

Abstract-Securing group communications in resource
constrained, infrastructure-less environments such as Mobile Ad
Hoc Networks (MANETs) has become one of the most challenging
research directions in the areas of wireless network security.
MANETs are emerging as the desired environment for an
increasing number of commercial and military applications,
addressing also an increasing number of users. Security on the
other hand, is an indispensable requirement of modern life for
such applications. The inherent limitations of MANETs impose
major difficulties in establishing a suitable secure group
communications framework. This is even more so for the
operation of Key Agreement (KA), under which all parties
contribute equally to the group key. The logical design of efficient
KA protocols has been the main focus of the related research.
Such a consideration however, gives only a partial account on the
actual performance of a KA protocol in a multi-hop network as
protocols have been evaluated only in terms of the key related
messaging in isolation from network functions that interact with
the logical scheme (i.e. routing). In recent work, we contributed
towards the latter by efficiently extending a number of Diffie-
Hellman group KA protocols in wireless multi hop ad hoc
networks. In this work, we are extending a scheme that was left
out in our previous work: Hypercube. Through analysis and
simulations we demonstrate the superiority of the new, enriched
H-Cube that takes into account the underlying routing by the use
of a topologically aware communications schedule.

I. INTRODUCTION

A MANET is a collection of wireless mobile nodes,
communicating among themselves over possibly multi-hop
paths, without the help of any infrastructure such as base

stations or access points. As the development of multicast
services such as secure conferencing, visual broadcasts,
military command and control grows, research on security for
wireless multicasting becomes increasingly important. The role
of key management (KM) is to ensure that only valid members
have access to a valid group key at any time. The operation of
Key Agreement (KA) is a subset of the broad KM functionality
and imposes that all participants contribute almost equally to
the group key establishment, by interacting among themselves
in ways designated by the specific protocol. Compared to other
tasks classified under KM, KA operates on an inherently more
complicated communication regulation mechanism. MANETs
constitute the major challenge for the design of suitable KM
schemes, with even more severe impact on KA. We are dealing
with dynamic, infrastructure-less networks of limited
bandwidth, unreliable channels where topology is changing
fast. Connections are temporary and unreliable. These
constraints turn most of the existing protocols inefficient in
MANETs. Along with the continuous quest for the design of
more efficient schemes, the need for the new KA schemes to
handle successfully network dynamics with low impact is now

equally important. Upon failures or disruptions, it is often the
case that the group key establishment must start over.
Whenever this event occurs, a significant amount of relays get
involved in the exchange of large messages, and considerable
delay burdens the network. The overall protocol performance
degrades even more because of the indirect impact of routing
on additional network layers (i.e. QoS deteriorates due to more
collisions at the MAC layer, bandwidth usage, resources
consumption increase undesirably). For all these reasons,
reducing the combined costs resulting from routing and
communications becomes essential if we want to apply more
sophisticated KA schemes on MANETs. The logical design
and analysis of efficient KA protocols has been the main focus
of related research to-date. Such a consideration however, gives
only a partial account on the feasibility and actual performance
of a KA protocol in a wire-less multi-hop network. This is so
because the evaluation of protocols is conducted via a logical
network abstraction in such a way that essential inseparable
operations, such as the underlying routing, are left out.
 In [22], we contributed towards efficiently extending a
number of KA protocols on wireless multi-hop ad hoc
networks (GDH.1-2, ING), and measuring their actual
performance over these networks. Initially, we assumed a
physical group member graph (each edge is a physical link).
We extended the studied protocols by allowing the formation
of their communication schedules with respect to routing. The
original versions do not exploit members’ topological
proximity. A pre-agreed schedule is used, based on members’
attributes, like their IDs. After extending each KA protocol
blindly without topological considerations, we observed that
the routing structure of each protocol posed a different
optimization problem (usually NP-complete) for every metric.
Given that, we focused on providing efficient approximations
that greatly improved the performance of the schemes, under
the assumption of a physical graph. The work of [22] is
extended in [25], where we address far more generic scenarios:
now the group member graph represents a logical topology (i.e.
each edge is a logical link, bounded from the number of hops
between two vertices provided by the routing). Our new
heuristics achieve now better approximations of the metric
functions to optimize. In this work we extend [25] to include
Hypercube, as it requires different manipulation from the ones
extended so far.
Section 2 gives an overview of related work on KA and

section 3 describes the original H-Cube. Section 4 gives an
outline of our previous and current work, network model and
assumptions. In section 5 we provide a detailed description of
our new algorithms and in 6 we present the analysis of our
auxiliary framework. In section 7 we present our simulations
set-up and results. In section 8 we conclude the paper.

 Maria Striki, Kyriakos Manousakis, John S. Baras
 Telcordia Technologies Inc., Institute for Systems Research
 1 Telcordia Dr, Piscataway, University of Maryland, College Park
 NJ, 08854, USA MD, 20742, USA

New Algorithm for the design of topology aware Hypercube in multi-hop ad hoc
Networks

2009 Eighth International Conference on Networks

978-0-7695-3552-4/09 $25.00 © 2009 IEEE

DOI 10.1109/ICN.2009.52

236

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 5, 2009 at 13:35 from IEEE Xplore. Restrictions apply.

II. RELATED WORK

 Proposals related to secure group KA protocols abound in the
literature, and can be usually found under the broad category of
contributory schemes. Most of them correspond to a logical
consideration in terms of design, or address wire-line networks
and cannot operate as such in MANETs.
 Becker et al. [1], derived lower bounds for contributory key
generation systems for the gossip problem and proved them
realistic for Diffie-Hellman (DH) based protocols. They used
the basic DH distribution [3] extended to groups from the work
of Steiner et al. [2], where three new protocols are presented:
GDH.1-2-3. Ingemarsson et al. [4] presented another efficient
DH-based KA scheme, ING, logically implemented on a ring
topology. Burmester et al. [5] introduced a new DH protocol,
denoted as BD, while Kim et al. [7] introduced a hybrid DH
scheme: TGDH. It is an efficient protocol that blends binary
key trees with DH key exchanges. Becker in [1], introduced
Hypercube, that requires the minimum number of rounds. He
also introduced Octopus that requires minimum number
messages and derived 2d-Octopus that combined Octopus with
Hypercube to a very efficient scheme that works for arbitrary
number of nodes. Related work can be found in [6, 8, 9].
 There exist some more recent proposals of KA for wireless ad-
hoc networks. Even these, do not seem to scale well or handle
successfully the network dynamics [14-19]. Amir et al. [12,
13], focus on robust KA, and attempt to make GDH protocols
fault-tolerant to asynchronous network events. Their scheme is
designed mainly for the Internet, and requires an underlying
reliable group communication service and message ordering to
guarantee the preservation of virtual semantics. In [21],
Octopus protocols for robust group communications in
MANETs are proposed. The focus is on their logical
evaluation, in isolation from interacting network functions. In
[22] and [25], we study the extension of certain KA protocols
(GDH.1-2, ING) over MANETs. We estimate their combined
routing-communication costs and then improve the metrics of
interest applying a new communications schedule on each
protocol, subject to the underlying routing. We distinguished
two cases: the group members graph represents a physical
topology in [22], and a logical topology in [25].

