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Abstract— “Ant algorithms” have been proposed to solve a
variety of problems arising in optimization and distributed
control. They form a subset of the larger class of “Swarm
Intelligence” algorithms. The central idea is that a ‘swarm’
of relatively simple agents can interact through simple mecha-
nisms and collectively solve complex problems. Instances that
exemplify the above idea abound in nature. The abilities of ant
colonies to collectively accomplish complex tasks have served
as sources of inspiration for the design of “Ant algorithms”.
Examples of “Ant algorithms” are “Ant Routing” algorithms
that have been proposed for communication networks. We
analyze in this paper an Ant-Based Routing Algorithm for
packet-switched wireline networks. The algorithm is an at-
tractive multiple path probabilistic routing scheme, that is
fully adaptive and distributed. Using methods from adaptive
algorithms and stochastic approximation, we show that the
evolution of the link delay estimates can be closely tracked by a
deterministic ODE system. A study of the equilibrium points of
the ODE then gives us the equilibrium behavior of the routing
algorithm, in particular, the equilibrium routing probabilities,
and mean delays in the links under equilibrium. We also show
that the fixed-point equations that the equilibrium probabilities
satisfy are actually the necessary and sufficient conditions of
an appropriate optimization problem. Simulations supporting
the analytical results are provided.

I. INTRODUCTION

“Ant algorithms” constitute a class of algorithms that have
been proposed to solve a variety of problems arising in
optimization and distributed control. They form a subset of
the larger class of “Swarm Intelligence” algorithms, a topic
extensively discussed in the book by Bonabeau, Dorigo and
Theraulaz [4]. The central idea is that a “swarm” of simple
agents can interact through simple mechanisms and collec-
tively solve complex problems. Instances that exemplify the
above idea abound in nature. Bonabeau, Dorigo and Ther-
aulaz [4] give examples of insect societies like those of ants,
honey bees, and wasps, which accomplish complex tasks of
building intricate nests, finding food, responding to external
threats etc., even though the individual insects themselves
have limited capabilities. The abilities of ant colonies to
collectively accomplish complex tasks have served as sources
of inspiration for the design of “Ant algorithms”.

Examples of “Ant algorithms” are “Ant-Based Routing”
algorithms that have been proposed for communication net-
works. It was observed in an experiment conducted by biol-
ogists, called the double bridge experiment [6], that a colony
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of ants, when presented with two paths to a source of food,
is able to collectively converge to the shorter path. Every
ant lays a trail of a chemical substance called pheromone as
it walks along a path; subsequent ants follow and reinforce
this trail. This leads progressively to a large accumulation of
pheromone on the shorter path, which is how ants discover
the shorter path. Most of the Ant-Based Routing Algorithms
(called Ant Routing Algorithms, for short) proposed in the
literature are inspired by this basic idea. These algorithms
employ probe packets, called ant packets (analogues of ants),
to explore the network and measure various quantities related
to network routing performance, for e.g., link and path
delays. These measurements are used to update the routing
tables at the network nodes. The update algorithms reinforce
those outgoing links which lead to paths with lower delays.

Schoonderwoerd et. al. [11], [4] tested an Ant Routing
Algorithm on the British Telecom telephone network, and
reported superior performance compared to other algorithms
including shortest paths based schemes. This generated in-
terest in the study of Ant Routing Algorithms for both
connection-oriented networks and for packet-switched net-
works (both wired and wireless). Ant Routing Algorithms
for wireless networks have been proposed and analyzed in
papers by Baras and Mehta [1] and Gunes et. al. [8].

