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Combined Single-Path Routing and Flow Control in Many-User Region:
A Case for Nash Efficiency

Huigang Chen and John S. Baras

Abstract— We consider the problem of combined single-
path routing and flow control, which is nonconvex and NP-
hard to solve exactly. We focus on the “many-user” region,
i.e. large networks that have far more users than bottleneck
links, which is close to real network scenarios. We first show
that by allowing a proportionally small number of users to
use multipath routing, while keeping the remaining majority
using single-path routing, results in a solution that achieves
multipath optimality. Therefore it is conceptually plausible that
in the many-user region a local algorithm can achieve solutions
arbitrarily close to the optimal solution. To show this is indeed
correct, we focus on the solutions brought out by the simplest
local algorithm, the Nash algorithm. We first examine a special
type of network and show that the Nash equilibrium exists
and the Nash algorithm always converges. It is then shown
that the ‘price of anarchy’, that is the gap between the worst
Nash equilibrium and the social optimum, is bounded when
the number of users goes to infinity. For general networks,
it is not known whether there exists a Nash equilibrium. We
introduce the concept of approximate Nash equilibrium, show
its existence, and prove that it will be arbitrary close to the
social optimum when the number of users is sufficiently large.

I. INTRODUCTION

It is argued in [1] that a combined routing and flow
control algorithm enables network users to improve their
flow efficiency by transmitting packets over multiple fixed
routes (multipath routing) simultaneously. However, within
the current network infrastructure, although each user has
more than one routes to send his traffic, he can only utilize
one at each time. This motivates us to study the combined
single-path routing and flow control problem.

Specifically, we use the network model from Kelly [2]
in which there are IV users and L bottleneck links. Each
user ¢ has a set of available paths m; with cardinality
M; to send his traffic. The total number of all paths is
M = Zfil M. We index all the paths by the order of users
so that m; = {>_{ M; +1,---,51_, M;}. We do not
require the available paths for a single user to be disjoint
from each other. We use the notation z;, c¢;, z; to represent
the flow rate of path [, the bandwidth of link j, and the
flow rate of user 4, respectively. We also use an M x L, 0-1
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Fig. 1. A simple network which shows the problem of combined single-
path routing and flow control problem is NP-hard [4].

matrix R as the routing matrix of the network to indicate the
path/link relations. Distinct from the simultaneous routing
and flow control problem, in single-path routing each user
cannot simply take the aggregation of traffic flows of all
his available paths. Instead at time ¢ the effective user flow
rate takes the following form z;(¢) = maxenm, 2;(t). Thus,
the network optimization problem for combined single-path
routing and congestion control is

maXg; >0 Eie[N] Ui(z:) (1)
s.t. z; = maxjem, ¢, Vi € [N], Rz <c.

For comparison, the network optimization problem for com-
bined multipath routing and congestion control is

maXg,; >0 ZiE[N] Ui(zi)

s.t. z; = Zl@ni l'hvl. € [NL (2)

Rz <ec.
As we can see the only difference between these two
problems is the effective user flow rate z;. Using maximum,
instead of sum over path rates, introduces nonconvexity
into this problem, and consequently strong duality, which
is fundamental for all distributed algorithms to solve the
network optimization problem (see [2], [3]), does not hold.

This problem was first introduced by Wang, et al [4].
As the unsplittable flow problem, the problem of combined
single-path routing and flow control is NP hard. As a result
the stability conditions of price-based algorithms in specific
networks [4], [5] are stringent. For expository purposes, we
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briefly describe a special type of network by which Wang,
et al in [4] showed NP hardness. The network is shown in
Fig. 1. There are N + 3 nodes in the network: 1 server
node, 2 intermediate router nodes, and /N edge router nodes
from which users can access the network. Each edge router
¢ has two identical links with bandwidth ¢; to each of the
intermediate routers. Each intermediate router has one direct
link to the server with bandwidth equal to half the sum of
its incoming bandwidths from all the edge routers, that is,
i Zf\;l c;. Assume each user wants to establish a link to the
server and then each edge router has to decide which one of
the two outgoing links it should select. It is straightforward to
see that solving the network optimization (1) is equivalent to
solving the number partitioning problem, that is to minimize
|2 ies € — 2igs Ci| over all possible sets S. The latter is
known to be NP-hard. Therefore the combined single-path
routing and flow control problem is NP-hard.