III. ORIGINAL HYPERCUBE SCHEME (OVERVIEW)
Notation_1: B(x) = ax is the blinding (modular exponentiation
ME under base a) of value x and ϕ (x) = x mod n.

Although the protocol is very well documented in [1, 8], we
provide a brief description of the schemes for completeness.

Hypercube (H-cube): 2d parties agree upon a key within d
simple rounds performing pair-wise Diffie-Hellman Key
Exchanges (DHKEs) on the edges of a logical d-dimensional
cube. Every party is involved in exactly one DHKE per round.
Each party uses the intermediate secret key Ki-1 generated at the
end of its DHKE in round (i-1), to compute the intermediate
secret key Ki for round i: each party processes Ki-1 and sends its
peer in the clear the value B(ϕ (Ki-1)). The 2d parties are
identified on the d-dimensional space GF(2)d and a basis b1,…,
bd ∈GF(2)d is selected to be used for the direction of
communications per round. In every round, the parties
communicate on a maximum number of parallel edges (round i,

direction bi). Members that acquire a common key from the
previous round use the same “logical” direction of
communications in the following round.
1st round: Every member Mi generates a random number Ni and
performs a DHKE with member Mk, where i, k∈GF(2)d, for
example k=i ⊕ 2j-1, using values Ni and Nk respectively.
jth round: Every member Mi does a DHKE with member Mk,
where k=i ⊕ 2j-1, where both members use the value generated
in round i-1 as the secret value for the key establishment.

Fig 1.a: Hypercube with d=3

IV. NETWORK MODEL, SPECIFICATIONS AND REQUIREMENTS

In this section we introduce our extensions to H-cube over
multi-hop ad hoc networks when the group member graph
represents a logical topology. Each edge is a logical link and its
weight is bounded by the number of hops between two edges,
provided by the routing. Intermediate relays are not necessarily
group members. We impose that two nodes that are within each
other’s radio range have distance of 1-hop. Hence, any direct
link has weight 1. The prefixes “nt” and “wt” abbreviate the
extension of KA schemes on a wireless multi-hop network with
“no topology” and “with topology” considerations respectively.

Notation_2: Let n be the number of members in the secure
group, m the number of network nodes (size S), D the diameter
diam(G) of the network graph G; that is, the max number of
hops between a pair of nodes in V. Let R (Ni, Ni+1) = Ri,i+1 be
the number of hops in the path between members Ni and Ni+1.
Let K be the bit size of an element in the algebraic group used
(where the decision DH problem is assumed hard).

A. Existing Work, Approach, Requirements and Objectives

 The performance of H-cube on a logical plane is known and
can be found in [1, 8, 19]. In [22] we re-evaluated it, executing
it blindly on a multi-hop network, where multi-path routing is
required for group members to communicate, and where not all
members can be directly reached via single broadcast. We ran
it on this framework using a communication schedule based
merely on arbitrary member IDs. This nt approach may lead in
overwhelming routing, high communication cost, as seen from
Table I of our relevant results. Under the worst case, the
resulting group member graph becomes bipartite with links of
D hops, while under the best case, the physical graph is
optimized w.r.t. the underlying routing.
 TABLE 1. H-CUBE PERFORMANCE

 Logical Lt Logical CCost nt-Lt nt-CCost
HCube log2n nlog2n Dlog2n nDlog2n

Table 1: Performance of HCube: (a) over logical networks, (b) nt-extension
over multi-hop ad hoc networks under the worst case scenario,

 Next, we integrate the underlying routing into the design by
the definition of a new wt communication schedule that
improves the metrics of bandwidth and latency for the logical
member graph representation. We assume that each message
from a group member is reliably and timely received by all
neighbors. Our scheme inherits the security properties of its

A B

C D

E F

HG

A B

C D

E F

HG

237

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 5, 2009 at 13:35 from IEEE Xplore. Restrictions apply.

ancestor. Our main objective is to meet efficiency requirements
for the group key establishment during the initial state of key
generation. We assume that routing establishes end to end
paths, avoiding intermediate link failures and did not consider
dynamic cases (i.e. link failure, mobility) under which the
network could be partitioned. Under the nt schedule, members’
placement and the routes formed are random. This arbitrary
factor that emerges when we merge the key generation blindly
with the underlying routing is what we try to capture, model,
and quantify with our analysis. We conclude that H-cube poses
two different optimization problems as its routing structure
defines a specific optimization function for each of the two
metrics of latency (Lt) and combined communication cost
(CCost). In [22] we defined these metrics (scaled down by K)
and in this work we focus on minimizing them:

CCost = 1
1 1

2

, (2)j

dd

i i
j i

R ϕ −
=

⊕
=
∑ ∑ (1),

Lt = max i{
1

1, (2)j

d

j
i i

R ϕ −
=

⊕∑ } (2),

We see that the solutions to the metrics that correspond to H-
cube are mapped to an NP-complete Traveling Salesman
Problem (TSP) version with a number of constraints. These
constraints diversify the solution to H-cube metrics from
solutions that correspond to the rest of KA protocols. Finding
approximations of the optimal solutions for the latter metrics is
the only feasible way to improve the protocols.

V. HCUBE PHYSICAL MEMBER GRAPH: NOVEL HEURISTICS

As shown in [22], we created an auxiliary framework that
includes the generation of a tree that spans all n members of the
secure group, to approximate the simple TSP. This spanning
tree (ST) has the following property by definition of the
associated network graph G: the weight of any link that directly
connects any two tree members is 1. In this case, the ST is in
fact a minimum ST (MST). This equivalence allows us to use
approximations based on the existence of an MST over the
group members. We simulate Hamiltonian paths and cycles, by
just performing a full walk of the rooted ST. Any of the well-
known tree visits traverses every edge exactly twice, resulting
in a cost twice the number of tree members. Using these
approximations to set up a td schedule, the performance of all
the studied KA schemes improves by at least a factor of D or n.

