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Abstract— The sensor selection problem arises when multiple
sensors are jointly trying to estimate a process but only a subset
of them can take and/or use measurements at any time step. In a
networked estimation situation, sensors are typically equipped
with some memory and processing capabilities. We illustrate
that utilization of these capabilities can lead to significant
performance gains in the sensor selection problem for improved
estimation performance. Further, it also leads to significant
pruning of the search tree that yields the optimum sensor
schedule. We also present a periodicity result for the case where
the decision is whether the sensor should transmit or not.

I. INTRODUCTION AND MOTIVATION

Recently there has been a lot of interest in networks of
sensing agents which act cooperatively to obtain the best
estimate possible, e.g., see [9] and the references therein.
While such a scheme admittedly has higher complexity
than the strategy of treating each sensor independently, the
increased accuracy often makes it worthwhile.

Communication constraints, however, often impose a re-
striction on the maximum number of sensors that can
transmit data to the estimator. Thus, there is a problem
of sensor scheduling. One example when such a situation
arises is when there are echo-based sensors like sonars
which can interfere with each other. Another situation where
sensor scheduling is relevant is in tracking and discrimina-
tion problems, where a radar can make different types of
measurements by transmitting suitable waveforms, each of
which has a different power requirement. There might be
shared communication resources (e.g., broadcast channels
or a shared communication bus) that constrain the usage of
many sensors at the same time. Such a situation arises, e.g.,
in telemetry-data aerospace systems.

Because of its importance, the sensor scheduling problem
has received considerable attention in the literature. The
seminal work in [12] proved a separation property between
the optimal plant control policy and the measurement control
policy for LQ control. The measurement control problem,
which is the sensor scheduling problem, was cast as a
non-linear deterministic control problem and shown to be
solvable by a tree-search in general. It was proven that if
the decision to choose a particular sensor rests with the
estimator, an open-loop selection strategy is optimal for
a cost based on the estimate error covariance. Forward
dynamic programming and a gradient method were proposed
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for this purpose. To deal with the complexity of a tree-search,
greedy algorithms have been proposed many times, some
examples being [13], [17]. Allied contributions have dealt
with robust sensor scheduling [1] and the works of [15],
[16], [18] etc. A different numerical approach to solve
the problem was provided in [2], [10], [14] which cast
the problem as a two-point boundary value problem. A
completely general framework for nonlinear systems and
general nonlinear diffusion sensor signals was developed
in the seminal paper [3]. The dynamic sensor scheduling
problem was solved using dynamic programming methods,
based on general stochastic control separation and non-
linear filtering, which involved quasi-variational inequality
techniques for the analytical proofs. A stochastic algorithm
that is particularly useful in situations where communication
channels impose random data dropouts was proposed in [4].

However, these approaches assume that a sensor, when
allowed to transmit at time step k, transmits only the latest
measurement that it observed at time step k. Thus, even
if all sensors are taking measurements at every time step,
the estimator does not have access to all this information.
A notable exception is the general framework and methods
of [3], where the estimator has complete past histories
of measurements, and where even simultaneous measure-
ments by several sensors in each time step are allowed.
In networked control systems, sensors are usually equipped
to communicate over wireless channels or communication
networks. Thus, it is reasonable to assume that they pos-
sess some storage and processing capabilities. Thus, if the
sensors can execute simple recursive algorithms to process
the information being collected, significant improvement in
estimation (or control) performance can be expected. Such
algorithms have already been demonstrated for the case of
single sensor systems in [5], [6]. In a companion paper [7],
we illustrate the improvement in the stability region using
such pre-processing strategies for multi-sensor systems. In
this paper, we use information processing algorithms along
the lines of the ones proposed in [8] for the sensor scheduling
problem. Using these information processing algorithms, we
show that we obtain significantly better estimates. We also
consider the problem of finding the optimal sensor schedule.
While the general solution remains a tree-search, we show
that the number of paths to be searched are significantly
pruned. We also prove a periodicity result in the optimal
sensor schedules.

