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Abstract— Consider a discrete-time, linear time-invariant pro-
cess, two sensors and one controller. The process is observed
by the sensors, which are connected to the controller via links
that can be modeled as erasure channels. If a link transmits
successfully then a finite-dimensional vector of real numbers is
conveyed from the sensor to the controller. If an erasure event
occurs, then any information conveyed over the link is lost. This
paper addresses the problem of designing the maps that specify
the processing at the controller and at the sensors for stabilizing
the process in the bounded second moment sense. When the
information is lost over the links either in an independent and
identically distributed (i.i.d.) or Markovian fashion over time,
we derive necessary and sufficient conditions for the existence
of maps such that the process is stabilized. Such conditions
are expressed as inequalities involving the parameters of the
plant and the probabilities of link fading. and provide the least
conservative stabilization conditions. We also indicate how our
approach can be used if more than two sensors are available,
if the sensors can cooperate and if the acknowledgment signals
are also transmitted over erasure channels. The analysis also
carries over to the case when the single channels are replaced
by networks of erasure channels.

I. INTRODUCTION

Recently a lot of attention has been directed towards net-
worked control systems in which components communicate
over wireless links or communication networks that may also
be used for transmitting other unrelated data (see, e.g., [1],
[5], [21] and the references therein). The estimation and
control performance in such systems is severely affected by
the properties of the communication channels. Communication
links introduce many potentially detrimental phenomena, such
as quantization error, random delays, data loss and data corrup-
tion to name a few, that may lead to performance degradation
or even stability loss.

In this work, we are specifically interested in the problem of
estimation and control across communication links that exhibit
data loss. We consider a dynamical process evolving in time
that is being observed by two sensors. The sensors need to
transmit the data over communication links to a remote node,
which can either be an estimator or a controller. However
information transmitted over the links is erased stochastically.
Preliminary work in this area has largely concentrated on the
case when only one sensor is present. Within the one-sensor
framework, both stability [34], [40] and performance [26], [34]
have been analyzed. Approaches to compensate for the data
loss to counteract the degradation in performance have also
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been proposed. As some representative examples, Hadjicostis
and Touri [17] proposed applying zero control if sensor data is
lost, Nilsson [29] proposed using the previous control input or
time-updating the previous estimate in case of data loss, Ling
and Lemmon [26] posed the problem as a filter-design through
a non-linear optimization for scalar observations and Smith
and Seiler [36] proposed a sub-optimal but computationally
efficient estimator for packet drops occurring according to
a Markov chain. Also relevant are the works of Azimi-
Sadjadi [2], Schenato et al. [33] and Imer et al. [22] who
looked at controller structures to minimize quadratic costs
for systems in which both sensor-controller and controller-
actuator channels are present. The related problem of optimal
estimation across a packet-dropping link was considered by
Sinopoli et al. in [35] for the case of one sensor and packet
drops occurring in an i.i.d. fashion, while Gupta et al. [13]
considered multiple sensors and more general packet drop
models.

Most of the above designs aimed at designing a packet-
loss compensator. The compensator accepts those packets that
the link successfully transmits and comes up with an estimate
for the time steps when data is lost. If the estimator is
used inside a control loop, the estimate is then used by the
controller. We take a more general approach to the control
of networked control systems. It has often been recognized
that typical network / communication data packets have much
more space for carrying information than required inside a
traditional control loop. For instance, the minimum size of an
ethernet data packet is 72 bytes, while a typical data point
will only consume 2 bytes [10]. Many other examples are
given in Lian et al. [25]. Moreover, many of the devices used
in networked control systems have processing and memory
capabilities on account of being equipped to communicate
across wireless channels or networks. Thus the question arises
if we can use this possibility of pre-processing information
prior to transmission and transmission of extra data to combat
the effects of packet delays, loss and so on and improve
the performance of a networked control system. In Gupta
et al. [15] it was shown that pre-processing (or encoding)
information before transmission over the communication link
can indeed yield significant improvements in terms of stability
and performance. Moreover, for a given performance level, it
can also lead to a reduced amount of communication. This
effect can also be seen in the recent works on receding horizon
networked control, in which a few future control inputs are
transmitted at every time step by the controller and buffered at
the actuator to be used in case subsequent control updates are
dropped by the network and do not arrive at the actuator(s),
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see, e.g., [11], [12], [23], [27], [28]. The benefits incurred
become even more apparent when the communication link is
replaced by a network of communication links [14].