VI. LOGICAL HCUBE MEMBER GRAPH – NOVEL HEURISTICS
 A. Logical Group Member Graph case: Approach.

 We now allow non-member relays as well in the routing path
between two group members. We assume a generic Dijkstra
routing protocol that finds the shortest paths between members.
Through the underlying routing, each member obtains the
routing path(s) to its closest neighbor(s). We dynamically
determine the proximity with respect to the number of hops
between two members. If no neighbors are found in the
proximity, the search diameter (TTL) is gradually expanded
until a pre-agreed number of members are found. Assuming
that a direct link between two network nodes has weight 1, the
virtual link between two virtually connected members may take
any value x ≤ Th (TTL). Hence, we allow the existence of
arbitrary weights between two “connected” group members.

In [22] we generated a ST formed strictly by the n group
members. The value of any link weight was always 1, and an
MST would coincide with any ST. Implementing a full walk
over an MST guarantees solutions that are better or equal than
twice the optimal. The optimal in that case was the size of the
secure group n, which was indeed what we were after.
However, in the current setting, the same approximations
would provide us with solutions that are better or equal than
twice the size of the virtual ST, or MST with arbitrary weights,
which could be the size of the whole network in the worst case.
Moreover, the edge weights between two virtually connected
tree members depend on the size of the minimum path shared
which is most likely greater than 1, unless there is a direct link
between two members. In this case, a ST is no longer
equivalent to an MST. So, in our new setting we will need to
compute an MST and not just any ST. In fact, we will need to
find the MST of all MSTs originating from every single group
member, if we want to apply an equivalent to our previous
method. Using a core framework that computes the MSTs from
all group members is an over-kill. This factor discourages us
from applying the previous techniques to our new setting.
 Next, we introduce a novel algorithm that redefines a new
communication schedule and consists of several heuristics.
Only one of these heuristics, this designed for the MST
generation, has been already introduced in [25]. Although it is
described there in detail, we will provide a brief overview in
VI.B for the sake of completion. All other heuristics are
introduced here for the first time, and we are going to provide
detailed descriptions and analysis in section VII.

B. Auxiliary Scheme: MST Generation [25]

 We generate a MST starting from any member, by applying a
distributed version of Prim’s method [24], which is based on a
greedy strategy, captured by a generic algorithm which grows
the MST one edge at a time. To implement the algorithm as
such, all members must have global information of the link
weights of all other members. We adjust the algorithm to our
distributed environment, by having each member that joins the
current ST instance report its candidate links to the root. At
each step, the root determines the next member J to join by
examining all unused candidate links of all members that
belong to the current tree. Then the root sends a Join Flag to
member J, then J joins, etc. The improved running time of the
algorithm is shown to be: Lt1 = O(E + Vlog2V).

C. MST Manipulation [25]

Pre-order MST traversal: The CCost expression for GDH.1-2
is minimized if inequality 1, 2, 1 1,2....n n n nR R R− − −≤ ≤ ≤ holds.
In GDH.1-2, the messages communicated successively in the
up-flow stage (parameter i) is incremental. Hence, the routing
paths of successive members should be selected to be non-
increasing. If we fix the GDH.1 backward schedule first, so
that the first edge selected in the MST is assigned to relay the
maximum number of messages (n-1), the second edge to relay
(n-2) messages, etc., the “non-incremental” requirement is
satisfied. We want to identify the appropriate traversal method
to visit all vertices of a ST and establish the GDH.1 backward
schedule first. By examining the common traversal methods,
we select the pre-order tree walk. An intuitive reason for this is
that a pre-order tree walk visits the root before the values in

238

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 5, 2009 at 13:35 from IEEE Xplore. Restrictions apply.

either sub-tree. So, it uses a greedy approach by adding the
“best nodes” first, the earliest possible in the backward
schedule. By visiting the vertices indicated by the pre-order
walk backwards, we obtain the forward GDH.1 schedule.

Heuristic Overview: We start with the following observation: if
the generated MST was in fact a chain, then the desired
Hamiltonian path would be directly provided and would result
in the same cost as this of the MST. The more the resulting
MST resembles a single chain, the less the cost of the resulting
Hamiltonian path is. So, we manipulate the MST using the
following transformation: During the formation of the MST the
two longest distinct paths from all group members to the root
are located. The group member that marks the end of the
longest path becomes now the new root of the transformed
MST, and the associations between parents and offspring in the
existing MST are sequentially altered to accommodate the
transformed tree. This process results in unfolding the MST to
its longest path or else in extracting the largest “path” from the
MST (Fig. 2(b), 2(c)). Next, each member that belongs to the
new ST, recursively rearranges its offspring in the order of
decreasing distances from their tree leaves (Fig. 2(d)).
Obviously, the backbone of the tree, which is the previously
unfolded path, is accessed first by a pre-order tree traversal. So,
if we generate a Hamiltonian path from this ST, all members
that belong to the “unfolded” path will be visited only once.
This modification results in the reduction in the routing
overhead for the Hamiltonian path formed. Among siblings, the
following invariant is true: the higher the newly assigned id of
a sibling (parameter i), the fewer hops (relays) a message
originating from this sibling will go through until the
destination is reached.

Fig 2: Manipulation of a MST: Transformation by unfolding it to the longest
path and recursive re-ordering of each member’s offspring.
Fig 2(a): Initial MST Prim. Fig 2(b): Identification of the largest path to unfold

Fig 2(c): MST unfolded to its largest path
Fig 2(d): Re-arrange offspring from smaller to largest path

Notation_3: Let Rmax = maxi,j(Rj, i) be the longest virtual link
between any two virtually connected members.

VII. WT-ADAPTATION OF H-CUBE ON LOGICAL MEMBER GRAPH

In this section, we introduce a new heuristic for generating an
efficient wt-H-cube. We assume that a starting point is pre-
agreed, and as the network operation progresses, the leader
election process provides members with new and auxiliary
starting points. The knowledge of the starting point is
propagated to the rest of group members via a simple broadcast
tree. We provide a detailed description of the algorithm that
generates the core framework and is used for the assignment of
session ids to the group members.

 We will identify the 2d parties on the d-dimensional space
GF(2)d by selecting such a basis b1,…, bd ∈GF(2)d for the
direction of communications per round, that results in
optimizing the desired metrics of interest CCost, RCost, Lt. The
previous method (MST manipulation) does not apply to this
case because the group members communicate in pairs. If we
used an MST, we would also need to define a deterministic
method for extracting pairs out of an MST, which is not
straight-forward. Furthermore, the selection of peers for the 1st
H-cube round and the selection of a unique basis in GF(2)d,
limits the degrees of freedom for the selection of peers for the
subsequent rounds. So, similar solutions for the subsequent
rounds may not apply in most cases. What is more, the initial
selection of peers, even though optimal for the current round,
may prove to be very unfortunate for the overhead incurred,
after the end of all d rounds. Therefore, the use of MSTs as a
core framework is highly unlikely to produce efficient H-cube
schedules. This solution is abandoned, and we are looking for
more lightweight frameworks that can potentially improve the
metrics of interest even further. It is clear how complex the
problem is. The optimal solution can be found with the
exhausting method of trial and error, but this is out of the
question, and in particular for the environment of interest.

