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Abstract— In this paper we study low level motion control
of car-like vehicles for applications of UAV swarms. First,
a Suboptimal Continuous-Curvature trajectory generation
approach is studied to generate suboptimal reference tra-
jectories (‘tracks’) to connect desired way-point sequences.
Two Model Predictive Control (MPC) based ‘track follow-
ing’ control approaches are then proposed to deal with
the multiple constraints present in practice; for example,
actuator saturation, local collision avoidance. Simulations
further confirm the motion control design.

I. INTRODUCTION

There has been an increasing interest in controlling
swarm-based unmanned autonomous vehicles (UAVs)as
the technology provides great potential to perform dan-
gerous or explorative tasks in various hazardous, unknown
or remote environments. Originally driven by the need for
saving labor costs and protecting personnel loss from dan-
gerous environments, the applications of UAVs have been
extended to a broad range of problems both in military
and commercial/industrial domains: automated highway
systems, mobile sensor networks, ocean resources explo-
ration, and robotic border patrol [1], [2].

Traditional centralized control approaches are not pre-
ferred because communication and computation costs
increase exponentially with the size of UAV swarms. De-
centralized/distributed control approaches are appealing
considering the large scale of vehicle networks[3], [4]. In
our earlier work [5], a Gibbs sampler based simulated
annealing algorithm has been proved to be useful for
autonomous vehicles achieving self-organization.

Our previous work concentrated only on the high level
path planning algorithm, where a point mass model was
used to represent each UAV. In this paper, a two level
hierarchical scheme is adopted in the collaborative UAV
swarms control system design ( Figure 1). The high level
path planning module generates a sequence of way-points
for each UAV. By following the way-points, swarm UAVs
coordinate their actions to achieve desired collective
behaviors. The low level motion control computes the
control commands for real UAVs to follow the way-points
under the vehicle’s dynamic and kinematic constraints.
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Fig. 1. Block diagram of two level hierarchical swarm UAV collabo-
rative control: distributed Gibbs sampler and NMPC based.

In this paper, the motion control of car-like UAVs
is investigated. Control of wheeled mobile robots with
nonholonomic constraints has been considerably studied
by the robotics and control communities [6], [7], [8].
Some practical concerns, like input/actuator saturation
have also been addressed [9]. However, in applications
of UAV swarms, multiple objectives, including but not
limited to local traffic and obstacle avoidance, present
new challenges for the motion control design. Moreover,
low computational cost algorithms are more appealing
to save power and cost in such applications. Inspired
by the work in [10], [11], a Nonlinear Model Predictive
Control (NMPC) approach is proposed to systematically
address the multiple objectives oriented tracking control
problem. Two variations, gradient descent (GD) and Dy-
namic Programming (DP), are investigated in section V.
The GD based approach provides better control accuracy,
but suffers from convergence difficulties and large com-
putation time variation. The DP based approach trades
control performance with computation time. The “curse
of dimensionality” of DP limits the control accuracy.
These considerations frame the trade offs between the two
approaches. Simulation results are performed to compare
and verify the proposed approaches in section VI.

II. GENERAL PROBLEM FORMULATION

In [5], a path planning problem for the self-
organization, in a battle field scenario, of a swarm of
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UAVs is studied. A 2D mission space is first discretized
into a lattice of cells. N point mass UAVs are moving on
the grid lattice. Label each cell with its center coordinates
(z,y). The Gibbs sampler based algorithm generates a
sequence of way-points {p;(k),i = 1,...,N} for each
UAV i, on the fly. The sequence of way-points are
then used to generate smooth continuous curves {¢; ()}
which pass from the way-point p;(k) at time t(k). The
continuous curve {qg/(t)} for UAV i is usually called a
reference trajectory (or track). One can imagine {¢} (¢)}
as the image of the discrete path {p;(k)} in the continuous
mission space.

In practice, however, dynamic and kinematic con-
straints, e.g., nonholonomic constraints and input/output
constraints, prohibit autonomous vehicles from following
arbitrary reference trajectories. So the reference trajecto-
ries have to be generated by solving the vehicles’ dynamic
and kinematic differential equations, which is considered
the first problem in the low level motion control design.

Solve g (t) Vii=1,...,N
s.t. q; (t(k)) = pi(k) (D
and q; () = fla; (t), (1))

where ¢} (t) is the reference trajectory of the generalized
coordinate ¢ for vehicle ¢, and the last equation is the
vehicle’s kinematic differential equation. It has to be noted
that the solution of the reference trajectory qf (t) might
not be unique. In section IV, we focus on a specific
time optimal trajectory generation problem for car-like
vehicles.