The paper is organized as follows. The next section deals
with the problem formulation. We then present a simple
recursive yet optimal information processing algorithm to be
followed by the sensors. In Section IV, we consider the prob-
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lem of optimal scheduling. Finally, in Section V, we present
a special case when the decision (selection) is between a
sensor transmitting or not, and present a periodicity result.
The result also applies to more general scenarios. Because
of space constraints, we omit the proofs here. The detailed
proofs can be found in [11].

II. MODELING AND PROBLEM FORMULATION

Consider a system evolving as

x(k + 1) = Ax(k) + w(k), (1)

where x(k) ∈ Rn is the process state at time step k and
w(k) is the process noise assumed white, Gaussian and zero
mean with covariance matrix Rw. The initial condition x(0)
is assumed independent of the process noise and Gaussian
with zero mean and covariance P0. The process state is
being observed by N sensors S1, S2, · · · , SN with the
measurement equation for the i-th sensor being

yi(k) = Cix(k) + vi(k), (2)

where yi(k) ∈ Rsi is the measurement. The measurement
noises {vi(k), i = 1, · · · , N}, for the sensors are assumed
independent of each other, of the process noise and of
the initial condition. Further the noise vi(k) is assumed to
be white, Gaussian and zero mean with covariance matrix
Ri. In this paper, we will assume N = 2 for ease of
exposition. The ideas are applicable to the general case,
at the expense of more notation. We assume that the pair
(A,C) is observable and the pair (A,R

1
2
w) is stabilizable,

where C =
[
CT

1 CT
2

]T
.

At every time step k, one sensor is chosen to take the
measurement. The assumption of one sensor being allowed
per time step is without loss of generality. If the i-th sensor
is chosen at time k, we represent this event as t(k) = i. By
a sensor schedule, we mean the choice of events t(0), t(1),
· · · . The i-th sensor then calculates a finite vector

si(k) = f(i, k, yi(0), · · · , yi(k), t(0), · · · , t(k)),

where si(k) ∈ Rm and transmits it to a central estimator
(equivalently, shared with all the sensors) in an error-free
manner. By abusing the notation a bit, we denote by s(k) the
vector received by the estimator at time step k. The estimator
calculates an estimate

x̂(k + 1) = g (k, s(0), s(1), · · · , s(k))

of x(k + 1) that minimizes the usual mean squared error

P (k + 1) = E
[
e(k)eT (k)

]
where e(k) is the error defined as e(k) = x(k+1)−x̂(k+1).

To compare particular encoding functions f() and decod-
ing functions g(), we use the finite-horizon cost

JK =
K∑

k=1

trace(P (k)),

or the infinite-horizon cost

J∞ = lim
K→∞

1
K

K∑
k=1

trace(P (k)).

In this paper, we are concerned with the following problems:

1) What are the functions f and g that are optimal for
above cost functions for any schedule of the sensors?

2) What is the optimal sensor schedule for the infinite-
horizon cost? We will be interested in open loop sched-
ules where the choice of the event t(k) does not depend
on the measurement values {yi(k), i = 1, · · · , N}.

3) For the special case when the sensing choices consist
of transmitting a measurement by the sensor or not
transmitting one, what is the optimal schedule for
transmitting measurements for the finite-horizon cost?

III. OPTIMAL ENCODING AND DECODING FUNCTIONS

At time k, define the time-stamp for sensor i as

τi(k) = max{j | j ≤ k, t(j) = i}.
Thus the time-stamp denotes the latest time at which trans-
mission was possible from sensor i. Using the time-stamp,
define the maximal information set Imax

i (k) for sensor i
as Imax

i (k) = {yi(0), yi(1), · · · , yi(τi(k))}. The maximal
information set is the largest set of measurements from
sensor i that the controller can possibly have access to at time
k. For any encoding functions f chosen by the sensors, the
information available at the estimator will be a sub-set of the
maximal information set. Hence, with the optimal minimum
mean squared error (MMSE) estimation being chosen as the
decoding function g by the decoder, the performance for any
encoding functions f will be upper bounded (equivalently,
the cost will be lower bounded) if the estimator had access
to the maximal information sets from all the sensors.