We consider in this paper packet-switched wired networks.
Ant Routing Algorithms for such networks have been pro-
posed, for example, in the works of Di Caro and Dorigo
[7] and Bean and Costa [2]. Though numerous Ant Routing
Algorithms have been proposed, very few analytical studies
are available in the literature. Examples of such analytical
studies are [12], [9], and [2]. Yoo, La, and Makowski [12]
and Gutjahr [9] consider very simple network cases where
the delays in the network links are deterministic quantities,
independent of the offered traffic loads. They show that
their algorithms converge to the shortest path solutions in
the network. Bean and Costa [2] propose a multiple-path
routing scheme which tries to form estimates of the delays
and use them to update routing tables. The link delays can
be stochastically varying. The authors conduct a numerical
study based on their model and find that the results agree
well with simulations. However, they do not provide any
convergence results. Borkar and Kumar [5], too, have a delay
estimation scheme and a probability update scheme which
utilizes the delay estimates. The probability update scheme
moves on a slower time-scale than the delay estimation
scheme. By two time-scale stochastic approximation methods
they prove convergence of their algorithm to the routing
solution called Wardrop equilibrium.
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We consider the algorithm proposed by Bean and Costa [2]
in this paper. The scheme is fully adaptive and distributed.
We consider in this paper a simple routing scenario where
data traffic entering a single source node has to be routed to
a single destination node, and there are N available parallel
paths between them. We model the arrival processes of
both the ant and the data streams that arrive at the source
node, and argue, using methods from adaptive algorithms
and stochastic approximation, that the evolution of the link
delay estimates can be closely tracked by a deterministic
ODE system when the step size of the estimation scheme is
small. Then a study of the equilibrium points of the ODE
gives us the equilibrium behavior of the routing algorithm;
in particular, the equilibrium routing probabilities, and mean
delays in the N paths under equilibrium can be obtained. We
also find that the fixed-point equations that the equilibrium
routing probabilities satisfy are actually the necessary and
sufficient conditions of a convex minimization problem.

Our paper is organized as follows. Section II provides the
general framework of ant routing and the routing scheme we
consider. Section III provides a description of our N parallel
paths model. Section IV contains an analysis of the routing
scheme. Section V provides illustrative simulation results,
and in Section VI we provide a few conclusive remarks.

II. GENERAL FRAMEWORK OF ANT ROUTING
ALGORITHMS AND OUR SCHEME

We provide, in this section, a brief description of the
general framework of ant routing for a wired communication
network. The framework that we follow is the one described
in Di Caro and Dorigo [6], [7]. Alongside, we describe the
Bean and Costa [2] scheme, that we analyse in this paper.

Every node i in the network maintains two key data
structures - a matrix of routing probabilities, the routing
table R(i), and a matrix of various kinds of statistics, called
the local network information table, L(i). For a particular
node i, let N (i, k) denote the set of neighbors of i through
which packets are routed towards destination k. The entries
of R(i) are the probabilities φik

j . φik
j denotes the probability

of routing an incoming packet bound for destination k via
the neighbor j ∈ N (i, k). The (j, k)-th entry of L(i)
contains various statistics pertaining to the route (i, j, . . . , k).
Examples of such statistics could be mean delay and delay
variance estimates of route (i, j, . . . , k). These statistics are
updated based on the information the ant packets collect
about the route. The matrix L(i) represents the characteristics
of the network that are learned by the nodes through the ant
packets, and based on which the local routing table R(i) is
updated. The iterative algorithms used to update L(i) and
R(i) will be referred to as the learning algorithms.

We now describe the mechanism of operation of ant-
based routing algorithms. For ease of exposition, we restrict
attention to a particular destination node, and consider the
problem of routing from every other node to this node, which
we label as D.

Forward ant generation and routing. At certain inter-
vals, forward ant (FA) packets are launched from a node i

towards the destination D to discover low delay paths to
it. The FA packets sample walks on the graph representing
the network, based on the current routing probabilities at the
nodes. FA packets share the same queues as data packets
and so experience similar delay characteristics as data pack-
ets. Every FA packet maintains a stack of data structures
containing the IDs of nodes in its path and the per hop
delays (or other relevant information) encountered. The per
hop delay measurements are obtained through time stamping
of the packets as they pass through the various nodes.

Backward ant generation and routing. Upon arrival
of an FA at destination D, a backward ant (BA) packet
is generated. The FA packet transfers its stack to the BA.
The BA packet then retraces back to the source the path
traversed by the FA packet. BA packets travel back in high
priority queues, so as to minimize the effects of outdated
measurements. At each node that the BA packet traverses
through, it transfers the information that was gathered by the
corresponding FA packet. This information is used to update
the tables L and R at the nodes. Thus the arrival of the BA
packet at the nodes triggers the iterative learning algorithms.
Of the various learning algorithms in the literature, we
consider the one proposed by Bean and Costa [2].

Bean and Costa suggest the following scheme for the
learning algorithms. Suppose that an FA packet measures
the delay ∆iD

j associated with a walk (i, j, . . . , D). When
the corresponding BA packet arrives at node i, the delay
information is used to update the estimate of the mean delay
XiD

j using the simple exponential estimator

XiD
j := XiD

j + η(∆iD
j −XiD

j ), (1)

where η > 0 is a small constant. The mean delay estimates
XiD

m , corresponding to the other neighbors m of node i, are
left unchanged.