Although the above result presents a somewhat pessimistic
perspective for a complete algorithmic solution of the general
problem (1), we can nonetheless proceed in the following
directions which are still relevant to the real world scenario.
First, since the exact optimal solution may be difficult to
obtain, users may be content with a good approximation
close to the true optimum. Second, the above NP-hardness
proof relies on the assumption that the network size, i.e. the
number of links, grows at a similar speed as the number of
users. In reality there are many more users than links. So it
is not too far from reality to consider the number of users
growing while keeping the number of links fixed. In the case
of the network in Fig. 1 this is similar in spirit to the scenario
considered by Mertens [6] in his treatment of the number
partitioning problem. He showed that when the ratio of the
number resolution to the problem size is below a certain
threshold, the number partitioning problem becomes easy to
solve. Third, an important concern is whether the algorithm
is local or not and how the algorithm uses local information.
This is because improper use of local information, for
example path selection decisions purely based on aggregate
link prices, generally leads to route instability.

Based on the above three observations, we will focus on
a simplistic local algorithm — Nash dynamics — and see
how it performs when the number of users grows large. The
intuition that there exists a local algorithm that works for
the single-path routing problem as for the multipath routing
problem is based on our result, obtained in Section II, that
the former problem becomes “closer” to the latter one when
the network size grows large. For a concrete example, using
the same network as in Fig. 1, we will show in Section III
route stability and bounded price of anarchy. That is, the gap
between the result obtained by simple Nash dynamics and the
global optimal is small on average. Our main result is derived
in Section IV, where we show that in general networks all
Nash equilibrium solutions are close to the optimal solution,
in some sense, when the number of users is sufficiently large.
We offer our conclusions in Section V.
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II. FROM SINGLE-PATH TO MULTI-PATH ROUTING

First we will motivate our intuition by showing the relation
between the combined single-path routing and flow control
problem (1) and the multipath routing and flow control
problem (2). Recall the definition of the conjugate function
fPX* = Rof f:X —Ras f*(y) = infaex{{z,y) -
f(x)}, where X and X* is a pair of dual vector spaces
defined by a bilinear operator (-, -). Then the bipolar function
f** of f is the conjugate of the conjugate of f, that is,
f*(x) = infyex«{(z,y) — f*(y)}. The following theorem
by Falk states that the dual of a nonconvex optimization with
linear constraints is equivalent to the “convex envelope” of
the primal optimization,

Theorem 1 ([7]): For a compact set X, f : X — R a
lower semicontinuous function over X, consider the opti-
mization problem

(P)

with its dual problem

max f(x), subject to Ax < b,z € X,

min

(P7)  min

T T
—y A .
(gggf(x) y Az +y b)
The dual problem P* is also the dual problem associated
with the following problem
(P')  max f**(z), subject to Az < b,z € X.

Here f** is the bipolar function of f. Further, if the Slater
condition is satisfied, then the strong duality between P’
and P* holds: i.e. the maximum value of P’ is equal to the
minimum value of P*.

The above theorem can be applied immediately to the
combined single-path and flow control problem (1). The
only thing left to be calculated is the bipolar function of
fi(zy, - yzar) = Ui(max{zy, - ,2a;}). We may take
the set X (and so X*) in Theorem 1 as the one-point
compactification of the positive orthant. We have
fi*(ylv T 7yM7,)
infml,m VM {ij:ll ZY5 — Ui(max{xh e a‘rfwi})}
infm {1’ Inin{yla T aqu} - Uz(x)}

Ui* (min{yh T 7yMi})’

and
fi**(xh e ax]\/]i)
. M; .
= infy, g, {0 2505 — U (mingyn, - yan ) }

= inf, {Zj\il Yy — U:‘(y)} =U; (Z;\/; l’j) )