 A. Overview
 The goal of our algorithm is to determine the most efficient
pairing for the 1st round. In other words, the peers selected for
the 1st round must considerably improve the metrics of interest.
Towards this end, we use a greedy strategy under which each
member makes the best matching selection possible (1st Pass)
and then a “corrective operation” is initiated (2nd Pass) that
goes around “dead-ends” and ensures that all members obtain a
peer. We virtually place each member of a 1st round pair in one
of the two columns: left or right. The selection of these peers is
close to the optimal for the given round, as we will show next,
irrespectively of its impact to the subsequent rounds. However,
we keep the message exchanges between the peers of this
round active in every subsequent round, by doing the following
modification to the original H-cube: only half of the initial n
group members, those either in the left or in the right column,
participate actively to all subsequent rounds, as designated by
the original scheme. The members that belong to the non-active
column become passive recipients in the subsequent rounds.
Without loss of generality, we assume that the members in the
left column are the active participants and those in the right
column become the passive ones. The active members are
assigned new sequential session ids ∈ [0, 2

n -1] after the 2nd
Pass. Before the start of the following rounds, the active
members decide on a unique basis, and execute H-cube for the
next (d-1) rounds. In our case, we select a basis that designates
the new pairs at any given round j, where 0 ≤ j ≤ (d-2),
according to the following formula: in round j, party i interacts
with party i ⊕ 2j-1. In each such round, each active member
communicates the newly calculated blinded value to its
corresponding passive peer (member of right column). So, all
group members participate indirectly to all rounds, since all
receive the intended KM data, and process it as indicated by H-
cube. In the end, all members obtain the same group key.
 Given the previous observation, we can apply our algorithm
on every round and not just the first one. Then, from the active
parties of round j, only half remain active during round (j+1)

1

B

C
D

1

B

C
D

2 A

B

C

D

2 A

B

C

D

3 C

B

A

D

3 C

B

A

D

239

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 5, 2009 at 13:35 from IEEE Xplore. Restrictions apply.

and the other half become passive. Our greedy algorithm of
two passes is applied once again to the currently active
members, to determine the lowest weight pairings among them.
So, instead of using a pre-agreed common basis for the
direction of communications, we dynamically construct such a
basis, based on the topological proximity of the active group
members. However, this approach only works, if we de-
activate half of the active participants of the current round, for
all subsequent rounds. However, applying the heuristic as many
times as the total number of H-cube rounds is an over-kill.
Also, the resulting protocol is quite different from H-cube in
nature, with features that may not be desirable for our network.
An efficient and flexible solution is to apply the heuristic only
for the first few R rounds. Threshold R can be dynamically set.
 Given these considerations, we conduct the following analysis
by setting R = 1, to limit the overhead from the backbone
framework. We will show that H-cube performance improves
substantially by this modification alone. Having defined our
generic algorithm, it is trivial to change R and measure the
improvement in the protocol. In this work, we find it sufficient
to present only the results collected from R = 1, since: (a) the
results are very satisfactory and the overhead of the auxiliary
framework is low, (b) by increasing R the overhead of the H-
cube application is decreased while this of the backbone
framework increases, and (c) by increasing R the H-cube nature
is shifted from totally distributed to centralized.

1st Pass (Greedy Approach):
 This process resembles the construction of an MST in that it
follows a greedy strategy as well. The main difference is that
only one member or one pair of members (that already belong
to the structure being generated) is allowed to select the next
candidate that will join the structure generated during the 1st
Pass. Ideally, in the case that no corrective process is required
(2nd Pass) the outcome of the 1st Pass is the following: a peer
for every member is designated, with respect to the proximity
among nodes. We denote the outcome of the 1st Pass as Set1.
Towards the construction of Set1, a single token is circulated
among members, and at each step, the token is passed to one
member only. The details of the process follow:
 Initially, the starting point is handed the token for the first
time. The first time that a member is handed the token, will
attempt to make the best selection available and find the closest
in terms of number of hops peer. Assume that member A
currently possesses the token. If there is such a peer F
available, then members A and F will form a valid pair for the
process, schematically represented with a horizontal line in the
virtual sketch of Set1. If A is the starting point, there is always
a peer matched to it, since all selections are available at this
point, and also every member is “connected” to a number of
members in a “connected” graph. If A is not the starting point,
then there is a chance that its nearest neighbors have been
reserved by other members, and A cannot find any peer
available. We distinguish two cases:
Case (a): A finds peer F available: A enlists F as its peer and
together form a horizontal line on the virtual sketch of Set1
(Fig. 3). Now both A and F merge their proximity lists (those
that contain the members in their proximity) and arrange their
elements in increasing order of hop distance. The exchange of
merged lists has size 2D× KS, where D is the upper bound of
elements in a proximity list, and KS is the bit size of any of the

control messages. Member A still holds the token, and will give
it to the first member from the merged and ordered proximity
list that is still available (i.e. not already a part of Set1). Hence,
A sends a Join control Flag to each member in the merged list
sequentially, until it finds the first available member (say H), in
which case it receives an Accept control Flag. Member H
broadcasts this Accept control Flag and information about its
new peer to all neighbors in its own proximity list. This way,
neighbors know the status of H beforehand and do not need to
query it when they become initiators. Members that are
unavailable respond with a Refuse control Flag.
 Then, member A provides the token to H. Member H
becomes the initiator of a similar process, in order to find a
peer of its own, and so on and so forth. If however, H does not
find a peer, it gives back the token to its ancestor, member A. H
becomes “grounded”, and it is represented via a “vertical line”
on the sketch of Set1 (Fig. 3). Member A continues scanning its
merged list and holds the token until it finds another available
member (say member C) that will produce a peer (say member
G). Schematically, member C is placed at the end of a vertical
link whose other end starts from the middle of the horizontal
link formed by members A and F. Members C and G form a
horizontal link. Any successor of the merged lists of C and G
(grounded or paired) will be placed on a vertical link whose
other end starts from the middle of the horizontal link formed
by C and G. If the merged list is exhausted and member A has
not found a successor to hand the token to, then it recursively
gives the token to its predecessor. The same method is
followed until all members are visited. As long as the members
are connected as defined at the beginning, this method
produces no deadlocks, i.e. all members are visited before the
process ends. Assume that S1 is the subset of members that
have been visited during the 1st Pass, and S2 is the subset of
members that could not be visited during the 1st Pass. At least
one member in S2 must have a link to one or more members in
S1 otherwise the graph is not connected. Let this member be J.
Now, all members in S1 are part of either a horizontal line or a
vertical one. Clearly, no members that belong to a vertical line
have a link to member J, otherwise such a member could form
a pair with J on a horizontal line. The members that hold the
token exhaust their merged lists until they find a successor. If at
some point the process stalls, in the sense that no successors
can be found, the token recursively goes up the whole structure
(Set1). At each step, all elements in the associated merged lists
are scanned and the neighbors of all members that belong to
Set1 are examined. Then, the link to J is eventually found, and
J joins S1 and is also handed the token for the first time. So, all
members are eventually visited.
Case (b): Member A does not find any peer available: As stated
in the previous case, A provides the token to its predecessor
member, which follows the same process and recursively
provides the token to its own predecessor under case (b) or to a
successor under case (a). The predecessor has already found its
peer, and consequently, it looks through its merged list to find
the next potential element to provide the token to. The process
ends when all members have been visited, and the token
recursively goes back to the starting node.