Now consider an algorithm Ā under which at every time
step k, if t(k) = i, sensor i transmits the set Si(k) =
{yi(0), yi(1), · · · , yi(k)}. Note that the algorithm Ā does
not specify valid encoding functions since the dimension of
the transmitted vectors cannot be bounded by any constant
m. However, if the algorithm Ā is followed, at any time
step k, the decoder (and the controller) would have access
to the maximal information sets Imax

i (k). This implies that
for any other encoding algorithm, the cost will always be
higher for any given schedule than obtained by using the
algorithm Ā. Thus, in particular, one way to achieve the
optimal value of the cost JK or J∞ for a given schedule is
through the combination of an encoding algorithm that makes
the information sets Imax

i (k) available to the controller and a
controller that optimally utilizes the information set. Further,
one such information processing algorithm is the algorithm
Ā described above. However, this algorithm requires increas-
ing data transmission as time evolves. Surprisingly, in a lot of
cases, we can achieve the same performance using a constant
amount of transmission and memory.

To this end, we begin with a result proven in [5], [7].
This result identifies the optimal information processing to
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be done by the sensors to ensure that the estimator can
calculate the estimate of state x(k+1) based on the maximal
information sets Imax

i (k).
Proposition 1: Consider a process of the form (1) being

observed by two sensors of the form (2). The estimate
x̂(k|l,m) of the state based on measurements from sensor 1
till time l and sensor 2 till time m (and the corresponding
error covariance P (k|l,m)) can be calculated using the
algorithm given below. Assume, without loss of generality,
that l ≤ m. Let x̂i(k|l) denote the MMSE estimate of x(k)
based on all the measurements of sensor i up to time l.
Denote the corresponding error covariance by Pi(k|l).

• At each time step j ≤ k, the sensor 1 executes the
following actions:

1) Obtain the estimate x̂1(j|j) and P1(j|j) through
a Kalman filter. For j ≤ l, use the measurement
y1(j). For j > l, assume that the sensor 1 did not
take any measurement at time step j.

2) Calculate

λ1(j) = (P1(j|j))−1
x̂1(j|j)−

(P1(j|j − 1))−1
x̂1(j|j − 1).

3) Calculate global error covariance matrices
P (j|j, j) and P (j|j − 1, j − 1) using the relation

(P (j|j, j))−1

=




(P (j|j − 1, j − 1))−1 + CT
1 (Σv,1)

−1
C1

+CT
2 (Σv,2)

−1
C2 if j ≤ l

(P (j|j − 1, j − 1))−1

+CT
2 (Σv,2)

−1
C2 if l < j ≤ m

(P (j|j − 1, j − 1))−1 otherwise,

P (j|j−1, j−1) = AP (j−1|j−1, j−1)AT +Σw.

4) Obtain

γ(j) = (P (j|j − 1, j − 1))−1
A

P (j − 1|j − 1, j − 1).

5) Finally calculate

I1,l,m(j) = λ1(j) + γ(j)I1,l,m(j − 1),

with I1,l,m(−1) = 0.

• The quantity I2,l,m(k) is calculated by a similar al-
gorithm except using the local estimates x̂2(j|j) and
covariance P2(j|j).

• Finally, the estimate x̂(k|l,m) is calculated as

(P (k|k, k))−1
x̂(k|l,m) = I1,l,m(k) + I2,l,m(k).

The above result identifies the quantities that need to
be transmitted by the two sensors to calculate the MMSE
estimate of x(k). The quantities depend only on local mea-
surements at the sensors; however, an implicit assumption is
that each sensor is informed about the times l and m. We
now present an algorithm according to which the sensors can
calculate these optimal vectors with constant memory and

processing for any given schedule. We present the algorithm
A1 that the 1st sensor needs to implement. The algorithm
A2 for the second sensor is similar.

Algorithm A1 to be followed by sensor 1: The sensor
maintains two vectors I1

1,k,α2(k)(k) and I2
1,k,k(k).