The above derivation uses the assumption that U,(-) is a
concave increasing function. Notice this utility function is
exactly the utility function used in the combined multipath
routing and flow control problem (2). Therefore we conclude,
Proposition 1: The dual problem of the combined single-
path routing and flow control optimization (1) is equivalent
to the combined multipath routing and flow control optimiza-
tion (2). Therefore the duality gap is nonzero if and only if
the optimal value of (2) is strictly larger than that of (1).
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So the duality gap of the nonconvex optimization problem
(1) can be interpreted as the “social” inefficiency caused by
restricting every player to use only one path to route his
traffic. It is then interesting to see what is the minimum
relaxation of this restriction one should make in order to
eliminate this gap. We will show that one only needs to
make negligible modifications of this single-path rule to
achieve multipath optimality in the many-player region. The
derivation relies on a theorem by Shapley and Folkman (see
[8] Appendix I) whose statement is as follows,

Theorem 2 (Shapley-Folkman): Given a finite family of
sets X; C R™, ¢ € I, for any = € co Ziel X, there exists
a subset I(z) C I, whose cardinality |I(x)| < m, such that
T € COYicr(ay Xi + Dien () Xi-

Intuitively, the Shapley-Folkman Theorem says that the
sum of a large number of nonconvex sets in a finite dimen-
sional space is close to a convex set. In our context the
set of achievable path rates for each user with single-path
routing is nonconvex, while by the “smoothing” effect of the
Shapley-Folkman Theorem the aggregate set of achievable
path rates of all users is almost convex and close to its convex
envelope, which is the set that corresponds to its multipath
routing counterpart. In fact, we can establish the following
proposition,

Proposition 2: The combined single-path routing and flow
control problem (1) can achieve the same efficiency as the
combined multipath routing and flow control problem (2) by
allowing at most L + 1 users to use multipath routing to
transmit their traffic, where L is the number of bottleneck
links in the network.

Proof: The idea follows from the calculation of duality
gap in [8] Appendix I. First let us introduce an indicator
function x; : R — {0, —oo} for each link ! such that

{

We will consider the following perturbed function
(21, omidr, o, dr)
YL, Ui(maxjem, 7;) + 1y xi (dl -y szxj)

and the perturbed maximization problem

0,

—00,

Yy Z —C,
Yy < —C.

xi(y)

L

V(dy,---,dr)

max  ®(xy, -, xasdy, -, dr).
{zi}ERf

It is clear that the optimal value of the combined single-
path routing and flow control optimization (1) is the same
as V(0,---,0). Similarly, the bipolar V**(0,---,0) is
equal to the optimal value of the corresponding multipath
problem (2) by Proposition 1. We are then able to show
(0,---,0,V**(0,---,0)) is in the convex hull of the sum of
N+ L sets, each of which corresponds to the rate distribution
of a user or a link and his achievable utility. By the Shapley-
Folkman Theorem 2, (0,---,0,V**(0,---,0)) is in the sum
of these NV + L sets, among which only at most L + 1 sets
need to be convexified. This is equivalent to the statement
of the proposition. For details we refer to [9] Section 6.3. W
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Hence in the many-user region, the percentage of users that
needs to be changed in order to transform the hard problem
(1) into the easy problem (2) is vanishingly small given the
fixed number of links. Also we can now see that the reason
for the problem (1) being difficult to solve for the network
in Fig. 1 is that there are at least as many bottleneck links
as users. Therefore, intuitively, in the many-user region, the
problem of combined single-path routing and flow control
becomes close to its multipath counterpart and thus easier
to solve. However we should first demonstrate in the next
section that even in the network of Fig. 1, with as many
bottleneck links as network users, a simple local algorithm
leads to an asymptotically efficient result.

III. THE PRICE OF ANARCHY - A CASE STUDY

We consider the following type of noncooperative routing
game in its normal form representation ([N],{m;},{V;}).
The set of players [N] = {1,---, N} coincides with the
set of users in the combined single-path routing and flow
control optimization problem (1). Each player/user ¢ has
a finite number of strategies - its available routes - m;.
A pure strategy profile is then represented by an N-tuple
o = (o1,--+ ,0n) where o; € m; is the strategy chosen
by player <. The set of pure strategy profiles is denoted by
3. Player i’s payoff function V; : ¥ — R is defined by
V(o) = U;(z;(0)) where z;(o) is the optimal rate of player
1 in the following network optimal flow problem,

maxg, >0 e Uil2i)

st z; = 2o, 0;€myVi€E][N], 3)

Rx <ec.