Simultaneously, the routing probabilities at the nodes are
updated using the scheme:

φiD
j =

(
1

XiD
j

)β

∑
k∈N (i,D)

(
1

XiD
k

)β
, ∀ j ∈ N (i,D), (2)

where β is a constant positive integer. β influences the
extent to which outgoing links with lower delay estimates are
favored compared to the ones with higher delay estimates.

We can interpret the quantity 1
XiD

j
as analogous to the

pheromone content on the outgoing link (i, j). Equation (2)
shows that the outgoing link (i, j) is more desirable when
XiD

j , the delay in routing through j, is smaller (i.e., when
the pheromone content is higher).

III. THE N PARALLEL PATHS MODEL

The model that we consider pertains to the routing scenario
where arriving traffic at a single source node S has to be
routed to a single destination node D. There are N available
parallel paths between the source and the destination node
through which the traffic could be routed. The network and
its equivalent queueing theoretic model are shown in Figures
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1 and 2 respectively. The queues represent the output buffers
(assumed to be infinite) at the source and are associated with
the N outgoing links. We assume in our model that the
queueing delays dominate the propagation and the packet
processing delays in the N branches. Two traffic streams,
an ant and a data stream, arrive at the node S. At S,
every packet of the combined stream is routed with prob-
abilities φ1, . . . , φN (the current values) towards the queues
Q1, . . . , QN , respectively. These probabilities are updated
dynamically based on running estimates of the means of
the delays (waiting times) in the N queues. Samples of the
delays in the N queues are collected by the ant packets
(these are forward ant packets) as they traverse through the
queues. These samples are then used to construct the running
estimates of the mean delays in the N queues. We now
describe our model in detail.

Ant  Stream

Data  Stream

Source  S Destination D

Capacity C

Capacity C N

1

.

.

.

Fig. 1. The network with N parallel paths
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Fig. 2. N parallel paths : The queueing theoretic model

We model the arrival processes of ant and data stream
packets at node S as independent Poisson processes of rates
λA and λD packets/sec, respectively. The lengths of the
packets of the combined stream constitute an i.i.d. sequence,
which is also statistically independent of the packet arrival
processes. The capacity of link i is Ci bits/sec (i =
1, . . . , N ). We assume that the length of an ant packet is
generally distributed with mean LA bits, and that of a data
packet is generally distributed with mean LD bits. If we
denote the service times of an ant and a data packet in
queue Qi by the generic random variables SA

i and SD
i , then

SA
i and SD

i are generally distributed (according to some
c.d.f.’s, say GA

i and GD
i ) with means E[SA

i ] = LA

Ci
and

E[SD
i ] = LD

Ci
, respectively. The packets of the ant stream,

which is essentially a probing stream in our system, would
be much smaller in size compared to the data packets.

Let {∆i(m)} denote the sequence of delays experienced
by successive ant packets traversing Qi. Here delay refers
to the total waiting time in the system Qi (waiting time in
the queue plus packet service time). Also, let {δ(n)} denote
the sequence of successive arrival times of ant packets at the
destination node D. Then the n-th arrival of an ant packet
at D occurs at δ(n). Suppose that this ant packet has arrived
via Qi. We denote the decision variable for routing by R(n);
that is, for i = 1, . . . , N , we say that the event {R(n) = i}
has occurred if the n-th ant packet that arrives at D has
been routed via Qi. ψi(n) =

∑n
k=1 I{R(k)=i}, thus, gives the

number of ant packets that have been routed via Qi among a
total of n ant arrivals at destination D. Once the ant packet
arrives, the estimate Xi(n) of the mean of the delay through
queue Qi is immediately updated using a simple exponential
averaging estimator

Xi(n) = Xi(n− 1) + ε (∆i(ψi(n)) −Xi(n− 1)), (3)

0 < ε < 1, being a small constant.
The delay estimates for the other queues are left un-

changed, i.e.,

Xj(n) = Xj(n− 1), j ∈ {1, . . . , N}, j �= i. (4)

Thus, in general, the evolution of the delay estimates in the
N queues can be described by the following set of stochastic
iterative equations

Xi(n) = Xi(n− 1) + ε I{R(n)=i}
(
∆i(ψi(n)) −

Xi(n− 1)
)
, i = 1, . . . , N, (5)

along with a set of initial conditions X1(0) = x1, . . . ,
XN (0) = xN .