With ¢! (t) available, the remaining problem is to de-
sign a track following control law such that a real vehicle
can follow the desired reference trajectory (or track). As
aforementioned, practical concerns, for example, actuator
saturation, and local traffic/collision avoidance, have to be
addressed in the low level track following control design.
To be specific, the problem can be formulated as follows:

Design wi(t), Vi=1,...,N
s.t. lgi(t) — ¢; (1) < d; 2)
and gi(@i(t), @ (), wi(t)) <0, Vj=1,...,M,

where u;(t) is the control command, g;(-) < 0 are the
set of input/output/state constraints.

III. KINEMATIC MODEL OF CAR-LIKE UAV

In this paper, a rear-wheel driving car-like UAV is
adopted due to its relative lower cost and convenience
for applications. However, the presence of nonholonomic
constraints in its kinematic model, which usually refers to
the rolling without slipping constraint between the wheels
and the ground, impose many difficulties in control de-
sign. In particular, Brockett [12] showed that a linearized
nonholonomic model has deficiency in controllability and
there is no time-invariant linear control to guarantee the
tracking error convergence to zero.

The configuration of the rear-wheel driving vehicle
is shown in Figure 2. In this model, the generalized
coordinate ¢ = (z,y,0, ), where (z,y) are the cartesian
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Fig. 2. The rear-wheel driving car model.
coordinates of the center point of the rear axle, 6 is
the heading angle of the car body with respect to the
x axis, and ¢ is the steering angle. In Figure 2, [ is the
distance between the front axle and the rear axle. Let
(x#,yys) be the coordinates of the front axle center point.
Assuming the two front and back wheels are parallel, the
nonholonomic constraints can be expressed as follows:

Egsin(@ + @) —yrcos(@+¢) =0
Zsinf — gycosh = 0. 3)

Considering the rigid body constraints, the center of the
front axle (xy,yy) satisfies

xy | | cosd T
R
The first nonholonomic constraint (3) can be rewritten
with only the general configuration g involved:

@sin(d + @) — ycos(d + ¢) —flcosf =0. (5

Assuming that the control inputs v, w are linear veloc-
ity and steering velocity respectively, the kinematic model
of a rear-driving vehicle can be expressed as

T cosf 0

g | sinf 0 v

0 | | tangp/l 0 { w ] ©)
) 0 1

One can easily verify that (6) incorporates the nonholo-
nomic constraints (3) and (5). Note that when ¢ = +Z,
the model becomes singular. This corresponds to the
situation where the front wheel heading is orthogonal to
the car longitudinal axis. In practice, the range of the
steering angle ¢ is restricted to prevent this singular case.

IV. TRAJECTORY GENERATION FOR CAR-LIKE UAV

In this section, the generation of the continuous refer-
ence trajectory is investigated for car-like vehicles given
predetermined way-point sequences in free space. One
of the most interesting problems in the literature is
the shortest path problem, which is usually associated
with the time-optimal trajectory. However, nonholonomic
constrains of the car-like vehicle present difficulties in
solving such kind of problems.

In 1957, Dubins studied the problem for the unicycle
model with constant linear velocity 1 [13]. He showed
that the optimal trajectories are concatenations of at most
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Fig. 3.  An example of the optimal trajectory for Dubins’ car
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Fig. 4. Curvature profiles: (a) Dubins’ trajectory and (b) SCC trajectory

3 pieces of basic elements, which include a line segment
(L) and an arc (C') with radius 1. A typical example of
the optimal trajectory for Dubins’ car is shown in Figure
3, where a C-L-C type trajectory is used to connect the
initial and terminal configurations.

However, in Dubins’ optimal trajectory, there may exist
discontinuous curvatures at the connection point of two
successive pieces, for example, line-arc or arc-arc (with
opposite direction of rotation). To follow (exactly) such
a trajectory a car-like vehicle would be constrained to
stop at the end of each connection point. To deal with the
problem, Sussmann [13] studied a generalization of the
problem by controlling the angular acceleration instead
of the angular velocity, which is an equivalent model of
the car-like vehicle. He showed that the optimal trajectory
consists of line segments, arcs and clothoids. Moreover,
Sussmann showed that in some extreme cases, there
may exist a time-optimal trajectory that involves infinite
chattering [13], which is not allowed in practice.

