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Abstract—Existing ad hoc system design methods for Wireless
Sensor Networks (WSNs) suffer from lack of reusability. In
addition, the interactions between the continuous-time physical
environments and WSNs have not been well studied. In this paper,
we propose a model-based systems design (MBSD) framework
for WSNs, which is a systematic methodology applying systems
engineering principles to enhance model reusability and collab-
orations among multiple modeling domains. Firstly, we describe
a hierarchy of model libraries to model various behaviors and
structures of WSNs, including physical environments, physical
platforms, communication and computation components, system
services and applications. Based on the MBSD framework, we
introduce a system design flow to compose both continuous-
time and event-triggered modules to develop applications with
support for performance study by simulations. Next, we briefly
describe the main modules for physical platforms, the Media
Access Control (MAC) layer, wireless channels and physical
environments, which are developed using the Systems Modeling
Language (SysML), Simulink and Modelica. Finally, we use a
building thermal control system as the case study to demonstrate
the composability, reusability and flexibility of the proposed
MBSD framework.

I. Introduction

Wireless Sensor Networks (WSNs) are engineered sys-

tems consisting of closely interacting physical environments,

physical platforms, communication protocols and computation

algorithms. The design of such hybrid systems requires a

systems engineering view and an integrated design framework

that can support joint event-triggered and continuous-time

dynamics [1]. In addition, since hybrid systems usually are

very complex and too costly to be designed from scratch, com-

ponent reusability can never be overemphasized. Developing

such a design framework for WSNs faces several challenges.

For example, due to the wide variety of WSN applications

and the heterogeneity of sensor platforms, it is difficult to

figure out the primitive function modules, which are imperative

for reusability. In addition, integrating the numerical solvers

for continuous-time models with event-triggered models is an

established, but far-from-trivial problem.

Several works have tried to improve the code reusability

of sensor network protocols. Klues et al. [2] proposed a

component-based architecture for the MAC layer in WSNs.

Ee et al. [3] introduced a modular network layer to enable

co-existing protocols to share and reduce code and resources

consumed at run-time. However, both works focus on protocol

implementations rather than system designs.

Viptos, a joint modeling and design framework for WSNs,

was proposed in [4]. Mozumdar et al. [5] presented a similar

work modeled in Simulink. They can analyze the performance

of system designs by simulations and generate the TinyOS

application codes. Another work [6], introduced a method

to integrate Simulink and ns-2 for hybrid networked control

systems. However, sensor behaviors in these works are tightly

coupled with communication protocols, which makes their

components hard to be reused.

Samper et al. [7] presented an approach for the formal

modeling and analysis of WSNs at various abstraction levels.

Formal model checking tools can be applied to verify their

models of hybrid systems. However, trade-off analysis is not

considered and the component reusability is not clearly sup-

ported in their approach. Moppet, a model-driven performance

engineering framework for WSNs, was proposed in [8], which

is the closest work to our framework. Moppet enables users

to design WSN applications using the model libraries and

estimate their performances using event calculus and network

calculus without simulations. However, the continuous dy-

namic behaviors of physical environments are not considered.

In this paper, we propose a model-based system design

framework for WSNs, which applies system engineering

principles to model both event-triggered and continuous-time

components. Firstly, the MBSD framework is proposed, which

provides a hierarchy of system model libraries for applications,

system services, computation and communication algorithms,

physical platforms and physical environments to support a

plug-and-play design fashion. Event-triggered components are

modeled in SysML and statechart diagrams are exploited to

model their behaviors. Continuous-time components are mod-

eled in Simulink or Modelica and their behaviors are described

by differential equations. To make our ideas more clear, the

model libraries for the MAC layer, physical platforms, wireless

channels and physical environments are briefly explained.

Secondly, based on the MBSD framework, a system design

flow is proposed, which can integrate both event-triggered

and continuous-time modules. With the help of IBM Rational

Rhapsody [9], Simulink and C/C++ source files can be gen-

erated automatically from the MBSD framework, which can

be used for performance study and interactive simulations.

Finally, a building thermal control system is used as the

case study to demonstrate the reusability and flexibility of

the proposed MBSD framework. In this example, we illustrate

how hybrid systems can be easily developed using the modules

in the model libraries, and how their performance can be

studied. Using the MBSD framework, developers can focus

on the system design strategies, rather than implementation
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details that are usually not familiar to system experts.

The rest of this paper is organized as follows. We introduce

the proposed MBSD framework and design flow in Section II.

In Section III, we describe the main modules in some model

libraries. The case study is presented in Section IV. Finally,

Section V concludes this paper.

II. Overview of the Framework

In this section, we first introduce the proposed MBSD

framework, with a hierarchy of model libraries to model

various behaviors and structures of WSNs. Then we describe

the design flow to develop applications with support for

automatic code generation for simulations.