1) Initialization: Initialize both the vectors
I1
1,−1,α2(−1)(−1) and I2

1,−1,−1(−1) to be zero.
2) Update and Transmission: At every time step k ≥ 0,

there are two cases:

• Sensor 1 transmits at time step k: It takes the
following actions:

– It updates vector I1
1,k−1,α2(k−1)(k−1) to calcu-

late I1
1,k,α2(k)(k) using an algorithm of the form

mentioned in Proposition 1, where α2(k) =
α2(k − 1). It then transmits this vector.

– It updates the vector I2
1,k,k(k) from

I2
1,k−1,k−1(k − 1) using an algorithm of

the form mentioned in Proposition 1.

• Sensor 2 transmits at time step k: Sensor 1 takes
the following actions:

– It updates the vector I2
1,k,k(k) from

I2
1,k−1,k−1(k − 1) using an algorithm of

the form mentioned in Proposition 1.
– It resets I1

1,k,α2(k)(k) = I2
1,k,k(k).

For this algorithm, it can be verified that

1) The index α2(k) is always equal to the last time m ≤ k
where sensor 2 was able to transmit.

2) All the update steps at time k require only the knowl-
edge of the latest measurement from sensor 1 y1(k).
Thus, constant memory and processing are required.

These two observations allow us to state the following result.
Proposition 2: Consider the problem formulation stated

in Section II. Using the transmitted vectors I1
1,k,α2(k)(k) and

I2
2,α1(l),l

(l) from the two sensors, the estimator can construct
the MMSE estimate of x(k + 1) using all the measurements
from sensor 1 till time k and from sensor 2 till time l. Further,
the vectors can be calculated by the sensors using constant
amount of processing, memory and transmission at every
time step using algorithms A1 and A2.

The algorithm we have outlined is optimal among all
other causal encoding algorithms, in the sense that for any
given schedule of transmission, the cost JK achieved at
any time K is minimum for this algorithm. It can also be
extended to consider the effect of stochastic packet drops by
communication channels from the sensors to the estimator.

IV. OPTIMAL SCHEDULING

In this section, we look at designing an optimal schedule,
i.e., the choice of the events t(k) at every time step k. We
begin by considering the finite horizon cost JK . We first note
that for the optimal encoding and decoding functions that we
have identified in Section II, the proof of optimality of open
loop schedules [12] can directly be carried over. In other
words, the optimal open loop schedule, in which the choice
of t(k) depends only on the system parameters, yields the

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 WeA16.1

496



same performance as the optimal closed loop schedule, in
which t(k) can additionally depend on the choice of events
t(0), t(1), · · · , t(k−1). Thus, from now on, we will consider
obtaining the optimal open loop schedule.

All the possible sensor schedule choices can be repre-
sented by a tree. The depth of a node in the tree represents
time instants with the root representing time zero. The
branches correspond to choosing a particular sensor to be
active at that time instant. Each node is associated with the
cost evaluated using the sensor schedule corresponding to the
path from the root to that node. Finding the optimal sequence
requires traversing all the paths from the root to the leaves in
the tree. If the leaves are at a depth d, a total of 2d schedules
need to be compared. This procedure might place too high a
demand on the computational and memory resources of the
system. We will now see that with the optimal encoding and
decoding functions, we can prune the tree significantly.

Consider a time k when the estimation error covariance
incurred in estimating x(k + 1) using the measurements
of both the sensors till time step k has reached a steady
state value P �. The steady-state exists and is reached ex-
ponentially because of our observability assumptions. For
simplicity, we will assume that the horizon K is long enough
so that the cost incurred in the transient phase is small and
can be ignored during the optimization. Equivalently, we can
assume that the covariance of the initial state P (0) = P �.
Thus, we can carry out the optimization by assuming that
the steady-state has been reached.

We define the following Riccati operator for i = 1, 2:

hi(P ) = Rw+A
(
P − PCT

i

(
CiPCT

i + Ri

)−1
CiP

)
AT

The operator acts on a positive semi-definite matrix P and
results in a value that equals the estimate error covariance at
time step k +1 assuming that sensor i was used at time step
k and the initial error covariance at time step k was P . We
also define ht

i(P ) as the operator hi applied t times on P .
We note that ht

i(P ) is an increasing function in the index t
for any positive semi-definite matrix P .