At time δ(n), besides the delay estimates, the routing
probabilities φi(n), i = 1, . . . , N , are also updated simul-
taneously according to the equations

φi(n) =
(Xi(n))−β

∑N
j=1 (Xj(n))−β

, i = 1, . . . , N, (6)

β being a constant positive integer. The initial values of the
probabilities are φi(0) = (xi)

−β

∑ N
j=1 (xj)

−β , i = 1, . . . , N .

In the above model, we assume that the mean delay
estimates Xi(.) and the probabilities φi(.) are updated as
soon as the (forward) ant packets arrive at the destination D,
and this information is available instantaneously thereafter at
the source node S. We do not consider thus the additional
delay involved as the backward ant packets travel back
carrying the delay information to the source. Because back-
ward ants are expected to travel back to the source through
priority queues, the effects of delayed information might
not be very significant, except for large-sized networks. On
the other hand, incorporating the effect of delays in our
model introduces additional asynchrony, making the problem
harder.
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IV. ANALYSIS OF THE ALGORITHM

We view the routing algorithm, consisting of equations
(5) and (6), as a set of discrete stochastic iterations of
the type usually considered in the literature on stochastic
approximation methods [3]. We provide below the main
convergence result which states that, when ε is small enough,
the discrete iterations are closely tracked by a system of
Ordinary Differential Equations (ODEs).

A. The ODE Approximation

An analysis of the dynamics of the system, as given
by equations (5) and (6), is fairly complicated. However,
when ε > 0 is small, a time-scale decomposition simplifies
matters considerably. The key observation is that, when ε
is small, the delay estimates Xi evolve much more slowly
compared to the waiting time (delay) processes ∆i. Also,
because the probabilities φi are (memoryless) functions of
the delay estimates Xi, they, too, evolve at the same time-
scale as the delay estimates. Consequently, with the vec-
tor (X1(n), . . . , XN (n)) fixed at (z1, ..., zN ) (equivalently,
φi(n), i = 1, . . . , N , fixed at φi = (zi)

−β

∑ N
j=1 (zj)

−β ,

i = 1, . . . , N ), the delay processes ∆i(.), i = 1, . . . , N,
can be considered as converged to a stationary distribution,
which depends on (z1, . . . , zN ). Also, when ε is small, the
evolution of delay estimates can be tracked by a system of
ODEs. A heuristic analysis of the algorithm, as outlined in
[10], shows that the ODE system for our case is given by

dz1(t)
dt

=
(z1(t))

−β
(
D1(z1(t), . . . , zN (t)) − z1(t)

)

N∑
j=1

(zk(t))−β

,

...
...

dzN (t)
dt

=
(zN (t))−β

(
DN (z1(t), . . . , zN (t)) − zN (t)

)

N∑
j=1

(zk(t))−β

,

(7)

with the set of initial conditions z1(0) = x1, . . . , zN (0) =
xN . Di(z1, . . . , zN ), i = 1, . . . , N , are the mean waiting
times in the queues under stationarity (as seen by arriving
ant packets) with the delay estimates considered fixed at
z1, . . . , zN .

Formally, the ODE approximation result can be stated as
follows (see Benveniste, Metivier, and Priouret [3]). For any
fixed ε > 0 and for i = 1, . . . , N , consider the piecewise
constant interpolation of Xi(n) given by the equations :
zε
i (t) = Xi(n) for t ∈ [nε, (n + 1)ε ), n = 0, 1, 2, . . .,

with the initial value zε
i (0) = Xi(0). Then the processes

{zε
i (t), t ≥ 0}, i = 1, . . . , N , converge to the solution of the

ODE system (7) in the following sense : as ε ↓ 0, for any
0 ≤ T <∞,

sup
0≤t≤T

|zε
i (t) − zi(t)| P−→ 0, (8)

where
P−→ denotes convergence in probability.

In order to obtain the evolution of the ODE, we need
to compute the quantities Di(z1, . . . , zN ) for our queue-
ing system. With the delay estimates considered fixed at
z1, . . . , zN , the routing probabilities to the N queues then
are fixed at φi = (zi)

−β

∑ N
j=1 (zj)

−β , i = 1, . . . , N . We now discuss

how to compute the quantities Di(z1, . . . , zN ) given our
assumptions on the statistics of the arrival processes and the
packet lengths of the arrival streams.