In this work, we extend the principle to the case when mul-
tiple sensors are present. Suppose a process is observed using
two sensors that transmit the data over packet-dropping links
to a controller. If the sensors can share their measurements,
there is effectively only one sensor. We look at the case when
cooperation between the sensors is either not permitted, or
occurs over a stochastic communication link. We solve for the
conditions on the links and the dynamics of the process that
allow the process to be stabilized.

The problem involving the presence of multiple sensors
transmitting data in an aperiodic fashion is much more com-
plicated than the problem involving only a single sensor. The
problem of finding optimal encoding algorithms for the multi-
sensor case and analyzing their performance is similar to the
problems of fusion of data from multiple sensors and track-to-
track fusion that have long been open. A usual starting point
for such works is an attempt to decentralize the Kalman filter
as, e.g., in [38]. However this approach requires that data about
the global estimate be sent from the fusion node to the local
sensors. This difficulty was overcome in [8], [37] and further
in [18] where both the measurement and time update steps of
the Kalman filter were decentralized. Alternative approaches
for data fusion from many nodes include using the Federated
filter [6], Bayesian methods [9], a scattering framework [24],
algorithms based on decomposition of the information form
of the Kalman filter [30] and so on. A recent addition to the
literature is [32].

However these approaches assume a fixed communication
topology among the nodes with a link, if present, being perfect.
In our case, information is erased randomly by the communi-
cation channels. This random loss of information reintroduces
the problem of correlation between the estimation errors of
various nodes [3] and renders the approaches proposed in the
literature as sub-optimal. An approach to solve this problem
was proposed in [4] in the context of track-to-track fusion
through exchange of state estimates based on each sensor’s
own local measurements but the specific scheme that was used
was not proved to be optimal. It was subsequently proved in [7]
that the technique was based on an assumption that was not
met in general. There are special cases for which the solution
is known, e.g., when the process noise is absent [39] or one of
the sensors transmits data over a channel that does not erase
information [15]. However, as stated earlier, in general, the
problem is still open. Owing to a separation principle that we
present, our results also carry over to the multi-sensor fusion
problem.

The paper is organized as follows. We begin in the next
section by describing the problem set-up and our notation.
We present the conditions in Section III-A that are necessary
for stabilizability for any causal encoding algorithm at the
sensors. In Section III-B, we then prove that the conditions are
sufficient as well, by presenting a sub-optimal algorithm that
stabilizes the system even when acknowledgements from the
controller are not available. Section IV generalizes the results
in various directions. The case of more than two sensors being

present is treated in Section IV-A. Section IV-B considers the
case when the sensors transmit information to the controller
over networks of erasure links. This also allows us to treat the
case when the sensors can co-operate over erasure channels.
Finally, in Section IV-C we analyze the case when the channel
erasures are correlated in time and can be described by a
Markov chain. We finish with some possible directions for
future work. The proofs of the results are omitted for space
constraints, and can be found in [16].

II. FRAMEWORK DESCRIPTION AND PROBLEM
FORMULATION

Fig. 1. Basic framework for output feedback using two remote sensors, in
the presence of erasure channels. The process and measurement noises at the
plant are presented by w(k) and v1 or 2(k), respectively. Erasure in the links
between the sensors and the controller, is governed by r1 or 2(k).