The key observation that allows us to prune the tree is
the following. When the optimal encoding and decoding
functions are employed by the sensors, the effect on the
error covariance at the estimator is the same as if all
previous measurements were also transmitted by each sensor
whenever it was allowed to transmit. That is, if t(k) = i,
the i-th sensor could be considered to be transmitting all
measurements yi(0), yi(1), · · · , yi(k). Thus, in the steady
state, the error covariance at the estimator resets to hi(P �)
whenever a switching from sensor j to sensor i happens.
Moreover, if no further switching happens in an interval
of length t the error covariance at the end of this interval
will be ht

i(P
�). This observation allows us to discard many

sequences in the search tree and prune it significantly.
Proposition 3: Consider the problem formulation stated in

Section II. Suppose that the optimal encoding and decoding
functions, as identified in Section IV are being followed.
Further, assume that the steady-state has been reached, so

that the error covariance in estimating the state x(m + 1)
based on all the measurements from both the sensors till time
m is P �. Let the sensors be denoted by i and j. Suppose
there exists k > 0 such that

• ∀m = 1, ..., k − 1, T race(hm
i (P �)) ≤ Trace(hj(P �))

• Trace(hk
i (P �) > Trace(hj(P �))

Define two sub-sequences for selecting the sensors

S1 = {t(n) = i, t(n + 1) = i, · · · , t(n + k − 1) = i}
S2 = {t(m) = j, t(m + 1) = j},

for arbitrary times m and n. Then, the sub-sequences S1 and
S2 can not appear in the optimal schedule.

The above result assumes the existence of the parameter k.
If such a k does not exist, using sensor i at every time step is
optimal. Such a case arises, e.g., when sensor i corresponds
to a successful transmission and sensor j corresponds to an
unsuccessful one. The issue of optimal sensor scheduling in
that case is trivial, unless a bound on the number of times
sensor i can be used is given. We shall consider the latter
case in the next section.

Thus, we can prune all the branches that include the
sequences S1 and S2 from the search tree. This gives us a
significant decrease in the search space. However, the number
of branches still remains exponential in the horizon length
K. For a very large value of the horizon K, the complexity
is still prohibitive. However, the case for a large enough
K is practically identical to considering an infinite horizon
cost. For the infinite-horizon cost, we have the following
periodicity result that allows us to bypass the tree-search
process altogether.

Proposition 4: Consider the problem formulation stated in
Section II. Suppose that the optimal encoding and decoding
functions, as identified in Section IV are being followed.
Further, assume that the steady-state has been reached, so
that the error covariance in estimating the state x(m + 1)
based on all the measurements from both the sensors till time
m is P �. Let the sensors be denoted by i and j. Suppose there
exists k > 0 satisfying the two conditions in Proposition 3.
Consider the optimal schedule for the infinite horizon case.
Suppose that at time step m, sensor j is used. Further, let
n > 0 be the smallest value such that at time m + n, sensor
j is used again. Then the optimal schedule after time m is
given by

t(l) =

{
j if l = m + kn, k = 0, 1, 2, · · ·
i otherwise.

V. SINGLE SENSOR WITH BOUNDED TRANSMISSIONS

The general framework considered in the previous sections
facilitates the analysis of a single sensor scheduling in the
presence of a bound on the number of transmissions. As
argued in the previous section, in the case of a single sensor
the issue of scheduling is trivial, unless there is a bound on
the number of transmissions. Considering such bounds are
important in applications which involve a trade-off between
the accuracy of the estimate and the costs of using the sensors
and communicating the information to the estimator.
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The problem set up is as before except that now we only
consider a single sensor observing the process. As before we
assume that the steady-state has been reached. For the finite
horizon case, denote the length of the horizon by K and the
number of allowed transmissions by c(K) < K. Therefore
the frequency of transmission is defined as qK = c(K)/K.
We consider the finite horizon problem of selecting the c(K)
time instants such that t(k) = 1. We denote the choice of ‘not
to transmit’ at time k by t(k) = ∅. The algorithm for optimal
encoding in this case reduces to the sensor maintaining and
transmitting an estimate x̂(k) of the state x(k) based on the
measurements y(0), y(1), · · · , y(k). The process estimator
updates its estimate x̂dec(k) as

x̂dec(k) =

{
Ax̂(k) if t(k) = 1,

Ax̂dec(k − 1) if t(k) = ∅.