A practical way for addressing the problem is to gen-
erate sub-optimal trajectories by restricting the maximum
number of connection points. The analytical study of
the Sub-optimal Continuous-Curvature (SCC) trajectory
planning can be found in [14]. In the SCC trajectory, there
exist at most 9 pieces of basic elements. For each Dubins’
optimal trajectory there is a corresponding sub-optimal
trajectory. For example, the C-L-C in Dubins’ model may
become Cl-C-CI-L-CI-C-Cl in the sub-optimal trajectory.
The curvature profile for the example of Figure 3 is shown
in Figure 4. By replacing the arcs A and C in the left
plot with the curves 1-2-3 and 5-6-7 in the right plot,
the curvature profile is continuous. The key part of this
approach is to replace any arc segment in Dubins’ optimal
trajectory with a continuous-curve-turn. More precisely,
the arc is replaced by a CI-C-Cl combination, where the
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Fig. 5. An example of the sub-optimal trajectory
start and end points have curvature equal to 0 [14].

In general, the local sub-optimal trajectory planner
works as follows. First, generate the Dubins’ optimal
trajectory using the synthesis approach in [15]. For each
arc segment, replace it by a curve consisting of Cl-C-
Cl. A typical sub-optimal trajectory for the example of
Figure 3 is shown in Figure 5. In [16], Scheuer further
compared the Dubins’s optimal trajectory and the SCC
trajectory. In the extensive simulation results of [16], it
was shown that the total length of the SCC trajectory
is only about 1.1 times longer than the Dubins’ optimal
trajectory. In the rest of this paper, it is assumed that the
reference trajectory ¢, (t) is generated by the sub-optimal
method. The corresponding reference control inputs are
linear velocity v,.(t) and steering velocity w;-.

V. MODEL PREDICTIVE CONTROL (MPC) BASED
TRAJECTORY TRACKING CONTROL

A. MPC Based Motion Control

As aforementioned, the low level motion control mod-
ule has to address multiple constraints besides track
following control; for example, local collision avoidance,
local obstacle avoidance, input/state saturation, etc.. In
the literature, feedback control approaches for car-like
vehicles have been proposed by many researchers to
achieve zero tracking error [6], [17]. However, none of
them addressed the problem stated in 2. Inspired by the
work in [10], [11], MPC based motion control approaches
are studied in this section.

The general framework of the MPC approach is de-
picted in Figure 6. The main idea of the MPC approach is
to choose the control action by repeatedly solving online
an optimal control problem.

More precisely, in discrete time, the model predictive
control approach can be formulated as follows:

z(t+1) f(t), ult), w(t))
y(1) g(x(t), u(t)), M

where wu(t) is the control input, and w(t) is the noise
or disturbance. At timet, given a control input se-
quences {uy}:™ and the initial state z(t) at time in-
stant ¢, for a finite time horizon H = {t,...,t + N},
the output {y;}!*" can be calculated by the predic-
tive model (7). Let us define a cost/objective function
as J({xp JN Ly Y {ug YY) involving the future

state trajectory, output trajectory and control effort. The
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Fig. 6. Basic structure of Model Predictive Control (MPC)

optimal control input u* is generated by minimizing the
cost function, that is,

{upyi™ = arg min T b A b {u ™).
Uk 54

(®)
From time instant ¢ to ¢ 4+ 7, the optimal control inputs
{u}}i*7 are then applied to the process or plant. At time
instant ¢t + 7, a new time horizon T = {t + 7,...,t +
N +7} is generated. {u}}TN"7 is calculated by solving
a similar finite horizon optimal control problem as (8),
given x(t + 7) as initial state and the predictive model
(7). {uj}i2" are then used for control during the time
interval {¢t + 7,...,t + 27}. One can imagine the finite
horizon as a window with size N moving along the time
axis (rolling horizon). Recursively solving a finite horizon
optimal control problem with (time horizon) length N
and applying the computed optimal control during the
subsequent 7 steps is essentially the core of the MPC
strategy.

B. Encode Objectives and Constraints

In the MPC approach, multiple objectives and con-
straints can be encoded in the objective function J. To be
specific, in our problem, the following objective function
is used:

ty
J:¢tf+/ (,utkth+luscjsc+uuJu+,LLOJO+,U,CJC)dt,
! ©)
where J¢, Js¢, J%. J° and J€ are the objective/potential
functions accounting for tracking performance, state sat-
uration, control effort and saturation, obstacle avoidance,
and collision avoidance respectively [18]. ,utk,usc,ﬂu,uo,
and p© are weighting coefficients for each objective. The
design of the potential functions and weighting coeffi-
cients are challenging in order to get robust performance.
In our algorithm, the potential functions are designed as
follows:
o Tracking performance .J%*
Assume that the desired trajectory is gq(t) =
{[xa(t), ya(t),04(t), da(t)]}. The quadratic form of
tracking error can be a good candidate, i.e.,

