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Abstract— We consider the convergence problem of consensus
seeking agents and the effect of probabilistic switching on the
convergence rate. Using a probabilistic setting, we develop a
framework to study the convergence rate for different classes
of graph topologies, including Small World networks. We show
that by making the effective diameter of the underlying graph
small, probabilistic switching can be helpful in the design of
fast consensus algorithms.

I. INTRODUCTION

The study of distributed algorithms has been the subject

of extensive research in recent years by the control systems

community. There has been great interest in determining how

agents with low capabilities can achieve global objectives

using only local information. Consensus problems arise in

many applications of collaborative control and their prop-

erties have been studied extensively in recent years (e.g.

see [2], [20], [15], [11] and the references therein). Load

balancing in multiple processes [7], averaging in sensor

networks and Gossip algorithms [28], [27], [4], motion

coordination problems [18], are some of the applications

in which discrete consensus algorithm have arisen. Since the

algorithm is decentralized, it is important to: (i) analyze the

effect of graph topology on the convergence rate, (ii) design

topologies with high convergence rate, and (iii) take into

account the behavior of the algorithm in the presence of

link/edge losses.

This paper is concerned with the first two problems

mentioned, i.e. the analysis of the effect of graph topology

on the convergence rate and the design of ‘good’ topologies.

In the second section the related background which suggests

the use of probabilistic switching is discussed. In the third

section the probabilistic framework is provided. We use some

existing results from the literature in conjunction with our

results to build up our framework. We provide bounds for

the convergence rate in the probabilistic setting. In the last

section we examine our bounds for three classes of graphs.

First we show that switching the neighbors in a ring structure

results in a drastic improvement of the convergence rate.

Then we study switching in Erdöš-Renyi Random graphs.

We then return to the case of Small World graphs (which

provided the inspiration for the present study) and analyze

its behavior in the probabilistic framework.
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II. BACKGROUND AND MOTIVATION

Consider the discrete time consensus equation:

x(k + 1) = F (k)x(k) (1)

in which F (k) is a nonnegative stochastic matrix. Assume

that the algorithm is designed to work with a given graph

topology G1 and its corresponding matrix is F1. The entry

Fij denotes the weight that node i applies to the values that

it gets from node j, and its value may be time dependent. If

there is no link between nodes i and j, Fij = 0. Convergence

of consensus algorithms have been extensively studied and

different sufficient conditions have been proposed (see [11]

and the references therein). The rate of convergence of the

equation (1) is a function of the weights, as well as the graph

topology. References [28], [23] have studied the problem of

optimizing the rate of convergence by changing the weights

when the topology is fixed.

In this paper we restrict our attention to two sets of weights

which arise naturally in many applications and instead focus

on changing the graph topology to get higher convergence

rates. A natural set of weights arises from discretizing the

continuous version of the consensus algorithm with time

scale h. This results in a weight matrix F which has the value

h as its ij entry, if there is a communication between the

nodes i and j, and 0 otherwise. The resulting weight matrix

is symmetric and doubly stochastic and can be represented

as F = I − hL(G), where L(G) is the graph Laplacian

matrix. Furthermore if we select h < 1
2.dmax

then all the

eigenvalues of the F matrix are non-negative [20]. This

helps us in the analysis of Section 3. Another set of weights

which we have considered in this paper comes from Vicsek’s

model for leaderless coordination, [15], [25]. Vicsek’s model

assigns weights to neighbors of a node in a way in which

each node performs a local averaging in its neighborhood.

This corresponds also to a natural random walk on a graph

with self loops. For Vicsek’s Model F = (I +D)−1(A+ I),
where A is the adjacency matrix of the graph G and D

is the diagonal matrix with each node’s degree on the

corresponding diagonal.