2nd Pass (Corrective Operation):
 The purpose of the 2nd pass is to locally re-arrange the
grounded members and the pairs established during the 1st Pass

240

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 5, 2009 at 13:35 from IEEE Xplore. Restrictions apply.

so that all members obtain a peer at the end of this process.
This time we access the structure (Set1) obtained after the end
of the 1st Pass from down-up and we build the final H-cube
structure, denoted as Set2. We start with the horizontal links
that have the following property: all members vertically
attached to them (if any) are grounded. We denote the
horizontal links with this property as leaf links. We start by re-
arranging all associated members with the leaf horizontal links.
Then, we go up one predecessor horizontal line at each step,
until we reach the top, i.e. the horizontal link formed by the
starting point. All paths starting from all leaf horizontal links
eventually end up to the starting point. We denote the members
that have been given the token and have also designated a peer
for themselves during the 1st Pass as initiators. So, we start
with leaf initiators and we go up one initiator at each step until
we reach the starting point. The initiator is always paired and
represented as a vertex on a horizontal link. During this pass
however, we re-arrange the initiator, its peer, and all their
vertical links, when they become ready. After this step, the
initiator may end up either without peer or with a different
peer.
 Each member that lies at the end of a vertical link (initiator or
grounded) uses two control flags: the ActPass Flag and the
Arranged Flag. If for a member ActPass = 1, then the member
is active at this point during the 2nd Pass process, and actively
participates to this step of the algorithm that involves it. If
ActPass = 0, then the member becomes inactive for all
subsequent steps of the process. When ActPass is switched to 0
it remains 0 throughout the process. If Arranged = 1, then the
status of this member is determined for the current step of the
algorithm. The status of a member is determined by the value
of ActPass flag. If Arranged =1 and ActPass = 1, then the
member participates in the step that involves it actively,
because no peer has been assigned to it. If Arranged =1 and
ActPass = 0, then the member has been assigned a permanent
peer, and consequently it is not active for the step that involves
it and any subsequent step. In this case, the status of a member
does not depend on the outcome of the execution or previous
steps of the algorithm. If however Arranged = 0, then the status
of the ActPass flag is unknown. Then, the member must wait
for the outcome of the step that involves the initiator of the
previous step, virtually placed below its own initiator. For
example, initially, all grounded members participate in the
process with the following values in their control flags:
ActPass = 1, Arranged = 1. This is because the status of the
grounded members is known – they have no peers assigned –
and they will actively participate in the step that involves them.
The matched peers of the initiators from the 1st Pass are also
going to participate in the step that involves them, and they set
their flags to the same values as these of the grounded
members. However, the status of the initiators (the matched
members that are represented as vertices on the left of the
horizontal links) is unknown. Initially, they participate in the
step that involves them with the following values in their
control flags: ActPass = 1, Arranged = 0. After getting
feedback from initiators that lie below them, they change the
values of their control flags to: ActPass = {0, 1}, and Arranged
= 1. We now give a detailed description of a single step of the
2nd Pass algorithm:
 At any step of the 2nd Pass, every initiator monitors its own
horizontal line until all vertices placed at the other end of the

vertical links have set their Arranged flag to 1. Then, the status
of all associated members (grounded, initiators) is known and
the process that will determine the status of the current initiator
can now be activated. The initiator scans all these members to
see how many have set the value of the control flag ActPass to
1. Those with ActPass=0, have obtained permanent peers from
the previous steps and do not participate to the process any
longer. So, they can be ignored by the current initiator.
(a) If the number of members with ActPass =1 is odd, then the
current initiator will obtain a permanent peer in this round, and
will become inactive for the remaining steps. So, the initiator
can set its own control flags (previously set as follows: ActPass
=1, Arranged=0) to the following: ActPass=0, Arranged =1.
(b) If the number of members with ActPass =1 is even, the
current initiator will not obtain a permanent peer in this round,
and will become active for the remaining steps. Hence, the
initiator can set its own control flags (previously set as follows:
ActPass =1, Arranged = 0) to the following values: ActPass =
1, Arranged = 1. In this case, the initiator gives priority to all
the rest of members in its vicinity to obtain peers. This can be
done, since the number of these members is even. The peer that
was previously matched to this initiator will now be matched to
one of the members that lie on the vertical links.
 The current initiator, say A, determines the matching of its
associated members according to the following method: first, it
matches its ex-peer, say B, with its closest neighbor based on
B’s proximity list. Then, if case (a) holds, it matches itself with
the closest neighbor available, from its own or the merged
ordered proximity list. It matches the vertices (members) on the
vertical links, with the following algorithm:
 Member A scans its own proximity list, and the first two
elements available are always matched together. Then, the next
two remaining elements are matched together, and so on and so
forth. Then, member A scans the proximity list of member B
and matches the first two available elements every time, until
all or all except the last elements (if the number of elements is
odd) are exhausted. Finally, the two remaining elements on
each of the two proximity lists of A and B, (if any) are matched
together. The reason behind this is the following: the two
elements that are matched together are always those that are
available and have the minimum hop distance from their
associated horizontal link. This means that they both have the
minimum hop distance either from the initiator or from its ex-
peer (except for the last remaining pair). The idea is that these
distances set up a threshold for the maximum distance between
the newly matched members from the vertical links. This
threshold is the min. possible compared to a different matching.
 Now all members associated with a given initiator (and the
associated horizontal link) are matched. Since the initiator
signals its known status (ActPass, Arranged = 1) to the upper
level, the initiator associated with the upper level is ready to
perform exactly the same steps and accommodate all members
associated with it, following exactly the same approach. At the
end, all members are accommodated if the number of members
is even. This is so because the process for any given level is not
executed unless all associated levels below this are
accommodated (i.e. all members in them are paired).