J* = (g - q0)" Qg — qa),

where () is a positive diagonal matrix.
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o Terminal cost v,
Similarly as with the tracking performance, ¢, is
selected as:

I = (g, — qa(ty)" Qolar, — qalty)),

o Input/state saturation J**
As noted, when the steering angle ¢ = =+ w/2,
the kinematic model of a rear-wheel vehicle will
degenerate. This introduces the need to enforce
that the steering angle must live in a ‘safe’ range
[—phi®e, phi®®], where phi*® is a positive scalar.
The saturation cost could be

J*¢ = max(0, |g] — ¢°*")?,

« Control effort J*
We use a quadratic form to measure control effort:

J* = u” Ru,

« Obstacle avoidance J°
A repulsive potential function is used for avoiding
obstacles. Assume that the closest point on the
obstacle surface to the vehicle is (z°,y°). We used
a J° having the following form

1
(x—29)? + (y—y)*’
where (z,y) is the location of the vehicle.
« Collision avoidance J¢

Jo =

1
Je =
zj: max(y/(z — 27)2 + (y — y7)2 — Rsafe, €)

where R,,f. is the safety range and € is a small

scalar used to prevent J° from becoming infinite or
negative.

C. Gradient Descent Based MPC approach

Inspired by [10], a gradient descent approach is pro-
posed to recursively solve the finite horizon optimal
control problem. The goal of the problem is to find the
optimal control input u*(t) € U, t € [to,ts], to

minimize J =

Blalty)) + / " Liq(t), ult), e
F(q(t). u(t). ) (10)

qo

subject to ¢ =
q(to)

where the first term ¢(g(ts)) is the terminal cost, and the
second term is the running cost. By introducing the costate
vector A(¢), the Maximum Principle indicates that the
optimal control should satisfy the following conditions:

Lo+ Xf, =0
Lo+ ATf, 43 = 0 (11)
Polae,) = AT (ty) = 0

where L., L, denote the partial derivative of L with
respect to u and g, respectively. Similarly for f,, and f,.
One can find that the costate propagates backwards in
time with initial condition A" (tf) = t)4(q¢,), whereas
the state propagates forwards in time. This fact presents

)
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difficult challenges to solving for the optimal control
uw*(t) analytically. Instead, numerical methods have been
proposed that employ the gradient descent method. Such
a method is outlined below:

1) For a given qo, pick a control history u°(t). Let
1=0.

2) Propagate ¢ = f(q,u,t) forward in time to create
a state trajectory.

3) Evaluate A(tf) = tp4(q¢,), and solve backwards
for AT using AT = L, + AT f,

4) Update the control input u**t! = u* 4§, with §, =
—K (L, + AT f,), where K is a positive scalar.

5) Calculate §.J = J(u*t!) — J(u?). If §J > 0, reduce
K and go back to step 4.

6) Let: = ¢+1, and go back to step 2 until the solution
converges.

This numerical method is widely used for solving
optimal control problems in complex systems. Its major
difficulty is the computational cost. In order to speed
up solution convergence, one should carefully select an
appropriate control trajectory to start the iterations. Once
the optimal solution is available, one can then plug the
nonlinear optimizer in the general MPC framework of the
previous section to get the NMPC approach.

It has to be noted that, this method requires L to
be differentiable. However, non-differentiable objective
functions such as the obstacle/collision avoidance and
the saturation functions present difficulties in computing
the partial derivatives L, and L,. In practice, numer-
ical approximations can be used for computing these
derivatives. One may also use curve fitting technics, e.g.,
high order polynomial functions, to approximate the non-
differentiable objective functions with differentiable ones.

It is straightforward to extend the approach to discrete
time nonlinear systems in order to implement it on a low-
cost digital controller; one may refer to [10] for details.

D. Dynamic Programming Based NMPC Approach

In section V-C, a GD approach was proposed to solve
the nonlinear finite horizon optimal control problem in the
NMPC approach. It has to be noted that the convergence
of the GD approach is not guaranteed. Without carefully
selecting the weighting coefficients in the objective func-
tion, as well as the initial control sequence and step size
of control updates, this approach may lead to unstable
performance. The other difficulty of the GD approach is
that the computation time in different sampling periods
may vary a lot, which may cause instability due to the
maximum delay caused by the computations.