Since the strategy set X is finite, there exists a pure
strategy profile such that the resulting aggregate payoff in the
above game achieves the maximum among all the possible
strategies. This particular routing strategy is one of the
Pareto optima of the game and along with the associated
optimal flow rates, they are exactly the optimal solution of
problem (1). To arrive at this Pareto optimum requires global
coordination among players in general. An alternative way is
to look at a solution concept of the game in which only local
interactions are needed. A simple and also most well-known
such solution is the Nash equilibrium of the game, which is
defined as a strategy oV ¥ such that

Vi(oNE) > Vi(oy,0NF), Vo, € m; and i € [N].

Here oNE denotes the (N —  1)-tuple
(B, JoNE oNE - [ oNF). We denote the set

of Nash equilibria of the routing game by X~ ¥. The route
update procedure to reach the Nash equilibrium can be
described as follows. At each discrete time step ¢ only a
randomly selected player p(t¢) switches its route to achieve
a better resulting flow rate after the flow control mechanism
is stabilized. This is known as Nash dynamics. Since this
is a finite game, it is well known that there may not exist
a pure Nash equilibrium in general, and if that is the case,
the prescribed route update procedure will never terminate.
We show below that in our routing game for the special
network in Fig. 1, this routing instability will never occur.
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Proposition 3: The routing game (N, {m;}, {V;}) for the
network in Fig. 1 has pure Nash equilibria and consequently
every Nash dynamics of the network terminates after a finite
number of steps.

Proof: Let us define the set of strategy profiles ¥ =
{0, 1} where 0 represents the left route and 1 represents the
right route. Recall that we use the notations o;(¢) and z;(t)
for the route selection and actual bandwidth assigned to client
i at the step t, respectively. Also define P°(t) = {i € [N]:
oi(t—) = 0} and P'(t) = {i € [N] : 0;(t—) = 1}. Since
every Nash dynamics can be decomposed into “rounds”,
during which the chosen players select the same route, let
us denote by T} the set of time steps spent at round k. It
can be shown that ¢, is strictly decreasing in k, where
ti, = maxT}. Then the stability result follows. For details
we refer to [9] Section 6.2. [ |

Therefore in contrast to the NP-hardness of the ‘“social
optimum solution” for the network in Fig. 1, we have shown
above that there always exists a Nash equilibrium, which
can be reached in finite time by a simple local algorithm.
It is natural to ask how far the Nash solution is from
the network optimum. So next we consider the problem
of evaluating “the price of anarchy” of this routing game,
which measures the gap of the aggregate utility between
the worst case Nash equilibrium and the social optimum.
Our routing game is related to the line of research on the
selfish routing problem of unsplittable flows (see [10], [11]),
in which the bounded price of anarchy is shown if edge
latency functions are polynomials of bounded degree. The
main difference of our problem is that the traffic demands
are elastic so that each player’s payoff is not an explicit
function of strategies. We adopt the definition of the price
of anarchy as the difference, rather than the ratio as in most
of the literature, of the aggregated utility function of the
worst case Nash equilibrium to the global optimal value. We
will start with the case when each user has a logarithmic
utility function, which corresponds to proportional fairness
allocation of network resources [2].

For N players in the network of Fig. 1, without loss of
generality we assume that 0 < ¢; < ¢y < --- < cn. Every
strategy profile o corresponds to a routing matrix R(o) and
the rate allocations of the players are the solution to the
following optimization problem,

mMax,;>o Zivzl logz;, st R(o)z<cg,

where c is an appropriate column vector of link bandwidths.

It is easy to show that the solution satisfies the following
property.