Under such conditions, every incoming arrival at S from
either of the Poisson streams (ant or data) is routed in-
dependently with probability φi towards queue Qi. Thus
the incoming arrival process in queue Qi (for each i) is
a superposition of two independent Poisson processes with
rates λAφi and λDφi. Consequently, every incoming packet
into Qi is, with probability λA

λA+λD
, an ant packet, and with

probability λD

λA+λD
, a data packet. The cumulative incoming

stream into Qi is Poisson with rate (λA +λD)φi, and every
incoming packet’s service time is distributed according to
the c.d.f GA

i with probability λA

λA+λD
and according to the

c.d.f. GD
i with probability λD

λA+λD
. We further assume that

the queues are within the stability region of operation given
by the inequalities : (λA+λD)φiE[Si] < 1, i = 1, . . . , N ,
where E[Si], the mean packet service time in Qi, is given

by E[Si] = λAE[SA
i ]+λDE[SD

i ]
λA+λD

. We note that the average
waiting time in the system as experienced by successive ant
arrivals to Qi, is the same as the average waiting time in
Qi by the PASTA (Poisson Arrivals See Time Averages)
property. Thus, using the Pollaczek-Khinchin formula for
the average waiting time, we finally obtain the expression
for Di(z1, . . . , zN ) (i = 1, . . . , N ):

Di(z1, . . . , zN ) = E[Si] +
(λA + λD)φiE[S2

i ]
2(1 − (λA + λD)φiE[Si])

, (9)

where E[S2
i ] is given by E[S2

i ] = λAE[(SA
i )

2
]+λDE[(SD

i )
2
]

λA+λD
,

and φi = (zi)
−β

∑ N
j=1 (zj)

−β .

Once expressions for Di(z1, . . . , zN ) are available, we
can numerically solve (7), starting with initial conditions
z1(0), . . . , zN (0). We observe in our simulations that if we
start the system with initial conditions such that we are inside
the stability region, the system stays stable thereafter.
B. Equilibrium behavior of the routing algorithm

We now obtain the equilibrium points of the ODE system
(7) which would, in turn, enable us to obtain the equilibrium
routing behavior . In particular, we can obtain the equilibrium
routing probabilities and the mean delays. For ε small, the
steady state values of the mean delay estimates in the N
queues are approximately given by the components of the
equilibrium points z∗ of the ODE system (7). The points z∗

must satisfy the set of equations given by

(z∗1)−β

N∑
j=1

(z∗j )−β

.
[
D1(z∗1 , . . . , z

∗
N ) − z∗1

]
= 0,

...
...
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(z∗N )−β

N∑
j=1

(z∗j )−β

.
[
DN (z∗1 , . . . , z

∗
N ) − z∗N

]
= 0. (10)

The steady state routing probabilities, φ∗1, . . . , φ
∗
N , and de-

lay estimates are related through the equations: φ∗i =
(z∗

i )−β

∑ N
j=1 (z∗

j )−β , i = 1, . . . , N . Because we have assumed

stable queues, the mean delay estimates, i.e., z∗1 , . . . , z
∗
N ,

must be finite. Then the steady state routing probabilities,
φ∗i = (z∗

i )−β

∑ N
j=1 (z∗

j )−β , i = 1, . . . , N , are all strictly positive.

Equations (10) then reduce to : z∗i = Di(z∗1 , . . . , z
∗
N ), i =

1, . . . , N . We also notice, from equation (9), that for each
i, Di(z∗1 , . . . , z

∗
N ) is a function solely of φ∗i , and so, with a

slight abuse of notation, we denote it by Di(φ∗i ). Then, using

the fact that φ∗i = (z∗
i )−β

∑ N
j=1 (z∗

j )−β , we find that equilibrium

routing probabilities must satisfy the following fixed-point
system of equations:

φ∗1 =
(D1(φ∗1))

−β

N∑
j=1

(Dj(φ∗j ))
−β

,

...
...