To address these problems, a dynamic programming
(DP) approach is developed here. It is well known that
the DP approach suffers from “curse of dimensionality”
in general. However, since it is usually assumed that
autonomous vehicles have only limited actuation capabil-
ities, by reducing the size of the set of admissible control
inputs, the DP approach can be used to solve the finite
horizon optimal problem (12) in a reasonable time.

For the discrete time case, the finite horizon optimal
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Fig. 7. Free space trajectory tracking with the MPC approach

problem (12) can be rewritten as follows

minimize J =

N-—1
Y(g(N)) + > Lig(k), u(k))
k=0

subject to gr1 = g(q(k), u(k)) (12)
q0) = qo.

We assume that the control input u(k) € U takes
only discrete values. Denote by || the cardinality of the
admissible control set. The optimal control sequence can
be recursively computed by the following DP algorithm:

1) Initially, let Jo(go) = O.

2) For k =0,...,N-1, we have

Jea(g(k+1)) = I;&I;(L(CJ(R), u(k)) + Ji; (q(F))),

where q(k + 1) = g(q(k), u(k)).
3) Find the optimal control sequence associated with
the optimal cost:
J* = min(y(g(N)) + Jn(q(N)))-
q(N)

The advantages to using the DP algorithm lie in two
areas. First, the DP algorithm does not require that the
objective function L(q(k),u(k)) and system dynamics
9(q(k),u(k)) be differentiable. Second, it guarantees fi-
nite convergence time, which is very important for real-
time control applications. However, we have to admit that
the “curse of dimensionality” of the DP algorithm may
prevent the scalability of this approach.

VI. SIMULATION RESULTS

The performance of the proposed NMPC based low-
level vehicle control methods are demonstrated in three
simulation examples. In all simulations, the distance [
between the front and rear axles is 0.8. The steering
angle ¢ lies in [—7/4,+m/4]. The saturation ranges of
the control inputs v, w are: v € [0,5] and w € [—1,1].

A. Free-space Way-point Navigation

In this scenario, a single vehicle moving in free space
is considered. In the simulation, the reference trajectory is
a SCC trajectory consisting of 7 segments. Starting at the
origin (0, 0), the reference linear velocity v, is constantly
equal to 1. Simulation results show that both approaches
demonstrate excellent tracking performance ( Figure 7 ).
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Comparison of local obstacle avoidance for two MPC ap-

We compared the computation times for both ap-
proaches at each sampling period. The GD based ap-
proach has large variation, ranging from 0 to 1.5 seconds.
The computation time variation of the DP based approach
is pretty tight — about 0.02 seconds. Although the coding
efficiency of Matlab may greatly affect the computation
time, the large variation of computation cost may poten-
tially present barriers to the application of the gradient
descent based MPC approach in real-time control.

B. Trajectory Tracking With Obstacle Avoidance

In this simulation, we assume a circular obstacle is
located along the reference trajectory with center at
(2.5,1.5) and radius 0.5. Figure 8 shows that both ap-
proaches successfully avoid the obstacle. The vehicle
trajectory with the DP based MPC approach has larger
deviation from the reference trajectory than the vehicle
trajectory with the GD based approach. The primary
reason is due to the limited steering control capability.

C. Multiple Vehicle Tracking With Collision Avoidance

In this simulation, two vehicles have heading directions
that are initially opposite to each other. We assume that
each of the two vehicles is planning to move towards the
other’s location — they will collide in the middle of their
ways. By adding the collision avoidance potential function
component in the objective function, simulations show
that both approaches yield good performance in avoiding
collision (see Figure 9 ). The dashed curves are the
vehicles’ trajectories with the DP based MPC approach.
Similarly as in previous simulations, the limited actuation
capabilities result in large deviations from the reference
trajectory compared with the GD based approach.

VII. SUMMARY AND CONCLUSIONS

In this paper, two problems in the lower level motion
control of car-like UAVs are addressed: reference trajec-
tory generation and constrained track following control.
A SCC trajectory planner is investigated to provide a
locally sub-optimal reference trajectory for car-like UAVs.
To deal with practical constraints in the track following
control design, as for example, local collision avoid-
ance and actuator saturation, an MPC based approach
is proposed to provide locally optimal control. Two ap-
proaches are proposed to solve the finite horizon optimal
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Comparison of local collision avoidance for two MPC

control problem: GD approach and DP approach. Both
approaches have tradeoffs: the GD one provides adequate
control accuracy, however, it suffers from convergence
difficulties and large computation time variation; the DP
approach sacrifices control accuracy to trade with stable
computation time and robust performance.
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