Consider the set-up of Fig 1, and the following associated
assumptions regarding the plant, the external sources of ran-
domness and the erasure links that connect the sensors to the
controller:

The plant is described by a discrete-time state-space repre-
sentation of the following type:

x(k + 1) = Ax(k) + Bu(k) + w(k), k ≥ 1 (1)

where x(k) ∈ Rn is the process state, u(k) ∈ Rl is the control
input and w(k) is the process noise assumed to be white,
Gaussian, zero mean with covariance Σw > 0. The initial
state x(0) is a zero mean and Gaussian random variable with
covariance matrix Σ0. The process state is observed using two
sensors that generate measurements of the form

y1(k) = C1x(k) + v1(k), k ≥ 0 (2)

y2(k) = C2x(k) + v2(k), k ≥ 0 (3)

where y1(k) ∈ Rm1 and y2(k) ∈ Rm2 . The measurement
noises v1(k) and v2(k) are also assumed to be white, Gaus-
sian, zero mean with positive definite covariance matrices
Σv,1 and Σv,2 respectively. For ease of notation, we adopt
the concatenation v(k)′

def
= [v1(k)′ v2(k)′]′ and denote the

covariance matrix of v(k) by Σv. Similarly, we define

C =
[

C1

C2

]

y(k) =
[

y1(k)
y2(k)

]
.
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Throughout this work, we adopt the following assumption:
Assumption 1: For simplicity, we assume that the pairs

(A,C1) and (A,C2) are not observable. In addition, we
assume that the overall system is observable, i. e., that (A, C)

is observable, where C =
[

C1

C2

]
.

Assumption 1 corresponds to the more difficult scenario where
the controller might have to combine the information gathered
from y1 and y2. Later we show that the stability analysis,
for the case where (A,C1) and (or) (A,C2) are observable,
constitutes a particular case of our analysis, indicating that our
Assumption 1 comes at no loss of generality.

Definition 2.1: (Erasure Link Model ) Consider that
{r1(k)}∞k=0 and {r2(k)}∞k=0 represent Bernoulli stochastic
processes taking values in the set {1, ∅} and characterized
by a probability mass function of the following type:

pi,j
def
= Pr (r(k) = (i, j)) , (i, j) ∈ {1, ∅}2

where r(k)
def
= (r1(k), r2(k)). The process r(k) governs the

state of the links that connect the sensors to the controller.
More specifically, the relationship between sensor i’s output
si(k) and the controller’s input zi(k) is described by:

zi(k) =

{
∅ if ri(k) = ∅
si(k) if ri(k) = 1

, i ∈ {1, 2} (4)

where we adopt the symbol ∅ to represent erasure, i.e.,
it indicates that the information sent from sensor i to the
controller was lost.
Note that, in general, we do not assume that the erasure events
in the channels are uncorrelated. However, we presuppose that
the sources of randomness x(0), {r(k)}∞k=0, {v(k)}∞k=0 and
{w(k)}∞k=0 are mutually independent.

We consider sensors with the following functional structure:
Definition 2.2: ( Sensor map classes Sq and SNAK

q ) For
any given positive integer q, we define Sq as the set containing
all sensor maps with the following structure:

si(k) =

{
S (k,yi(0), . . . ,yi(k), r(0), . . . , r(k − 1)) k ≥ 1
S (0,yi(0)) k = 0

(5)
where i is in the set {1, 2} and si(k) takes values in Rq .
Notice that we assume that {r(i)}i=k−1

i=0 is made available to
the sensor via noiseless acknowledgements. In addition, we
consider another set SNAK

q of sensor maps with the following
structure:

si(k) =

{
SNAK (k,yi(0), . . . ,yi(k)) k ≥ 1
SNAK (0,yi(0)) k = 0

(6)

where i is in the set {1, 2} and si(k) takes values in Rq .
Notice that SNAK

q is the subset of Sq consisting of the sensor
structures that do not rely on the knowledge of past values of
the erasure process {r(i)}i=k−1

i=0 . In other words, SNAK
q is the

set of sensor maps when the sensor does not have access to
noiseless acknowledgment signals.
In the sequel, we will also refer to the sensor maps as encoding
algorithms or information processing algorithms and to the
sensors as encoders.