In the case of fixed graph topology, the second largest

eigenvalue modulus (SLEM) of the corresponding F matrix

determines the convergence speed. This is because,

x(∞) − x(t) = (F∞ − F t)x(0) (2)

If F is a primitive stochastic matrix, according to the Perron-

Frobenius theorem [21], λ1 = 1 is a simple eigenvalue

with a right eigenvector 1 and a left eigenvector π such that

1T π = 1, F∞ = 1πT and if λ2, λ3, ..., λr are the other
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eigenvalues of F , ordered in a way such that λ1 = 1 >

|λ2| ≥ |λ3| ≥ ... ≥ |λr|. If m2 is the algebraic multiplicity

of λ2, then

F t = F∞ + O(tm2−1|λ2|t) = 1πT + O(tm2−1|λ2|t) (3)

where O(f(t)) represents a function of t such that there

exists α, β ∈ R, with 0 < α ≤ β < ∞, such that

αf(t) ≤ O(f(t)) ≤ βf(t) for all t sufficiently large. This

shows that the convergence of the consensus protocol is

geometric, with relative speed equal to SLEM. We denote

by µ = 1 − SLEM(G) the spectral gap of a graph, so

graphs with higher spectral gaps converge more quickly. If

the matrix F is symmetric, its SLEM can be written as its

norm restricted to the subspace orthogonal to 1 = [111...1]T .

However, the F matrices are not symmetric in general. In fact

although the underlying graph structure is symmetrical, the

weight that each node applies to another node is determined

by its own degree. In general the SLEM of F matrices are

not easily computable.

For the general case where topology changes are also in-

cluded, Blondel et al [2] showed that the joint spectral radius

of a set of matrices derived from F matrices determines the

convergence speed. For Σ a finite set of n×n matrices, their

joint spectral radius is defined as:

ρ = lim sup
t→∞

max
A1,...,At∈Σ

||At...A1||1/t (4)

Calculation of the joint spectral radius of a set of matrices

is a mathematically hard problem and is not tractable for

large sets of matrices. Using ergodic coefficients of blocks

of matrices as in [13] can provide us with geometric rates.

However, it is worthwhile to notice that graphs with well-

connected nodes guarantee fast convergence. This is a direct

result of the Cheeger inequality, which relates the spectral

gap of an F matrix to the conductance of the corresponding

graph [5]. Switching over such topologies will also result in

good convergence speed; see our earlier work in [1].

Since agents usually have energy constraints, the number

of agents with which they communicate is limited. Therefore

an important design issue is to find topologies which induce

certain performance, provided that the number of the links

each agent can establish is less than an upper bound.

Watts and Strogatz [26] introduced and studied a simple

tunable model that can explain behavior of many real world

complex networks. Their “Small World” model takes a

regular lattice and replaces the original edges by random

ones with some probability 0 ≤ φ ≤ 1. It is conjectured

that dynamical systems coupled in this way would display

enhanced signal propagation and global coordination, com-

pared to regular lattices of the same size. The intuition is

that the short (i.e. direct) paths between distant parts of the

network cause high speed spreading of information which

may result in fast global coordination. Olfati-Saber [19]

studied continuous time consensus protocols on small world

networks and proposed some conjectures. We have used a

variant of the Newman-Moore-Watts [17], the improved

form of the φ−model originally proposed by Watts and
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Fig. 1. Spectral gap gain for (n, k) = (1000, 5)

Strogatz [1]. The model starts with a ring of n nodes, each

connected by undirected nodes to its nearest neighbors to

a range k. Shortcut links are added -rather than rewired-

between randomly selected pairs of nodes, with probability φ

per link on the underlying lattice; thus there are typically nkφ

shortcuts. In reference [1] we actually forced the number

of shortcuts to be equal to nkφ (comparable to the Watts

φ−model) and used Vicsek’s weights. We studied different

choices of initial lattices. Figure 1 shows the effect of added

shortcuts to a base ring C(1000, 5).

Our Simulation results show that adding a small number

of links to a ring-structured graph should result in high

convergence rate. However analytical verification of this

result is difficult. Here we try to justify our result using

a “mean field” approach and perturbation analysis. In the

φ model of Small World graphs and its variants, a regular

lattice is considered and m shortcuts are added randomly

where m is equal to a proportion φ of the lattice’s initial

edges. In the present analysis, following [14], we reflect

the effect of shortcuts by adding “small ” nonzero positive

numbers to the entries of F corresponding to non-adjacent

nodes of the lattice; a method we also used in [1] This

corresponds to using lots of shortcuts with negligible weights

on them. Although by adding a uniform perturbation the

topology of the graph is not respected, the analysis gives

insight on random communication patterns for Small World

networks. We state the result for the case where the base

lattice is a ring but the result can be extended to C(n, k) for

other ks. We show the results for Vicsek’s weights. It can

be verified that the same results hold for weight matrices of

the form F = I − hL.