φ∗N =
(DN (φ∗N ))−β

N∑
j=1

(Dj(φ∗j ))
−β

. (11)

Besides satisfying (11) the probabilities φ∗1, . . . , φ
∗
N must

also satisfy the following system stability conditions:

(λA + λD)φ∗iE[Si] < 1, i = 1, . . . , N. (12)

We now show that the equations (11) are also the nec-
essary and sufficient optimality conditions for a problem
involving the minimization of a convex objective function
of (φ1, . . . , φN ) subject to the above mentioned constraints
(12). We show consequently that, if there exists a solution
to the set of equations (11) satisfying the constraints (12),
then such a solution is unique.

Consider the optimization problem:

Minimize F (φ1, . . . , φN ) =
∑N

i=1

∫ φi

0
x[Di(x)]

β
dx,

subject to φ1 + · · · + φN = 1, (13)
0 < φ1 < a1,

...
0 < φN < aN ,

where ai = 1
(λA+λD)E[Si]

, i = 1, . . . , N .
Before we attempt to solve the optimization problem (13),

we make certain natural assumptions on the delay functions
Di(x), i = 1, . . . , N . We assume that the functions Di(x)
are positive, differentiable and monotonically increasing on
their domains of definition. This holds true in most cases of
interest, because when the routing probability for an outgoing
link increases, the amount of traffic flow into that link also
increases, resulting in an increase of the delay. Let C be the
feasible set (set defined by the constraints) of the optimiza-
tion problem (13). The following proposition characterizes

the optimal solutions φ∗ of the above optimization problem.
Its proof can be found in [10].

Proposition 1: Given the above assumptions on the delay
functions Di(x), i = 1, . . . , N , a probability vector φ∗ is a
local minimum of F over C if and only if φ∗ satisfies the
set of fixed-point equations (11). φ∗ is then also the unique
global minimum of F over C.

For our model, it is easy to check that the functions Di(x),
as given by (9), are positive, differentiable and monotonically
increasing on their domains of definition. Thus, there is a
unique equilibrium probability vector φ∗ which satisfies (11).

V. SIMULATION RESULTS AND DISCUSSION

We describe in this section an illustrative example. The
queueing system as described in Section III was implemented
using a discrete event simulator. We consider a case when
the number of parallel paths N is 3, the step size ε is 0.002,
and β is 1.

The ant and data traffic arrival processes are Poisson with
rates λA = 1 and λD = 1, respectively. For the ant packets,
the service times in the three queues are exponential with
means E[SA

1 ] = 1/3.0, E[SA
2 ] = 1/4.0 and E[SA

3 ] = 1/5.0,
respectively. For the data packets also, the service times in
the three queues are exponential with means E[SD

1 ] = 1/3.0,
E[SD

2 ] = 1/4.0 and E[SD
3 ] = 1/5.0, respectively. The initial

values of the delay estimates in the three queues were set at
X1(0) = 0.8, X2(0) = 2.8, and X3(0) = 5.6. Then, the
initial routing probabilities are φ1(0) = 0.7, φ2(0) = 0.2,
and φ3(0) = 0.1, which ensures that, initially, we are inside
the stability region of the queueing sytem. We observed in
our simulations that as the queueing system evolved over
time, never did the system become unstable.

Figures 3, 4 and 5 provide plots of the interpolated delay
estimates (zε

i (t), i = 1, 2, 3) in the three queues, averaged
over ten sample paths, versus the ODE approximation,
z1(t), z2(t), z3(t), obtained by numerically solving (7). We
see that the theoretical ODE tracks the simulated delay esti-
mates fairly well. Figures 6, 7 provide plots of routing prob-
abilities φ1(n), φ2(n). (Because φ3(n) = 1−φ1(n)−φ2(n),
its plot is not provided.) The routing probabilities converge
to the equilibrium values φ∗1 = 3/12, φ∗2 = 4/12, φ∗3 = 5/12,
which is actually the unique solution to equations (11).
These probabilities are in the reverse order as packet service
times in the three queues, with link 3 having the highest
equilibrium probability, and link 1 the lowest.

VI. CONCLUSIONS

We have provided convergence results for an Ant Routing
Algorithm for a simple network consisting of N parallel
paths between a source-destination pair. We have modelled
the link delays using a stochastic queueing model, and we
have studied a routing scheme where routing probabilities
are updated based on estimates of path delays. We have
shown that the equilibrium routing probabilities are solutions
of a fixed-point system of equations, which in turn, form the
necessary and sufficient conditions for a convex optimization
problem. We aim to extend the analysis to the network case,
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where multiple traffic streams with different destinations
share a network of links.
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Fig. 3. The ODE approximation for X1(n)
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