Definition 2.3: ( Controller class ) Consider stochastic
processes z1(k) and z2(k) taking values in Rq

⋃{1, ∅}. We
define the controller class K as the set of all controllers with
the following structure:

u(k) = K(k, z1(0), z2(0), . . . , z1(k), z2(k)) (7)

where u(k) takes values in Rl and l is the dimension of the
control input to the plant specified in (1).
Given the description of the plant and the erasure link statis-
tics, specified by the probability mass function pi,j , we want
to investigate conditions for the existence of controllers and
sensor maps, in the classes Sq or SNAK

q , that stabilize the
plant in the following sense.

Definition 2.4: ( Stability criterion ) Consider the set-up
of Figure 1 and assume that the matrices A, B, C1, C2 and the
erasure link statistics pi,j are given. A selection of controller
K, integer q and sensor maps S1 and S2, in the set Sq , is
stabilizing if and only if the following holds:

sup
k≥0

Eσ(k),x(0)[x(k)′Qx(k) + u(k)′Ru(k)] < ∞ (8)

where Q and R are positive definite matrices, x(k) is the
state of the plant and σ(k)

def
= {r(i),v(i),w(i)}i=k

i=0 is used
to indicate that the expectation is taken with respect to all
independent sources of randomness.

III. STABILITY ANALYSIS

We will rely on the following result about representation of
linear systems of the form (1)-(3).

Proposition 3.1: Consider an n dimensional linear and
time-invariant system satisfying Assumption 1 and let y1(k)
and y2(k), taking values in Rm1 and Rm2 , constitute a bi-
partition of the system’s output. We can always construct a
state-space representation with the structure (1)-(3), where
the matrices A ∈ Rn×n, B ∈ Rn×l, C1 ∈ Rm1×n and
C2 ∈ Rm2×n are written in one and only one of the following
forms, which we refer to as type I and type II. The first
possibility, denoted as type I, is given by:

A =
[

A1,1 A1,2

0n2×n1 A2,2

]
(9)

C1 =
[
0m1×n1 C1,2

]
(10)

C2 =
[
C2,1 0m2×n2

]
(11)

where Ai,i ∈ Rni×ni , Ci,j ∈ Rmi×ni and n1 + n2 = n.
The following is the second possibility (type II) :

A =




A1,1 A1,2 A1,3

0n2×n1 A2,2 A2,3

0n3×n1 0n3×n2 A3,3


 (12)

C1 =
[
0m1×n1 C1,2 C1,3

]
(13)

C2 =
[
C2,1 0m2×n2 C2,3

]
(14)

where Ai,i ∈ Rni×ni , Ci,j ∈ Rmi×ni and n1 + n2 + n3 = n.
Remark 3.1: In the above representations (of types I or

II), A1,1 describes the dynamics of the state subspace that
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is not observable from y1(k), while the modes that are not
observable by y2(k) follow the dynamics of A2,2. If the
representation is of type II, then A3,3 specifies the dynamics
of the modes that are observable by both y1(k) and y2(k).

A. Necessary Conditions for Stabilizability

Using the representation outlined in the above Proposition,
we can present the necessary conditions for stabilizability of
the process. The necessity of the conditions can be proven
by considering the stability of the process for an algorithm
Ā in which at every time step k, the sensors transmit all the
measurements that they have access to till time step k. Even
though this algorithm is not a valid algorithm in the class Sq

since it involves unbounded amount of transmission, if the
system is not stabilizable with this algorithm, it will not be
stabilizable with any other algorithm. The details of the proof
are in [16], where additionally, an algorithm in the class Sq

is provided that achieves the same performance as obtained
using Ā.