We follow the perturbation approach to Small World

networks proposed by Higham [14]. Consider the base

lattice to have a ring topology on n nodes, G(n, 2) and the

corresponding F matrix F0. This can be also viewed as a

random walk with self loops. This is similar to a particular

case of our base circulant matrix F0. Therefore the base
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matrix is:

F0 =

















1
3

1
3 0 ... 0 1

3
1
3

1
3

1
3 0 ... 0

0 1
3

1
3

1
3 ... 0

. . . . . .

. . . . . .
1
3 0 0 ... 1

3
1
3

















(5)

We know that:

Corollary 2.1: SLEM(F0) = 1
3 [1 + 2cos( 2π

n )]. Further-

more it has multiplicity at least 2.

Now we perturb the nonzero entries of the matrix F0 by

ǫ = K
nα for fixed K > 0 and α > 1 in the limit N → ∞, to

get the perturbed matrix Fǫ:

Fǫ =



















1
3 − (n−3)ǫ

3
1
3 − (n−3)ǫ

3 ǫ ǫ
1
3 − (n−3)ǫ

3
1
3 − (n−3)ǫ

3
1
3 − (n−3)ǫ

3 ǫ

ǫ 1
3 − (n−3)ǫ

3
1
3 − (n−3)ǫ

3
1
3 − (n−3)ǫ

3
. . . .

. . . .
1
3 − (n−3)ǫ

3 ǫ ǫ ǫ

... ǫ 1
3 − (n−3)ǫ

3
... ǫ ǫ

... ǫ ǫ

. . .

. . .

... 1
3 − (n−3)ǫ

3
1
3 − (n−3)ǫ

3

















We call the “shortcuts” created this way ǫ−shortcuts. Fǫ is

also a circulant matrix. The representer —citepeba07 of this

circulant is

pa(z) =
1

3
− (n − 3)ǫ

3
+ (

1

3
− (n − 3)ǫ

3
)z + (6)

ǫz2 + ǫz3 + ... + ǫzn−2 + (
1

3
− (n − 3)ǫ

3
)zn−1

So, the eigenvalues of this matrix are λi(ǫ) = pa(ωi−1).
For this matrix the largest eigenvalue is 1. Using a similar

argument the SLEM can be calculated to be equal to:

λ2(ǫ) = (
1

3
− n

3
ǫ)(1 + 2cos

2π

n
) (7)

Thus we can state the following proposition:

Proposition 2.1: Let ǫ = K
nα , α ≥ 1.

• For α > 3, the effect of ǫ-shortcuts on convergence rate

is negligible. α = 3 is the onset of the effectiveness of

shortcuts.

• For α = 2, the shortcuts are dominantly decreasing

SLEM.

• For α = 1, almost all of the nodes communicate

effectively and thus the SLEM is very small.

Proof

For large n we can write:

λ2(Fǫ) =
1

3
+

2

3
cos

2π

n
− nǫ

3
− 2n

3
cos

2π

n
⇒

λ2(Fǫ) = 1 − 4π2

3n2
+ o(

1

n4
) − nǫ +

4π2ǫ

3n
+ o(

1

n3
) (8)

The first three terms are the contributions of the base

lattice and the rest are the contributions of the perturbation.

Comparing this to the SLEM of the base lattice

λ2(F0) =
1

3
(1 + 2cos

2π

n
) = 1 − 4π2

3n2
+ o(

1

n3
) (9)

yields the following results.

For the base lattice, the spectral gap decreases as fast as

n2. If ǫ is o(nα), α > 3, then terms coming from the lattice

are dominant, and therefore the shortcuts does not affect the

spectral gap. For α = 3 the terms regarding the shortcuts

will be of the same degree as the terms from the base and

for k large enough, the SLEM starts decreasing from the

corresponding lattice SLEM. For α = 2 the terms regarding

the shortcuts are dominant and the SLEM has considerably

decreased compared to the base lattice. Only for the case of

α = 1 the spectral gap does not vanish as n → ∞.

