 
auxiliary framework may be recalculated whenever protocol 
performance degrades to the median of the best and the average 
execution of the nt scheme. 
  For our evaluation, we generated various random graphs for a 
given input of the number of nodes n and the number of 
members m. For the same graph and the same input, we have 
varied the subgroup configuration, i.e., we have selected the n 
members in a random manner. For each graph of input <n, m> 
and for each subgroup configuration, we have evaluated the 
three metrics of interest (CCost, RCost, Lt) of the wt-versions 

vs. the nt-versions (original), and we have averaged the results 
for all random graphs with the same inputs <n, m>. We have 
tested the following cluster-subgroup scenarios:  
Cluster Size: [50 … 800],      Subgroup Size: [8,…64].  

Simulation Results: We illustrate some indicative results on 
CCost and RCost produced by the original HCube and its wt 
version, measured the total number of hops required for the 
protocol to successfully terminate. The following graphs reflect 
CCost of the wt-version vs. the existing under various scenarios 
of secure group and network size, scaled by a factor K. CCost 
and RCost are significantly reduced in all the scenarios 
captured. Indeed, in most cases the improvement ratio 
becomes: RCOMM = ( _ , , )

( , , )
C C ost IN G O pt n S

C C ost IN G n S
< 1

2 . In fact: 0.32 < 

RCOMM  < 0.7. To illustrate these with an example, for a 
subgroup of size 16, and a network of size 200, the average 
relays produced are 561 for HCube_Opt, and 1604 for HCube, 
and RCOMM = 0.35.  
  We verify that the costs of the wt auxiliary framework of the 
wt-version match our analytical results. Indeed, we re-call the 
expression that estimates the CCost (aux) metric. We assume 
that the maximum number of neighbors of each member is 
around 10-12, and set KS = 8. Also, we select max (Rj, i) = 8, 
and D = 16. Then, we obtain: CCost (aux) < 3200× |V|. By 
computing this expression for a group of 32 members we 
obtain: CCost (aux, V=32) < 102,400 bits. Indeed our 
simulations results verify that this upper bound holds, since 
some indicative values of CCost for group size n and network 
size S are the following: CCost (aux, n=32, S=200) = 98106 
bits,  CCost (aux, n =32, S = 300) = 100725 bits , CCost (aux, n 
= 32, S = 400) = 64136 bits. The same is the case with the rest 
of the simulated group sizes. CCost (aux) increases as the 
network size grows, until some threshold value is reached. 
Then, the metric starts decreasing. This happens because two 
members are “connected” until the hop distance between them 
reaches a certain threshold. After the threshold is exceeded, the 
members become disconnected. As the network size increases, 
the density of group members decreases, and naturally each 
member’s neighbors decrease. The less the neighbors of each 
node are, the lower the overhead for the auxiliary framework is. 
We also verify that the metrics associated with the auxiliary 
framework are kept low and add little to the overall overhead 
produced by the execution of wt-HCube. 

Communication Cost of HCube vs. HCubeOpt, 
for 16 members, 100 nodes 
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Communication Cost of HCube_Opt vs. HCube for 100 
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Figs 1, 2. CCost of HCubeOpt vs. HCube for: (1) for 100 different group 
configurations on a network of 100 nodes (100 different runs) for a group of 
size 16, (2) for 100 different group configurations on a network of 300 nodes 
(100 different runs) for a group of size 32. HCube_Opt results in substantially 
superior performance for all the different configurations, in the two scenarios 
illustrated (better than this achieved with the previous wt- schemes). 
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C o m m u n ic a t io n  C o s t  f o r  H C u b e O p t  v s .  
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Figs 3, 4. CCost of HCubeOpt vs. HCube w.r.t. the size of the group [16, 32, 
64] in a network of (a): [100, 200] nodes, (b): [200, 500] nodes. HCubeOpt 
reduces the overhead in half. The performance difference grows even bigger as 
both the size of the group and network grow. So, HCube_Opt not only presents 
superior performance, but scales much better as well. 

VIII. CONCLUSIONS  

   In this section, we contributed towards the design and 
analysis of more sophisticated approximation - optimization 
methods of the communication, routing, and latency functions 
(metrics) of the Hypercube key agreement protocol. We 
developed new heuristics for generating a novel topology-
aware communication schedule to be used by the protocol. The 
heuristics achieve significantly better approximations of the 
metrics we want to optimize. Our comparisons of the new 
topology oriented and the original Hypercube are done via 
simulations. The new protocols achieve a dramatic overhead 
reduction. We believe that there is scope for even more 
efficient topology oriented approaches and we consider 
efficient simulations of KA protocols over multi-hop ad hoc 
networks as an interesting open problem.  
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