Theorem 3.2: (Necessary Conditions for Stabilizability)
Consider the scheme of Fig 1 and let A ∈ Rn×n, B ∈ Rn×l,
C1 ∈ Rm1×n and C2 ∈ Rm2×n be given matrices specifying
the state-space representation for the plant. In addition, assume
that the plant satisfies Assumption 1 and that the statistics
of the erasure links is specified by a given probability mass
function Pr(r(k) = (i, j)), with (i, j) ∈ {1, ∅}2 that is
independent of the time index k. If the state-space represen-
tation can be written as in (9)-(11) (type I) then there exists
a controller in the class K, a positive integer q and sensors in
the class Sq such that the closed loop system in stable only if
the following inequalities hold:

%(A1,1)2Pr(r2(k) = ∅) < 1 (15)

%(A2,2)2Pr(r1(k) = ∅) < 1 (16)

where %(Ai,i) represents the spectral radius of the matrix Ai,i.
If, instead, the state-space representation is of type II, i. e. of
the form (12)-(14), then necessary conditions for stabilization
also include the following additional inequality:

%(A3,3)2Pr (r(k) = (∅, ∅)) < 1 (17)
Remark 3.2: The case when Assumption 1 does not hold

and the system is observable using only one sensor has already
been considered in the literature [15]. Our results can be
applied to this case if we adopt the convention that the spectral
radius of an empty matrix is 0. Thus, e.g., if the entire state
is observable from y1(k), then the spectral radius of A1,1

is assumed to be 0. A similar statement can be said about
the sufficiency conditions given below as well. Thus we will
assume that Assumption 1 holds in our analysis from now on.

Remark 3.3: The stabilizability conditions make intuitive
sense. The quantity %(A1,1)2 measures the rate of increase
of the second moment of the modes that are observable using
only sensor 2. To keep the estimate error covariance of these
modes bounded, we need the information from sensor 2 to
arrive at a large enough rate. Equation (15) formalizes this
relation. Similarly, the inequality in (16) places a constraint

on the drop rate of information from sensor 1 in terms of the
rate of increase of the modes that are observable solely through
sensor 1. Finally, the relation in (17) places a constraint on the
arrival rate of information from at least one of the sensors in
terms of the modes that are observable from either sensor.

B. Sufficient Conditions for Stabilizability

It turns out that the above conditions are also sufficient for
stabilizability for sensors in the class SNAK

q (and hence in the
class Sq). We have the following result.

Theorem 3.3: (Sufficient conditions for stabilizability)
Consider the set-up of Figure 1 and let A ∈ Rn×n, B ∈ Rn×l,
C1 ∈ Rm1×n and C2 ∈ Rm2×n be given matrices specifying
the state-space representation for the plant. In addition, assume
that the plant is controllable and that it satisfies Assumption 1.
In addition, let the statistics of the erasure link, given by the
probability mass function Pr(r(k) = (i, j)) , (i, j) ∈ {1, ∅}2,
be given. If the state space representation can be written as
in (9)-(11) (type I), then there exists a controller of class K,
a positive integer q and sensors of class SNAK

q such that the
feedback system is stable, if the following two inequalities
hold:

%(A1,1)2Pr(r2(k) = ∅) < 1 (18)

%(A2,2)2Pr(r1(k) = ∅) < 1 (19)

where %(Ai,i) represents the spectral radius of the matrix Ai,i.
If the state-space representation is of type II, i.e. it is of the
form (12)-(14), then stability is assured by requiring that the
following additional inequality also holds:

%(A3,3)2Pr (r(k) = (∅, ∅)) < 1 (20)
Remark 3.4: The inequalities in Theorems 3.2 and 3.3 are

identical. However, notice that Theorem 3.3 states that if
such inequalities hold then stabilization is achievable by using
sensors of class SNAK

q , while Theorem 3.2 characterizes the
necessary condition for stabilization by allowing sensors of
class Sq . This subtle difference, and the fact that SNAK

q ⊂ Sq ,
lead to the interesting conclusion that the use of acknowledge
signals at the sensors, or equivalently {r(i)}i=k−1

i=0 , does
not impact stabilizability. The use of {r(i)}i=k−1

i=0 is crucial,
however, in the optimal control strategy as identified in [16].

Theorem 3.3 can be proven by considering an algorithm
in which the sensors transmit estimates formed by their local
measurements, for the modes of the system that are observable
from that sensor. As indicated in [16], the sensors do not
require the knowledge of the control input applied to the
process for this purpose.