 B. Hypercube Structure Manipulation
 After the 2nd Pass ends, all members are matched in pairs.
This would suffice if we were strictly interested in improving

241

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 5, 2009 at 13:35 from IEEE Xplore. Restrictions apply.

the performance of the 1st H-cube round only. However, we
still want to improve the overall performance of the protocol.
The H-cube structure becomes equivalent to a ST if we map
every pair of members to one tree node. In fact, that is what we
do in reality, since in all subsequent rounds after the 1st, only
one peer of every pair participates, hence we want to generate a
communications schedule only for the members that are active
after the 1st round. The other half (inactive after the 2nd round)
have been accommodated for the remaining rounds: they
remain recipients of the BKs computed by the active senders,
during all rounds. Only these active members participate in H-
cube structure manipulation and obtain new IDs. The resulting
H-cube structure does not only provide pairs for the 1st round,
but connects all active members via a structure exactly similar
to this of MST. We will use the previous methods for the MST
manipulation to provide a schedule that improves its
performance. The method is similar as before: we apply the
MST manipulation to H-cube (fig.3). We unfold the structure
to its longest path, recursively arrange the offspring of each
node in this structure in decreasing order of hops, and perform
a pre-order traversal of the transformed structure to assign the
new ids to the active members. The improvement is similar to
this of the previous schemes. As for the subsequent rounds,
there is still improvement compared to an arbitrary assignment
of ids, but the higher the rounds, the more uncertain this
improvement becomes. In reality, the resulting values for these
metrics may be much lower, since members may find paths of
lower distances than these designated by the transformed
structure.

Figure 3. Example of the formation of a H-cube structure from a network graph
with arbitrary configuration of the group members: The 1st and 2nd pass are first
executed on the network, and if the structure contains more than one path, MST
manipulation is triggered.

 C. Performance Analysis
1st Pass: All subgroup members except for the peers of the
initiators become initiators themselves and attempt to find a
peer or a successor initiator. Let the number of subgroup
members be n. The peers of initiators are denoted as x < 1

2 n.
The Join flag is sent only from the initiators to the members in
their proximity lists that are scanned. Members that accept the
request to join broadcast their decision and make it known to
their proximity lists. By making use of the multicast advantage,
the Accept control flag packet is transmitted once to their
proximity, but goes through all the virtual links reported in

their proximity lists. Initiators may scan more than one
member, in order to find one to join (because they are using the
merged proximity lists, and cannot directly check the status of
certain members). Hence, we assume that in average, an
initiator scans half of the members reported in its proximity
list. Members that get scanned respond by “Refuse” until one
that accepts is found. The overhead incurred from the exchange
of control flags and other data is computed as follows:
Join Flag: sent by (n-x), received by 1

2 (n-x)D members at max.

CCost (Join) <
2

1
(,)j

n x
D

i
m a x R i j

−

=
∑ × KS.

Refuse Flag: transmitted at max. by 1
2 (n-x) D members.

CCost (Refuse) <
()

2 1
1

() m ax (,)j

n x
D

i
R i j

−

=
−∑ ×KS.

Accept Flag: broadcast by all members but the starting point.

CCost (Accept) <
1

1
m ax (,)j

n

i
R i jD

−

=
∑ ×KS.

Exchange of Proximity Lists: The x pairs exchange and merge
their proximity lists. Also, let PKS = D×KS denote the bit size
of the packet that carries a member’s proximity list. Then:
CCost (List Exchange LE) = 2×

1
m a x (,)j

x

i
R i j

=
∑ ×PKS,

Latency: Lt <
2

1
m ax (,)j

D
x

i
R i j

=
∑ .

Therefore, the total CCost due to 1st Pass becomes:
CCost (1st Pass) = CCost (Join + Refuse + Accept + LE).
CCost(1stPass) < [2×

2
1

(,)j

n x
D

i
m a x R i j

−

=
∑ - ()

1
m a x (,)j

n x

i
R i j

−

=
∑

+ 1

1
m a x (,)j

n

i
R i jD

−

=
∑

 +2×
1

m a x (,)j

x

i
D R i j

=
∑]×KS

CCost (1stPass) < [D (2n+x-1) + (x-n)] ,max (,)j i R i j ×KS .
2nd Pass: Whenever the status of all members locally
associated with one paired initiator becomes known, the
initiator matches all members that are available in its merged
proximity list. It individually notifies each member about its
new peer. The merged lists may contain at maximum 2D
elements. However, some of the elements are duplicates, or in
practice each individual list contains less than D elements. To
simplify the case, if we assume that each proximity list
contains the same number of active members, then there are y =

2
n
x < 2D active elements in each. Hence, each initiator notifies

(y+1) members of their new peers. The status of an initiator
becomes known, when all the members of all initiators that are
“schematically” found below the given one, are
accommodated. The overall latency of the 2nd Pass is defined
by the longest path of initiators, from the starting point to any
leaf initiator. We can now compute the metrics related to the
2nd Pass algorithm:

CCost(2ndPass)<
1

m ax (,)j
i

x
y R i j

=
∑ PKS=

21
m a x (,)j

n
xi

x
R i j

=
∑ PKS< 2

n ×D× ,max (,)j i R i j KS

Lt (2nd Pass) = m a x Z 21
m ax (,)j

n
xi

z
R i j

=
∑ , where z ≤ x.

H

A

G

F

C
B

D

E

5

3 4

4

2

4

6

3

3

H

A

G

F

C
B

D

E

5

3 4

4

2

4

6

3

3

: non group member

: group member

: links, paths and weights (# hops)
provided by Dijkstra

: non group member

: group member

: links, paths and weights (# hops)
provided by Dijkstra

A F
H

C G

B E

D

A F
H

C G

B E

D

1st Pass

A F
H

C G

B E

D

A F
H

C G

B E

D

F G

H

C B

D E

A

Token(B)

Token(G)

Token(A)

F G

H

C B

D E

A

Token(B)

Token(G)

Token(A)

2nd Pass

242

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 5, 2009 at 13:35 from IEEE Xplore. Restrictions apply.

MST Manipulation: Here, only half the members actively
participate. The HCube structure replaces the MST in the
previous heuristic and the overhead results from manipulating
the structure similarly to an MST. We quote this overhead,
which has been computed in [25], and adjust it to the current
HCube MST framework (HMST):

CCost (HCube_aux) = 2×Wgt(HMST)×KS ,

Lt (HCube_aux) = 2× m ax()W gt P , where Pmax is the max. path

in the unfolded HCube structure that consists of 1
2 n members.

We now compute the overall overhead of the auxiliary scheme:
CCost(aux) = CCost (1st + 2nd Pass) + CCost (HCube_aux).