D If Y cpoci <E 2z = ¢, Vi € P°. Same applies to
Pl

}, 4)

2) If Y ,epoci > 6

c— EjeP07j<k Cj
max

k<i [{j € P°,j =k}

Z; = min {ci,

Vi € P°. Same applies to P!.
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Suppose we fix the optimal aggregated utility function as

N N
Zlogci =0, or Hci =1.
i=1 i=1

Here “optimum” includes the situation when multipath rout-
ing is allowed. Therefore, our problem becomes,

mingesve Jop = max, Zf;l log 2;,
R(o)z <, Hf\il ci = 1.

Recall V¥ is the set of pure Nash equilibrium profiles.
Proposition 4: The optimization problem (5) achieves its
lower bound -1 when N — oc.
Proof: For any Nash equilibrium profile o define

(&)

S.t.

{p, - ,pﬁ)vl} 2 PY and {pi,--- 7P}V2} £ Pl where
Nj + Ny = N. The players in each set are ordered such
that ¢f < --- < ¢}y, and ¢} < --- < cy,. Without loss of

generality assume 32 ¢! > ¢.

There exists an integer ko, 0 < ko < N, such that
there are ky players in P! whose allocated bandwidths
are equal to their maximally possible bandwidths. It is
straightforward to see that such ko players are the ones with

the smallest bandwidths in P'. Define s 2 Y% ¢! and
53 & Zf\fb 41 c}. Again from the rule (4) and along with the

inequality s1 < kcy, by definition, we have, s{Ny/ky < ¢,

So there exists ; > 0 such that

ko _
5] = —N20—51. (6)
From some manupilations we can also get for some do > 0,
Ny — ko +1 1
1 2 2 _
= 01— 0 7
53 N, ¢ 10 (N

We return back to the optimization problem (5). It is clear
that the final rates z; from the current strategy profile o
satisfy

Cis

i R

Therefore we have

PN, b

)Nz—ktz

1
pi & {Pryy1r
otherwise.

.

kg4
Ny — ks

é—s%

Ny — ko

II

Pi#{Pihyi1 Pyt
No

-1 Ngsz
i=ko+1
No—ks = Na—ks Na—k>
Z<2N22c+61> 2( No — ks ) .

S% N. 2 — k2 +1
The first inequality is due to the fact that the arithmetic
average is greater than the geometric average with equality
when all the summands are equal to each other. The second
inequality becomes equality when §; = do = 0. Since it
always holds (N +1)/N)Y N\, e!, as N — oo, the
conclusion of the proposition holds. An example to show the
bound is tight is as follows. Consider a situation in which
there are 2N — 1 players and among those N players on

exp(Jo) =
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the right route have bandwidths A(N + 1)/N? and N — 1
players on the left route have bandwidths \/N, where A
is the appropriate scaling constant so that the bandwidth
constraint holds. The bound is achieved when N — co. W

The above derivation can be applied directly to the case
of a-fair utility [12] —2x~ with a > 0. Specifically, the
network optimization problem is

min,exve Jo =max, ., —2; ©

2 )

s.t. R(o)z <eg,

— o

and we fix the optimal value Zf\; —c; 1. Then using
the same approach as in the case of proportional fair utility,
we can show that the optimal value of the problem converges
to -1 when N — oo. Therefore the price of anarchy of the
routing game with o-fair utility becomes arbitrarily small
when we have sufficiently large number of users.

We can extend the network to one with more than two
links to the server and we can show the existence of a pure
Nash equilibrium as well as the stability of Nash dynamics. It
is observed that the price of anarchy grows with the number
of bottleneck links. For example, in the case of logarithmic
utility function with fixed social optimal value O, the price
of anarchy is at least M — 1 as oppose to 1 when there are
M links to the server. For details we refer to [9].