As observed above ǫ−shortcuts are loosely analogous to

the shortcuts in the φ-model. Since the Small World model

is a probabilistic model, we anticipate that adding small

weights is analogous to choosing graphs with low proba-

bility shortcuts. In the following section we will formalize

this idea. To this end we need a framework for studying

consensus problems with probabilistic switching.

A recent book by Durrett [9] addresses the mixing time

of Markov Chains on small world graphs, which is closely

related to the subject of this paper. A similar approach has

also been used by the authors of [24].

III. PROBABILISTIC FRAMEWORK

Consider n nodes and a finite set of n by n stochastic

matrices F = {F1, ..., Fm}. At each time, graph Gi is

selected with probability pi. The choice of graph topology

at each time is identically distributed and independent of the

graph topologies selected at previous times. This framework

includes a vast host of applications, including the case of

i.i.d. link losses. Conditions for convergence of probabilistic

consensus schemes and the rate of convergence have been

studied in [24], [12], [4], [10]. Here we mention a result

from [10]. Using results from [6], the authors of [10]

have obtained the following, which constitutes a sufficient

condition for high probability convergence of probabilistic

consensus.

Let Q(t) = F (t − 1)...F (0).
Theorem 3.1: (Theorem 3.1 in [10]) The algorithm

achieves probabilistic consensus if and only if for ev-

ery two nodes i and j, P (Ei,j) = 1, where Ei,j =
{∃k,∃t, Qik(t)Qjk(t) > 0}.

Let F = E[F (t)] and G be the corresponding graph. Then:

Corollary 3.1: (Corollary 3.2 in [10]) Assume that for

any node i, Fii(t) > 0 almost surely. If G is strongly

connected, then F (t) achieves probabilistic consensus.

Using the fact that in our set of graphs there exists at least

one connected graph and the communication is considered

to be symmetric, we get the following simpler condition for

convergence.

Proposition 3.1: The consensus algorithm with i.i.d link

losses and symmetric communication ( (i, j) is an edge
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iff (j, i) is an edge) converges with probability 1, if F is

such that there is a positive probability that any two nodes

communicate.

Proof: First note that since F1 is a strongly connected

graph, by definition F satisfies the condition that there is a

positive probability that any two nodes communicate. The

communication is symmetric and there exist a positive α

such that for all k and i, fii(k) ≥ α > 0. Furthermore

fij(k) ∈ {0}
⋃

[α, 1], and
∑n

j=1 fij(k) = 1. By Theorem 2
of [2], the algorithm converges if the graph (N,

⋃

s≥t E(s))
is strongly connected for all t ≥ 0. But this is the case with

probability 1. The reason is that for any two node i and j

there is a nonzero probability that there exist a chain of edges

that connects these two nodes at each time. If we denote

this probability by qc, and pick an arbitrary time t0, then the

probability that starting from t0 the graph (N,
⋃

s≥t E(s))

is connected is given by: limk→∞1 − (1 − qc)
k → 1. Since

the link drops are i.i.d. the argument is valid starting at any

t0. Thus consensus will be reached with probability 1.

To calculate the rate of convergence we consider the

following Lyapunov function:

V (x) =
1

n
[
∑

i 6=j

E(||xi − xj ||2)] =

E[xT (I − 11T

n
)x] = E[xT L̂x]

in which L̂ = (I − 11T

n ) is the Laplacian of the complete

graph. Note that L̂2 = L̂. If we consider P (x) = E[L̂xxT L̂],
then we will have V (x) = Tr(P (x)) and each entry of

P converges to zero as consensus is reached. Let G(x) =
E[xxT ], then P (x) = L̂G(x)L̂ and the rate of convergence

of P to zero is equal to the rate of convergence of G to a

constant matrix. We have:

G(k + 1) =E[x(k + 1)x(k + 1)T ] =

E[F (k)x(k)x(k)T F (k)T ]

Therefore by vectorizing the matrix G(k + 1) we get,

V ec(G(k + 1)) = E[F (k) ⊗ F (k)]V ec(E[x(k)x(k)T ])

So, we get the iteration:

V ec(G(k + 1)) = E[F (k) ⊗ F (k)]V ec(G(k)) (10)