In the next section, we consider some generalizations of the
results that we have presented above.

IV. EXTENSIONS AND GENERALIZATIONS

A. Case of Multiple Sensors

Theorems 3.2 and 3.3 can be generalized to the case when
N sensors are present. We present the following stability result
while omitting the proof.
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Proposition 4.1: Consider the process in (1) being observed
by N sensors, such that the i-th sensor generates measure-
ments according to the model

yi(k) = Cix(k) + vi(k), 1 ≤ i ≤ N.

The sensors transmit data over erasure channels, with the
packet erasure in the i-th channel being denoted by ri = ∅.
Consider the 2N possible ways of choosing m out of the N
sensors, for all values of m between 0 and N . For the j-th
such way, let the sensors chosen be denoted by n1, n2, · · · ,
nj and sensors not chosen by m1, m2, · · · , mN−j . Denote
by Cj the matrix formed by stacking the matrices Cm1 , Cm2 ,
· · · , CmN−j

. Finally, denote by %j the spectral radius of the
unobservable part of matrix A when the pair (A, Cj) is put
in the observer canonical form. A necessary and sufficient
condition for the existence of a positive integer q, an encoding
algorithm of either the type Sq or SNAK

q and a controller that
stabilize the process is that the following 2N inequalities be
satisfied:

Pr
(
rn1 = ∅, rn2 = ∅, · · · , rnj = ∅) | %j |2< 1,

1 ≤ j ≤ 2N .

B. Communication over Networks of Erasure Channels

We can also consider the case when sensors transmit in-
formation not over erasure channels, but over networks, in
which each link is modeled using the erasure model described
above. We require an additional provision for time-stamping
the packet. We can use the techniques used in [14] for the
case when only one sensor is present and extend the stability
conditions to this case. We state the following result without
proof.

Proposition 4.2: Consider the set-up of Figure 1 with the
erasure links being replaced by networks in which each
link is modeled as a erasure link with given probability of
packet erasure. Let A ∈ Rn×n, B ∈ Rn×l, C1 ∈ Rm1×n

and C2 ∈ Rm2×n be given matrices specifying the state-
space representation for the plant. In addition, assume that
the plant is observable and controllable and that its state-
space representation is of type I or type II. If the state space
representation is of type I, then there exists a controller of class
K, a positive integer q and sensors of class Sq or SNAK

q such
that the feedback system is stable if and only if the following
inequalities hold

%(A1,1)2pmaxcut,2 < 1 (21)

%(A2,2)2pmaxcut,1 < 1, (22)

where %(Ai,i) represents the spectral radius of the matrix
Ai,i. If the state-space representation is of type II then the
necessary and sufficient conditions for stabilizability include
the following additional inequality:

%(A3,3)2pmaxcut,12 < 1. (23)

In the above inequalities, the terms pmaxcut,i denote the max-
cut probabilities of the network. For the case when the packet

drops over distinct links are uncorrelated events, they can be
calculated as follows:

1) To calculate pmaxcut,1, form a cut by partitioning the
node set of the network connecting sensor 1 and the
network into two sets: the source set containing the
sensor 1 and the sink set containing the controller.
For this cut, consider the edges going from the source
set to the sink set and calculate the cut-probability by
multiplying the erasure probabilities for these edges. The
maximum such cut-probability yields pmaxcut,1.

2) To calculate pmaxcut,2, proceed as above. However, the
source set now contains sensor 2 instead of sensor 1.

3) To calculate pmaxcut,12, proceed as above. However, the
source set now contains both sensor 1 and sensor 2.