IV. NASH EQUILIBRIUM AND OPTIMALITY -
ASYMPTOTIC RESULTS

In this section our intention is to show that in some
sense the argument that the local Nash algorithm achieves
optimality asymptotically when the number of users becomes
large as compared to the number of bottleneck links is
valid for general networks. It is well known that the Nash
equilibrium causes efficiency loss in an exchange economy
as opposed to the optimal, where each player acts like price-
taker. It is plausible that in large economies this price-taking
behavior is justifiable, since each player’s ability to influence
the price formation and consequently his gain to deviate from
his true demand is diminishing when the number of players
becomes large. This limit behavior of Nash equilibrium has
been studied extensively (see for example, [13], [14] and
references therein) and many indicate the convergence to the
optimal. Note that our network flow optimizatoin problem
is a special type of pure exchange economy. Our result
confirms the economic intuition that the Nash equilibrium
of our routing game (3) converges to the optimal solution
in the many players region. It is worthwhile to mention here
that this convergent behavior of Nash equilibria in the many-
players region depends on the specific game form, since it
is known that given a reasonably large strategy set, Nash
equilibria of pure exchange economy do not shrink to the
competitive equilibrium even when the set of user types is
finite and there are infinite number of users of each type in
the limit [15].

Although the pure Nash equilibrium of ([N], {m;}, {Vi})
exists for the network in Fig. 1, or its extension, whether
a pure Nash equilibrium of the routing game exists for a
general network is an open problem. To circumvent this issue
we introduce a more general e-Nash equilibrium: a strategy
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o € X is an e-Nash equilibrium if and only if V;(s,0_;) <
Vi(o) + € for all s € m; and all i € [IN]. Recall the notation
o_; = (01, ++ ,0i-1,0i+1, - ,0n). We denote the set of
e-Nash equilibria by XN Clearly VP = RNE©) and
YNE() c SNE(E) jf ¢ < ¢,

Now we construct a concrete example of a many-user
network. Here we use the term “network” for the network
topology along with users’ characteristics, that is, their utility
functions and their available routes. Denote by U/ the set of
concave strictly increasing functions defined on R, and by
M the set of all possible routes in a given network topology.
For simplicity we consider the following “type sequence” of
users for the network topology. There is a finite set [T] of
types and each ¢t € [T] corresponds to a utility/strategy set
pair (Uy(+), m;) € U x 2™ . Denote the Nth network by Ny.
It consists of ny € [N, N + T') users, among whom there
are [wy;N] users of type t for each t € T. Here w; > 0
can be considered as the percentage of type ¢ users in the
entire population and we have ,_,w; = 1. In addition,
the bandwidth of each link [ of Ny is equal to N¢;. The
type sequence method (or “replica economy”) offers a simple
model similar to the real world scenario and its use is popular
as the first step towards the study of the limiting behavior of
large number of users in economic theory (see for example
the case of core equivalence [16]).

Next for type ¢ users in the network Ny we introduce a
M;-dim vector {v;".} in which v/, represents the number of
type t users choosing the 7th route within m;. Apparently
> vl = [w,N] and all these v, users will have the
same rate allocation. Therefore each {vi\,’T} corresponds to
an equivalent class of strategy profiles ¢ in the sense of
rate distribution. For a fixed {v;", } the combined single-path
routing and flow control problem for the network Ay can
be written as

M
maxg>0 ZtE[T] Do UfYTUt(iUt,r)
M
St D e Dore R, ol xy . < Ne¢, VlelL].

Here R is the routing matrix of the network which is invariant
in N. Define ¢, = v} /N to be the scaled down version of
vy,r. Further denote the finite set Vy to be all the possible
{¥,7 } in which each component can be expressed by v; , =
v+ /N for some v,{YT for all ¢ and 7. Then the “scaled down”
version of the above optimization problem can be rewritten
as

V({tr,r}) £ max,>o ZtG[T] Z-]rw:tl U, Ur(@e,7)
St Y perr) vty RE Wy rae s <, VIE[L]

Also we can write the multipath version of the problem in
the following form,

()

maxy>o )y e ) Wil (2)
M,
8.t ZtE[T] E-rztl R,lgﬂ—wb’l,‘tﬁ <,

My
2t = Z‘r:l Lt,7-

vielLl,

We have the following proposition regarding the existence
of an e-Nash equilibrium,
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Proposition 5: For any € > 0, there exists an integer
N(e) such that for any N > N(e) there exists an e-Nash
equilibrium of the routing game of Ny.