Therefore if in equation (10), V ec(G(k + 1)) converges

to a vector of equal entries with some rate, x will also

reach consensus with the same rate. Equation (10) is a linear

iteration. In the case of i.i.d. switchings it is time invariant,

i.e. A = E[F (k) ⊗ F (k)] is a constant matrix. Since A is

stochastic, the convergence of the equation (10) is governed

by its second largest eigenvalue modulus (SLEM). [4] shows

that in the case of symmetric weight matrices, the rate of

convergence of equation (10) is equal to the SLEM of the

matrix E[F (k) ⊗ F (k)].
In the following, we exploit certain graph topologies to

determine this rate. We consider weight matrices of the form

F = I−hL, with h < 1
2dmax

. These assumptions cause the F

matrices to be symmetric with nonnegative eigenvalues. This

simplifies the analysis. The following example illustrates the

method.

Example 3.1: Complete graph with probabilistic link

losses

First consider the case of two nodes with a link which

drops with probability p. Therefore: A = E[F ⊗ F ] = (1 −
p)(F1 ⊗ F1) + p(I2 ⊗ I2), where:

F1 =

(

1 − h h

h 1 − h

)

Let Γ2 denote the two dimensional forward shift permutation

matrix,

Γ2 =

(

0 1
1 0

)

.

Since A commutes with Γ2 ⊗ I , A is a block circulant

matrix. Since A also commutes with A ⊗ Γ2, the blocks

themselves are also circulant matrices. Therefore A is a block

circulant matrix with circulant blocks and its eigenvalues are

simply computable given the eigenvalues of each block [8].

It can be easily verified that the rate of convergence in this

example is equal to λ2 = (1 − p)(1 − 2h) + p.

Now consider the case of a complete graph on n vertices,

where the link losses occur with probability 1 − p. This

means that at each time instance an Erdos-Renyi random

graph G(n, 1 − p) is present. Therefore it is as if at each

time we are selecting randomly among the set of G(n, 1−p)
random graphs. We are interested in calculating the second

largest eigenvalue of

A =E[(In − hL) ⊗ (In − hL)] =

In − hIn ⊗ L̄ − hL̄ ⊗ In + h2E[L ⊗ L]

We show that

Proposition 3.2: The matrix A = E[(In − hL) ⊗ (In −
hL)] can be transformed to a block-circulant matrix by a

permutation.

The exact permutation matrix and the structure of the block-

circulant matrix are given throughout the proof.

Proof: Let Γ denote the forward shift permutation

matrix. The matrix A can be written as:












A11 A12 ... A1n

A21 A22 ... A2n

. . ... .

. . ... .

An1 An2 ... Ann













Each block is a symmetric n × n matrix and Aij = Aji.

The block Aij contains contributions from the Laplacian

of graphs that have (i, j) as a link. Furthermore, because

of the symmetry, the set of all possible graphs can be

decomposed into classes of cyclic isomorphic graphs, each

of which contains circular shifts of a given graph, i.e. if the

graph G is in isomorphic class i, then so are the graphs

ΓGΓ∗, Γ2GΓ2∗, ...,ΓnGΓn∗. Therefore for all i and j we

have the following result modulo n:
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Aij = ΓAi+1,j+1Γ
∗ = ΓAi+1,j+1Γ

n−1

Now take the block-diagonal matrix

J =









In 0 ... 0
0 Γn ... 0
. . ... .

0 0 ... Γn−1
n









We will now show that the matrix K = JAJ∗ is block

circulant. To see this, notice that

K =













K11 K12 ... K1n

K21 K22 ... K2n

. . ... .

. . ... .

Kn1 Kn2 ... Knn













where the ijth block Kij = Γi−1AijΓ
j−1∗ modulo n.

Therefore modulo n we have:

Ki+1,j+1 = ΓiAi+1,j+1Γ
j∗

= Γi−1ΓAi+1,j+1Γ
∗Γj−1∗

= Γi−1AijΓ
j−1∗

= Kij

Therefore the matrix K is block circulant. Therefore us-

ing block Fourier matrices, the matrix K can be block-

diagonalized to

Λ =









Λ1 0 ... 0
0 Λ2 ... 0
. . ... .