A special case of the network arises when each sensor
transmits data over a single link to the controllers. However,
in addition, the sensors can cooperate by communicating with
each other over a link. If the link is perfect (i.e., does not
exhibit erasure), then the two sensors, in effect, form one
sensor and the results of [15] apply. However, if this link
also exhibits erasure, then we obtain the following stability
conditions:

Corollary 4.3 (Sensors cooperating over an erasure link):
Consider the set-up of Figure 1 with an additional bi-
directional link connecting the two sensors. Let A ∈ Rn×n,
B ∈ Rn×l, C1 ∈ Rm1×n and C2 ∈ Rm2×n be given matrices
specifying the state-space representation for the plant. In
addition, assume that the plant is observable and controllable
and that its state-space representation is of type I or type II.
Let the event of packet erasure over the link connecting sensor
1 to the controller be denoted as before by r1(k) = ∅, over
the link connecting sensor 2 to the controller by r2(k) = ∅,
and over the link connecting the two sensors by r3(k) = ∅.
If the state space representation is of type I, then there exists
a controller of class K, a positive integer q and sensors of
class Sq or SNAK

q such that the feedback system is stable if
and only if the following inequalities hold

%(A2,2)2 max (Pr(r1(k) = ∅), P r(r2(k) = ∅, r3(k) = ∅))
< 1 (24)

%(A1,1)2 max (Pr(r2(k) = ∅), P r(r1(k) = ∅, r3(k) = ∅))
< 1, (25)

where %(Ai,i) represents the spectral radius of the matrix
Ai,i. If the state-space representation is of type II then the
necessary and sufficient conditions for stabilizability include
the following additional inequality:

%(A3,3)2Pr(r1(k) = ∅, r2(k) = ∅) < 1. (26)

C. Markov Drops

A popular model for the bursty nature of packet drops
in a wireless channel is according to a Markov chain. The
simplest such model is the classical Gilbert-Elliot channel
model. In this model, the channel is assumed to exist in one
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of two possible modes: state 0 corresponding to a packet drop
and state 1 corresponding to no packet drop. The channel
transitions between the two states according to a Markov
chain. Suppose that the packet drops in the each of the two
links in our model be described by such a Markov chain.
Let the variable r1(k) be governed by a Markov chain with
transition probability matrix Q1 and the variable r2(k) by a
Markov chain with transition probability matrix Q2. Further,
for simplicity, let the packet drops over the two channels be
uncorrelated events. We have the following result.

Proposition 4.4: (Necessary and sufficient conditions for
stabilizability for Markovian packet drops) Consider the
set-up of Figure 1 and let A ∈ Rn×n, B ∈ Rn×l, C1 ∈
Rm1×n and C2 ∈ Rm2×n be given matrices specifying the
state-space representation for the plant. In addition, assume
that the plant is observable and controllable and that its state-
space representation is of type I or type II. In addition, let
the statistics of the erasure links 1 and 2 be described by
Markov chains with transition probability matrices Q1 and Q2

respectively, with the element q00,i denoting the probability of
two consecutive packet drops in the i-th link. Finally, let the
packet drops over the two channels be uncorrelated. If the state
space representation is of type I, then there exists a controller
of class K, a positive integer q and sensors of class Sq or
SNAK

q such that the feedback system is stable if and only if
the following inequalities hold

%(A1,1)2q00,2 < 1 (27)

%(A2,2)2q00,1 < 1 (28)

where %(Ai,i) represents the spectral radius of the matrix Ai,i.
If the state-space representation is of type II then stability is
assured if and only if the following additional inequality also
holds:

%(A3,3)2q00,1q00,2 < 1 (29)

V. CONCLUSIONS AND FUTURE WORK

In this paper, we considered the problem of controlling
a plant using measurements from multiple sensors. The in-
formation from the sensors to the controller is transmitted
over erasure channels and dropped stochastically. We identified
necessary and sufficient conditions that allow for the plant to
be stabilized in a mean square sense using transmission of a
vector of constant dimension from the sensors to the controller.
We also considered various extensions such as sensors being
able to co-operate over an erasure channel and data being
transmitted over networks. The results are also relevant to the
multi-sensor fusion problem.

There are various directions in which the present work may
be extended. We are currently looking at finding the optimal
encoding algorithms for other channels such as AWGN or dis-
crete memoryless channels. Another possibility is to analyze
similar results for the case when the measurement noises at
different sensors are correlated.
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