Consequently, the error covariance at the decoder evolves as:

P (k) =

{
P � if t(k) = 1,

AP (k − 1)AT + Q if t(k) = ∅,

where P � is the steady state error covariance of the optimal
estimate of x(k) using all the measurements till time k − 1.

We are interested in the following problem: Starting
from an arbitrary time m when the last update hap-
pened, find the schedule that minimizes the cost function∑K

k=1 trace(P (m + k)) subject to the fact that the max-
imum number of channels used is limited to n = c(K).
The following statement indicates that periodic transmission
minimizes the cost function.

Proposition 5: Consider the problem formulation as stated
above. Further, suppose that j = K−n

n+1 is an integer. Then,
the optimal schedule is the periodic schedule

t(k) =

{
1 if k = m + i(j + 1), i = 1, 2, ..., n

∅ Otherwise.
Remark: If j is not an integer, the time intervals between

the sensors cannot be all made equal to j. However, by
choosing the intervals as close to periodic as possible we
can get the lowest possible cost.

VI. SIMULATION RESULTS

In this section we illustrate the results, starting with the
improvement in estimation cost using preprocessing. We
consider the case of a simple model of two sensors trying
to locate a noncooperative vehicle moving in a plane. The
acceleration is equal to zero except for a small pertur-
bation. Let p denote position and v denote speed. Then
x = [px py vx vy]T is the state and we consider a
discretization step h = 0.2. Following the framework of
Section II the state space model parameters are:

A =




1 0 h 0
0 1 0 h
0 0 1 0
0 0 0 1


 , B =




h2/2 0
0 h2/2
h 0
0 h


 ,

C =
(

1 0 0 0
0 1 0 0

)
.
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Fig. 1. Percentage decrease in JK due to preprocessing. (K = 15)

The process and sensor covariances are considered to be

Rw =
(

0.0100 0
0 0.0262

)
,

R1 =
(

0.0003 0
0 0.0273

)
, R2 =

(
0.0018 0
0 0.0110

)
.

Our first observation is that for all schedules, preprocess-
ing lowers the cost. The amount of such decrease depends
on the particular choice of a sensor schedule. Figure 1 shows
a histogram of the distribution of this decrease for a small
time horizon K = 15. It can be seen that more than half of
the schedules will incur an improvement of 15% or more.

We also compared the optimal schedules determined with
and without preprocessing for different time horizons. The
optimal schedule using preprocessing always has a lower
cost. Figure 2 shows the percentage of the decrease in
optimal estimation cost due to preprocessing. We can see
that even in this simple system, preprocessing results in more
than 18% decrease in estimation cost.

It is worthwhile to note that the optimal schedule has
a periodic structure as the horizon increases. The optimal
schedules for different horizons are given in Table I. The
trend remains the same for the values of K ≥ 20.

K OptimalSchedule
10 2212212212
11 22122122122
12 221221221222
13 2212212212212
14 22122122122122
15 221221221221222
16 2212212212212212
17 22122122122122122
18 221221221221221222
19 2212212212212212212
20 22122122122122122122

TABLE I

OPTIMAL SCHEDULES
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Fig. 3. CPU time reduction by pruning for K ≤ 15

The proposed pruning method of section IV results
in speed up in the search associated with the scheduling
problem. We have measured this by the MATLAB commands
‘tic’ and ‘toc’ for the corresponding tree search routines. This
is illustrated in Figure 3, where the ratio of the reduction in
the CPU time is plotted for the range of horizon K ≤ 15.

Figure 4 illustrates the case of a single sensor S2. Here a
time horizon of K = 59 is considered and the optimal cost
is plotted as a function of utilization frequency. K = 59 is
selected since this particular K results in j being integer for
many choices of n. The estimation cost (error) is a decreasing
function of sensor utilization. Therefore, the frequency of
sensor utilization is determined by the trade off between the
communication and estimation costs.
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