0 0 ... Λn









where Λk is unitarily similar to

K11 + ωkK12 + ω2kK13 + ... + ω(n−1)kK1n

A fundamental observation is that in general calculating

the Kronecker product is difficult and requires n2 × n2

matrix operations for n agents, unless the dimensions of the

F matrices are small and certain symmetry conditions are

present. Even under symmetric conditions the operations are

not trivial and require large matrix eigenvalue calculations.

Therefore we are interested in finding lower and upper

bounds on the rate of convergence. The following proposition

provides such bounds:

Proposition 3.3: Let A = E[(I − hL) ⊗ (I − hL)], L̄ =
E[L] and λi denote the ith largest eigenvalue of a matrix,

i.e.

λ1(L̄) ≥ λ2(L̄) ≥ ... ≥ λn(L̄)

then 1−hλn−1(L̄) ≤ λ2(A) ≤ 1−hλn−1(L̄)+h2λn(E[L⊗
L]).

The result given by proposition (3.3) indicates that for

finding bounds on the convergence rate of probabilistic

consensus algorithms on a set of matrices F, we should

1) Find the exact value or bounds for λn−1(E[L]),

2) Find the exact value or bounds for λ1(E[L ⊗ L])

As the examples in the next section will show λn−1(E[L])
can be computed for many different classes of graphs. To

find bounds on E[L⊗L], we use Jensen’s inequality and the

fact that all the Laplacian eigenvalues of a graph are twice

the maximum degree of graph. Therefore we get:

λ1(E[L⊗L]) ≤ E(λ1([L⊗L])) = E[(λ1(L))2] ≤ 4E[d2
max].

Proposition (3.3) can be proved using a result in Matrix

perturbation theory. We quote the result as given in [22],

Theorem 4.8 and Corollary 4.9 with some changes in nota-

tion:

Theorem 3.2: [22] Let A0 be a Hermitian matrix with

eigenvalues

λ1 ≥ λ2 ≥ ... ≥ λn

and A = A0 + E be a Hermitian perturbation of A with

eigenvalues

λ̃1 ≥ λ̃2 ≥ ... ≥ λ̃n

Furthermore, let the eigenvalues of E be

ǫ1 ≥ ǫ2 ≥ ... ≥ ǫn

then for i = 1, 2, ..., n

λ̃i ∈ [λi + ǫn, λi + ǫ1] (11)

Proof: [22], pp 200-201.

We can then proceed to the proof of Proposition (3.3)

Proof: (of Proposition (3.3) Let

A = E[(I−hL)⊗(I−hL)] = I−hI⊗L̄−hL̄⊗I+h2E[L⊗L]

,

A0 = I − hI ⊗ L̄ − hL̄ ⊗ I

and

E = h2E[L ⊗ L]

The Kronecker product of the Laplacian has the smallest

eigenvalue equal to zero. E[L⊗L] preserves the property that

its row sums all equal zero. Therefore, ǫn = 0. Furthermore,

λi(A0) = λi(I − hI ⊗ L̄ − hL̄ ⊗ I) = 1 − hλn−i(L̄)

Therefore

λ2(A) ∈ [1 − hλn−1(L̄), 1 − hλn−1(L̄) + h2λ1(E[L ⊗ L])]

IV. IMPROVING THE CONVERGENCE RATE BY

PROBABILISTIC SWITCHING

In this section we use the framework developed in the

previous sections to compare the convergence rate in the

presence of probabilistic switching with that of fixed topol-

ogy for three different classes of matrices. The aim is to show

that in cases where switching results in reducing the effective

diameter of the graph, the convergence in the switching case

is order of magnitude faster than the convergence rate of the

fixed topology. In our last example, we will return to the

case of Small World networks and will give an analytical

description of the Small World effect.
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Example 4.1: Changing neighbors in a ring topology

We consider n agents placed on a ring with n empty slots.

Being on a ring, constraints each node’s neighbors to the

agent to its left and the agent to its right. We consider a

naive model of motion in which at each time each agent

changes its position uniformly at random and ends up in

a random slot. Each slot contains one node at each time.