CCost(aux)<[(D(2n+x-1)+(x-n)) ,m ax (,)j i R i j +

2
n D ,max (,)j i R i j +2 1

2 n ,max (,)i j R i j]KS

CCost (aux) < (3D +1)×n × ,m ax (,)j i R i j ×KS.

Lt (aux) = Lt (1st Pass) + Lt (2nd Pass) + Lt (HCube_aux).

Lt(aux)<n*(4
D
y +

2
1)* ,max (,)i j R i j <O(n*O(1)) * ,max (,)i j R i j

 D. Simulations
Simulations Set-Up: We compare the routing cost of wt vs.
original HCube over ad hoc multi-hop networks. We use
various topology graphs to generate the secure subgroups and
analyze the performance of the heuristics. Our network graph
represents a single cluster area where a single secure group is
deployed. A number of nodes from this graph are randomly
selected as group members. The group leader is randomly
selected as well. At the end of the group “registration” period,
the sponsor piggybacks the list of the legitimate members into
the routing packets. As discussed earlier, we assume that
generic Dijkstra routing finds the shortest paths between
members. Through the underlying routing, each member
obtains the routing path(s) to its closest neighbor(s). The
proximity between two members is dynamically determined.
 We assume that while the backbone framework is being
formed, the relative placement of members and hence the
proximity lists do not change significantly. Such a change
could result in a different “optimal” solution, and the one
currently generated would become outdated. It is expected that
the higher the nodes’ mobility, the worse the performance of
our algorithm is. Even though the wt-version is more sensitive
to mobility and may be operating sub-optimally, it still
outperforms the original. On the other hand, the backbone can
be periodically reconfigured to capture all dynamic changes,
with frequency that depends on network dynamics, resources
available, and our own requirements. For example, the
auxiliary framework may be recalculated whenever protocol
performance degrades to the median of the best and the average
execution of the nt scheme.
 For our evaluation, we generated various random graphs for a
given input of the number of nodes n and the number of
members m. For the same graph and the same input, we have
varied the subgroup configuration, i.e., we have selected the n
members in a random manner. For each graph of input <n, m>
and for each subgroup configuration, we have evaluated the
three metrics of interest (CCost, RCost, Lt) of the wt-versions

vs. the nt-versions (original), and we have averaged the results
for all random graphs with the same inputs <n, m>. We have
tested the following cluster-subgroup scenarios:
Cluster Size: [50 … 800], Subgroup Size: [8,…64].

Simulation Results: We illustrate some indicative results on
CCost and RCost produced by the original HCube and its wt
version, measured the total number of hops required for the
protocol to successfully terminate. The following graphs reflect
CCost of the wt-version vs. the existing under various scenarios
of secure group and network size, scaled by a factor K. CCost
and RCost are significantly reduced in all the scenarios
captured. Indeed, in most cases the improvement ratio
becomes: RCOMM = (_ , ,)

(, ,)
C C ost IN G O pt n S

C C ost IN G n S
< 1

2 . In fact: 0.32 <

RCOMM < 0.7. To illustrate these with an example, for a
subgroup of size 16, and a network of size 200, the average
relays produced are 561 for HCube_Opt, and 1604 for HCube,
and RCOMM = 0.35.
 We verify that the costs of the wt auxiliary framework of the
wt-version match our analytical results. Indeed, we re-call the
expression that estimates the CCost (aux) metric. We assume
that the maximum number of neighbors of each member is
around 10-12, and set KS = 8. Also, we select max (Rj, i) = 8,
and D = 16. Then, we obtain: CCost (aux) < 3200× |V|. By
computing this expression for a group of 32 members we
obtain: CCost (aux, V=32) < 102,400 bits. Indeed our
simulations results verify that this upper bound holds, since
some indicative values of CCost for group size n and network
size S are the following: CCost (aux, n=32, S=200) = 98106
bits, CCost (aux, n =32, S = 300) = 100725 bits , CCost (aux, n
= 32, S = 400) = 64136 bits. The same is the case with the rest
of the simulated group sizes. CCost (aux) increases as the
network size grows, until some threshold value is reached.
Then, the metric starts decreasing. This happens because two
members are “connected” until the hop distance between them
reaches a certain threshold. After the threshold is exceeded, the
members become disconnected. As the network size increases,
the density of group members decreases, and naturally each
member’s neighbors decrease. The less the neighbors of each
node are, the lower the overhead for the auxiliary framework is.
We also verify that the metrics associated with the auxiliary
framework are kept low and add little to the overall overhead
produced by the execution of wt-HCube.

Communication Cost of HCube vs. HCubeOpt,
for 16 members, 100 nodes

350

400

450

500

550

600

650

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Various Subgroup Configurations (100 runs)

HCube
HCubeOpt

Communication Cost of HCube_Opt vs. HCube for 100
different graph configurations of a network graph of size 200,

and a secure group of size 32

850

950

1050

1150

1250

1350

1450

1550

1650

1 15 29 43 57 71 85 99

Configurations of a network of size 200, and a secure group
of size 32

HCube

Hcube_Opt

Figs 1, 2. CCost of HCubeOpt vs. HCube for: (1) for 100 different group
configurations on a network of 100 nodes (100 different runs) for a group of
size 16, (2) for 100 different group configurations on a network of 300 nodes
(100 different runs) for a group of size 32. HCube_Opt results in substantially
superior performance for all the different configurations, in the two scenarios
illustrated (better than this achieved with the previous wt- schemes).

243

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 5, 2009 at 13:35 from IEEE Xplore. Restrictions apply.

C o m m u n ic a t io n C o s t f o r H C u b e O p t v s .

H C u b e f o r m e d iu m e t w o r k s [1 0 0 , …2 0 0] , f o r

in c r e a s in g g r o u p s iz e s [1 6 , …6 4]

4 00

9 00

14 00

19 00

24 00

29 00

34 00

39 00

16 3 2 64

S u b g ro u p S ize , fo r n e tw o rk o f [1 0 0 ,...2 00]

HCu be

HCu be Op t

C o m m u n ic a t io n C o s t o f H C u b e _ O p t v s .

H C u b e o n a la r g e n e t w o r k , f o r in c r e a s in g

g r o u p s iz e s [1 6 , . . . 6 4]

5 .00E+02

1 .00E+03

1 .5 0E+03

2 .00E+03

2 .5 0E+03

3 .00E+03

3 .5 0E+03

16 32 64

G ro u p S ize [1 6 ,..6 4]

Hc u be

Hc u be _Op t

Figs 3, 4. CCost of HCubeOpt vs. HCube w.r.t. the size of the group [16, 32,
64] in a network of (a): [100, 200] nodes, (b): [200, 500] nodes. HCubeOpt
reduces the overhead in half. The performance difference grows even bigger as
both the size of the group and network grow. So, HCube_Opt not only presents
superior performance, but scales much better as well.