Proof: The proof follows the parametric dependency
property of convex programming (see [17] Theorem 1.17).
Denote the solution of the multipath version of the problem
(9) to be z; and xy ;. (if there are multiple solutions, we just
pick one of them) and the solution to its dual problem to be
pj. Define v; = wixf ,/z; and the aggregate price along
the route g7, = >, Rl _p;. We will focus on the strategy
profile {Ejl;f }, which we define to be the closest element in
Vn to {0} .} in lo. We complete the proof by showing that
for any € > 0, there exists an integer N (¢), such that for any
N > N(e), any strategy profile corresponding to {o;} is
an e-Nash equilibrium. For details see [9] Section 6.3. ®

We use the notation RI . for the open set of the strictly
positive orthant in R”. We will need the following technical
fact before studying the properties of the e-Nash equilibrium
of the routing game — for its proof see [9] Section 6.3.

Proposition 6: For any e > 0, there exists a compact
set K C RI 4 such that for all N, the aggregate price
qr-({of.}) for any type t user with strategy 7 satisfies
a.({o.}) € K where {t},} is any e-Nash equilibrium
distribution of \.

Now we state the main result of this section,

Theorem 3: For any ¢ > 0, there exists an €(d) > 0 such
that for any 0 < € < €(d) there is an N(e,d) and for all
N > N(e,d) any e-Nash equilibrium utilities U",s for Ny
satisfy max, - |UJ, — U] < 6. Here U/Y* is the optimal
utility for the type ¢ user using route 7.

Proof: It suffices to show that the argument
maxy - U, — U, | < 6, where U, is the optimal utility of
the multipath version (9), since UgYT* converges to U;", when
N — oo. Suppose the statement does not hold. That is, for
any € > 0, and any NV > 0, there exists n > N and 0 < € < ¢
such that max; , U, — Uy, | > ¢ for an e-Nash equilibrium
{o{.}. Therefore we can have two infinite sequences {e;,}
and {N, }, such that €, > ¢,41 and N,,11 > N, for all n,
€, — 0 and N,, — o0 as n — oo, |UtNT” —Uf .| > & where
U, corresponds to an ¢,-Nash equilibrium {@fv ) of N,
for a fixed (¢, 7) (since we can always take subsequences due
to the finiteness of ¢ and 7). By Proposition 6, all aggregate
prices qu: of an ¢,-Nash equilibrium belong to a compact
set K. Then by uniform continuity of a continuous function
over a compact set, there exists an infinite sequence {7, }
such that 7,, > 1,41 > 0 for all n, n, — 0 as n — oo, and
1) |thY;" - thY;',| < ny, for all 7,7" € m; such that 1‘)2,7" >0
and 7% > 0, and 2) qﬁf;} < qgﬁ, — 1y for all 7,77 € my
such that 172] 7 > 0 and 17?7[ » = 0. Since 62] - also belongs
to a compact set, we can assume by taking a subsequence
if necessary that ﬁtIY;? — Uy as n — oo for all ¢ and
7. Therefore asymptotically we have the Nash equilibrium
strategy T, » with 1) g, = ¢~ for all 7,7" € m, such that
U¢r > 0and vy, >0, and 2) ¢, < ¢4, for all 7,7’ € my
such that ¥, > 0 and ?;, = 0. However, we still have
|Ut» — U{-| > 6. This is in contradiction with the fact that
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only the optimal solution of the multipath problem (9) has
this property with the aggregate prices. |

The simplistic local routing algorithm, Nash dynamics,
leads to the optimal solution of the combined single-path
routing and flow control problem (1) when the number of
users becomes sufficiently large in a general replica network.

V. CONCLUSIONS

Our focus on the combined single-path routing and flow
control problem is mostly on the descriptive side. We have
shown that approximate Nash equilibria are sufficiently close
to the social optimum in the many-user region, although
we have not provided a precise rate or bound of this
convergence. It is intuitive from Proposition 2 that it will
be helpful if we can exactly find those L + 1 users who
cause the difference between the multipath problem and the
single-path problem. But since the Shapley-Folkman theorem
is nonconstructive, it is difficult to go in that direction. It
is unknown whether the computational complexity of the
combined single-path routing and flow control problem for a
fixed number of bottleneck links is still NP hard. These are
topics for future study.
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