This is equivalent to the assumption that at each time

agents randomly choose their neighbors bi-directionally. We

compare the rate of convergence of this scheme with the

case in which there is a fixed ring topology. In the case of

the fixed ring topology G0, it can be easily verified that the

second largest eigenvalue modulus of the iteration matrix F0

is equal to λ2 = 1−2h cos( 2π
n ) and therefore the spectral gap

is 2h[1− cos( 2π
n )] = 4h sin2(π

n ). For large n this quantity is

approximately equal to 4π2h
n2 and varies as n−2. To compute

the L̄ matrix, we use the fact that L̄ii equals the expected

number of agent i’s neighbors, which is 2 in this case.

−L̄ij is equal to the probability that the agents i and j are

neighbors. Therefore:

L̄ =









2 − 2
n−1 ... − 2

n−1

− 2
n−1 2 ... − 2

n−1

. . ... .

− 2
n−1 − 2

n−1 ... 2









(12)

It can be easily seen that λn−1(L̄) = 2 + 2
n−1 . Therefore

λ2(I −hL̄) = 1− 2h− 2h
n−1 . Also notice that the maximum

degree of each node is 2. Using Proposition 3.3 we get:

h(2 +
2

n − 1
) − 16h2 ≤ 1 − λ2(A) ≤ h(2 +

2

n − 1
)

Taking a constant h < 1
8 , and denoting the spectral gap 1−λ2

by S.G., it can be seen that:

S.G.(fixed)

S.G.(switching)
≤ 4h sin2(π

n )

4h + 2h
n−1 − 16h2

For the limit of large n the numerator varies as n−2 whereas

the denominator varies as n−1, therefore the ratio approaches

zero with increasing n. It can be seen that even the lower

bound of the spectral gap of the switching case shows order

of magnitude improvement compared to the spectral gap of

the fixed topology.

Example 4.2: Erdos-Renyi Random graphs

Consider the case in which there exists a link between any

two nodes with probability q ∈ (0, 1]. The existence of a link

between any two nodes is therefore random and independent

of the other connections. In this example we compare the

convergence rates between two cases. In one case a fixed

random graph is used for all the time instants. In the other

case the random graph changes with time in a way that at

each time the choice of the random graph at each time is

independent of the choice of the random graph at other time

instants. For the former case we use a high probability bound

due to Fiedler, reported in [16], [12]. For the latter case we

calculate the bounds given by Proposition 3.3. In [16], [12]

the authors report a high probability result for the second

smallest eigenvalue of the Laplacian of a random graph. For

the limit of large n and for ǫ ∈ (0, 2):

lim
n→∞

Pr{qn −
√

(2 + ǫ)q(1 − q)n log n <

λn−1(L(G(n, q))) < qn −
√

(2 − ǫ)q(1 − q)n log n} = 1.

Therefore if a fixed random topology is used at all times

then with high probability:

1 − hqn + h
√

(2 − ǫ)q(1 − q)n log n < λ2[I − hLfixed] <

1 − hqn + h
√

(2 + ǫ)q(1 − q)n log n

On the other hand, if at different times we switch between

different random graphs, then L̄11 = E[deg(1)]. Consider

X2,X3, ...,Xn−1 be independent Bernoulli random vari-

ables. Xi is the indicator of existence of a link between

nodes 1 and i. Therefore Lii = L11 = q(n − 1). Also,

L̄ij = E[−1{(i, j) ∈ E(G)}] = −q. Hence:

L̄ = q









n − 1 −1 ... −1
−1 n − 1 ... −1
. . ... .

−1 −1 ... n − 1









and λn−1(L̄) = qn. Using Proposition 3.3, we get:

1 − hnq < λ2(E[(I − hL) ⊗ (I − hL)]) <

1 − hnq + h2λmax[E(L ⊗ L)] < 1 − hnq + 4h2E[d2
max]

An interesting case arises when q = Θ( log n
n ). In this case,

with high probability, the random graph is connected‘[3]. For

a given large n, taking q = k log n
n with k ≥ 2,

S.G.(fixed) < hqn − h
√

(2 + ǫ)q(1 − q)n log

∼ (k −
√

2k)h log n

On the other hand for the switching case we have:

S.G.(Switching) > hnq = kh log(n)

Both of the bounds are of the same order and therefore it can

be seen in the regime where the random graph is connected,

its diameter is small enough so that switching among graphs

of the same family cannot help improving the convergence

rate.