VIII. CONCLUSIONS

 In this section, we contributed towards the design and
analysis of more sophisticated approximation - optimization
methods of the communication, routing, and latency functions
(metrics) of the Hypercube key agreement protocol. We
developed new heuristics for generating a novel topology-
aware communication schedule to be used by the protocol. The
heuristics achieve significantly better approximations of the
metrics we want to optimize. Our comparisons of the new
topology oriented and the original Hypercube are done via
simulations. The new protocols achieve a dramatic overhead
reduction. We believe that there is scope for even more
efficient topology oriented approaches and we consider
efficient simulations of KA protocols over multi-hop ad hoc
networks as an interesting open problem.

REFERENCES
[1] K. Becker, U. Wille, “Communication Complexity of Group Key

Distribution,” Proc.5th ACM Conference on Computer & Communicatios
Security, pp. 1-6, San Francisco, CA, November 1998.

[2] M. Steiner, G. Tsudik, M. Waidner, “Diffie-Hellman Key Distribution
Extended to Groups,” 3rd ACM Conference on Computer &
Communication Security, pp. 31-37 ACM Press, 1996.

[3] W.Diffie, M.Hellman,”New directions in cryptography”, IEEE Trans. on
Information Theory, 22(1976), 644-654.

[4] I. Ingemarsson, D.Tang, C.Wong. “A Conference Key Distribution
System”, IEEE Trans. on Information Theory, 28(5): 714-720, Sept. ‘82

[5] M.Burmester, Y.Desmedt. “A Secure and Efficient Conference Key
Distribution System”, Advances in Cryptology–EUROCRYPT’94, Lecture
Notes in Computer Science. Springer – Verlag, Berlin, Germany.

[6] M. Hietalahti. “Key Establishment in Ad-Hoc Networks,” M.S. Thesis,
Helsinki University of Technology, Dept. of Computer Science and
Engineering, May 2001.

[7] A.Perrig, “Efficient Collaborative Key Management Protocols for Secure
Autonomous Group Communication,” Int’l Workshop on Cryptographic
Techniques and E-Commerce (CrypTEC’99), pp. 192-202, July 1999.

[8] N.Asokan, P. Ginzboorg, “Key-Agreement in Ad-Hoc Networks,”
Computer Communications, Vol. 23, No. 18, pp. 1627-1637, 2000.

[9] Y. Kim, A. Perrig, G. Tsudik, “Simple and Fault Tolerant Key
Agreement for Dynamic Collaborative Groups,” Proc. 7th ACM Conf. on
Computer and Communication Security (CCS 2000), pp. 235-244.

[10] J. Katz, M.Yung, “ Scalable Protocols for Authenticated Key Exchange“,
Advances in Cryptology - EUROCRYPT’03, Springer-Verlag, LNCS Vol
2729, pp. 110-125, Santa Barbara, USA.

[11] J.Katz, R.Ostrovski, A.Smith, “Round Efficiency of Multi-Party
Computation with a Dishonest Majority”, Advances in Cryptology,
EUROCRYPT’03, LNCS Vol. 3152, pp.578-595, Santa Barbara, USA.

[12] Y.Amir, Y.Kim, C.Rotaru, J.Schultz, G.Tsudik, “Exploring Robustness in
Group Key Agreement”, Proc. of the 21th IEEE Int’l Conference on
Distr.Computing Systems, pp. 399-408, Phoenix, AZ, April 16-19, 2001.

[13] Y.Amir, Y.Kim, C.Rotaru, J.Schultz, J.Stanton, G.Tsudik, “Secure Group
Comm/tion using Robust Contributory KA”., IEEE Trans. on Parallel
and Distributed Systems, Vol. 15, no. 5, pp. 468-480, May ‘04.

[14] L.Zhou, Z.Haas, “Securing Adhoc Networks,” IEEE Network Magazine,
vol. 13, no.6, pp. 24-30, Nov/Dec 1999.

[15] J.Kong, P.Zerfos, H.Luo, S.Lu, L.Zhang, “Providing Robust and
Ubiquitous Security Support for Wireless Ad-Hoc Networks,” Proc. 2001
IEEE Int’l Conf. on Network Protocols (ICNP 2001), pp. 251-260.

[16] S.Capkun, L.Buttyan, J.Hubaux, “Self-Organized Public Key
Management for MANET,” IEEE Trans. on Mobile Computing, Vol. 2,
No. 1, pp. 52-64, Jan-Mar. 2003.

[17] L.Eschenauer, V.Gligor., “A Key Management Scheme for Distributed
Sensor Networks,” Proc. 9th ACM Conference on Computer and
Communication Security (CCS’02), pp. 41-47, Nov, 2002.

[18] H.Chan, A.Perrig, D.Song, “Random Key Predistribution Schemes for
Sensor Networks,” Proc. 2003 IEEE Symposium on Security and Privacy,
pp. 197-213, May 2003.

[19] S.Yi, R.Kravets, “Key Management for Heterogeneous Ad hoc Wireless
Networks,” University of Illinois, Urbana-Champaign, CS dept.,
TR#UIUCDCS-R-2001-2241, UILU-ENG-2001-1748, July 2002.

[20] S.Zhu, S.Setia, S.Xu, S.Jajodia, “GKMPAN: An Efficient Group Re-
keying Scheme for Secure Multicast in Ad-hoc Networks”, IEEE
Computer Society, MobiQuitous 2004, pp. 45-51.

[21] M.Striki, J.Baras "Efficient Scalable Key Agreement Protocols for Secure
Multicast Communication in MANETs", Collaborative Technologies
Alliance (CTA) Symposium, College Park MD, May 2003.

[22] M.Striki, J.Baras, G.DiCrescenzo, “Modeling Key Agreement Protocols
in Multi-Hop Ad Hoc Networks”, Proc. 2006 Int’l Wireless
Communications and Mobile Computing Conference (IWCMC), pp. 39-
45, Vancouver, CA, July 2006

[23] R. Gallager, P.Humblet, P.Spira. “A distributed algorithm for minimum
weight spanning trees”, ACM Transactions on Programming Languages
and systems (TOPLAS), 5(1): pp.66-77, January 1983

[24] T.Cormen, C.Leiserson, R.Rivest,”Introduction to Algorithms”, MIT
Press, McGraw Hill Book Company, March 1990

[25] M.Striki,J.Baras,K.Manousakis., “New Algorithms for the Efficient
design of topology oriented key agreement protocols in multi hop ad hoc
networks”, Procs of WiOpt’08, April 1-3, Berlin, Gernany.

244

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 5, 2009 at 13:35 from IEEE Xplore. Restrictions apply.