Example 4.3: Small World graphs

We now return to our analysis of small world graphs. We

consider a ring structure and assume that at each time each

agent can establish shortcuts with small probability ǫ. By us-

ing the probabilistic framework of Proposition 3.3 we study

the effect of the shortcut probability on the convergence rate.

To this end we take ǫ ∝ n−α for α = 1, 2, 3, ... and observe

the variations of the convergence rate for different choices

of α. Contrary to our “mean field” approach of previous

sections, this approach has an actual physical meaning.

The iteration matrix of the fixed ring graph in this setting

is:

I − hLfix =









1 − 2h h 0 ... h

h 1 − 2h h ... 0
. . . . .

h 0 ... h 1 − 2h








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Its second largest eigenvalue modulus can be easily calcu-

lated to be λ2(F0) = 1 − 2h + 2h cos( 2π
n ) and its spectral

gap is equal to:

S.G.(fixed) = 2h(1 − cos(
2π

n
))

In the limit of large n, the spectral gap varies as n−2.

To calculate the expected Laplacian matrix, notice that for

all i, j with |i−j| = 1 (i.e. the adjacent neighbors of the base

ring), L̄ij = −1 and for all i, j with i 6= j and |i − j| 6= 1
we have, L̄ij = −ǫ. Furthermore we use the fact that L̄ii is

the expected number of the neighbors of node i to get:

L̄ii = 2 + (n − 3)ǫ

It can be verified that

λn−1(L̄) = 2 + (n − 3)ǫ − 2(1 − ǫ) cos(
2π

n
)

Using Proposition 3.3 we get the following bounds for the

switching case:

λ2(E[(I − hL) ⊗ (I − hL)]) ∈

[1 − h(2 + (n − 3)ǫ − 2(1 − ǫ) cos(
2π

n
)),

1 − h(2 + (n − 3)ǫ − 2(1 − ǫ) cos(
2π

n
)) + 4h2E[d2

max]]

and therefore:

S.G.(Switching) ∈

[h(2 + (n − 3)ǫ − 2(1 − ǫ) cos(
2π

n
)) − 4h2E[d2

max],

h(2 + (n − 3)ǫ − 2(1 − ǫ) cos(
2π

n
))]

For ǫ = n−α and α = 1, 2, 3, ... using a Chernoff bound,

it can be easily shown that for the limit of large n almost

surely:

dmax < log n

Taking h ∝ n−1, we first compare the spectral gap of

the fixed topology with the upper bound for the spectral

gap of the switching case. In the fixed case for large n,

the dominant term is the n−3 term. In the switching case,

the lower bound for the limit of large n is approximately

equal to: h[n1−α − n−α + 2π2n−2 − 2n−α−2] = o(n−α)
For n ≥ 3 the dominant term is also the n−3 term. So,

at its best performance adding shortcuts with probability

less than or equal n−3 cannot help increasing the spectral

gap. The lower bound on the spectral gap of the switching

case in the limit of large n is approximately equal to:

h[n1−α − n−α + 2π2n−2 − 2n−α−2] − (log n)2

n2 . If we take

α = 1, then this bound is o(n−1), which is order of

magnitude better than the ring case. If we take α = 2 then

the lower bound is not tight enough to make any statement

about the comparison of the two regimes. However, because

of the result we got for the α > 3 case, we can conclude

that α = 2 is the onset of Small World phenomena.

V. CONCLUSIONS AND FUTURE WORK

In this paper we developed a probabilistic framework

for studying the effect of probabilistic switching on the

convergence rate of consensus algorithms. We found bounds

for the convergence rate and using 3 different classes of

graph topologies, showed that the convergence rate can be

improved if the effective diameter of the graph is reduced

via probabilistic switching. We addressed the convergence of

consensus algorithms on Small World graphs by two methods

and showed that the Small World phenomena happens pro-

vided that the shortcut probabilities or weights are larger than

a threshold. Future work addresses finding tighter bounds on

the convergence of probabilistic switching and studying the

effect of probabilistic switching when switching happens as

a result of the motion of the nodes rather than being a design

parameter.
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