A. Hierarchy of System Models

The MBSD framework provides the model libraries for ap-

plications, services, computation algorithms, communication

protocols, physical platforms and physical environments.

Application Model Library. A WSN application can be

specified with function requirements, performance require-

ments, physical platforms and the physical environment where

the sensor network will be deployed. The Application Model

Library provides modules that can precisely describe common

sensor network applications. In addition, special applications

can also be modeled by extending proper models in the library.

Service Model Library. Most WSN applications share

several common features that are used frequently, such as the

query service to retrieve data locally or remotely, the naming

service to uniquely identify motes locally or globally, the

location service to compute the virtual or physical locations

and regions of sensor motes, etc. The Service Model Library

provides modules for these common services with interfaces

to customize to fulfill the application requirements.

Network Model Library. This library resides in the center

of the MBSD framework, consisting of communication mod-

ules, computation modules and data management modules that

are necessary to implement various algorithms and protocols

to accomplish the upper layer services. By well defining their

interfaces, different algorithms and protocols can be studied

and compared systematically in a plug-and-play way, using

components of the same functionalities and ports, but with

different implementations.

Physical System Model Library. This library is composed

of modules for various physical platforms in heterogeneous

WSNs. Despite their different capacities and computation

powers, these platforms can be viewed to be composed of

at most four parts: CPU, sensor, transceiver and battery. We

have distilled the various common primitives and parameters

to describe these components and their ports. In addition, this

library provides wireless channel models with different radio

propagation models, channel fading models and bit error rates

under different modulation schemes.

Environment Model Library. This library serves as the

bridge between the continuous-time domain and the event-

triggered domain. On one hand, physical environments usually

exhibit continuous dynamic behaviors. On the other hand,

algorithms and protocols in WSNs are usually event-driven

and exhibit discrete dynamic behaviors. This library provides

modules to exchange information between these two domains.

All event-triggered components are modeled in SysML

using statecharts and primitive operations are implemented in

C/C++. All continuous-time components are modeled using

Simulink or Modelica, which are then compiled to generate

S-Funtions and imported to SysML. Continuous data are

passed through flow ports, while events and discrete data are

exchanged via rapid ports.

B. System Design Flow

Based on the MBSD framework, we propose a system

design flow (Fig. 1) to compose both event-triggered and

continuous-time modules.
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Fig. 1. System Design Flow for Model Integration

WSN applications are developed by composing proper

modules from the model libraries according to their system

specifications, which specify their functionality, performance

requirements, environments, hardware platforms, algorithms

and protocols used in the systems, etc.

After all components have been composed using the Block

Definition Diagrams (BDDs), Parametric Diagrams and Inter-

nal Block Diagrams (IBDs) in SysML, the complete system

models can be used in the following three ways.

Simulate in Matlab/Simulink. The Simulink profile offers

the <<StructuredSimulinkBlock>> stereotype that

can be applied to create a Simulink simulation environment.

Other SysML blocks and Simulink blocks can be contained

as subcomponents, and the compositions can be specified in

IBDs. From this Simulink structure block, we can generate

a Simulink source file in which all SysML blocks in IBM

Rational Rhapsody are transformed into a single S-Function

and all Simulink blocks remain the same. After that, we

can simulate the whole system in Matlab/Simulink. This

simulation method is useful for performance study.

Simulate in Rational Rhapsody. C/C++ source codes for

the whole system model can be generated directly from the

MBSD framework, which can be used to simulate the whole
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system in Rhapsody. Two technologies are available for model

validation: statechart animation and interactive simulation.

Statechart animation enables us to validate system models

by tracing, and debug system designs at the design level

rather than the source code level, by actually executing system

models and animating various SysML statechart diagrams.

Interactive simulation enables us to design GUIs in a drag-

and-drop fashion using the components provided in Panel

Diagrams. By wiring these GUI components with the states

and attributes of SysML blocks, we can observe their values

and modify the configurations interactively in the runtime

without recompiling the models. This simulation method is

useful for system debug and validation.

Trade-off Analysis and Design Space Exploration. The

relationships between component design parameters can be

specified in Parametric Diagrams, which can be solved by

Parametric Diagram solvers for trade-off analysis and design

space exploration. This is beyond the scope of this paper.

III. System ComponentModels

Modeling WSNs is generally a complex task due to the wide

variety of WSN applications, the heterogeneity of physical

platforms, and the complex interactions with their physical en-

vironments. In order to enhance the reusability, it is imperative

to identify primitive function components in different layers

and the interfaces for them to interact with each other. In this

section, we briefly describe the main modules for physical

platforms, the MAC layer, wireless channels and physical

environments1.

A. Modeling Wireless Sensor Networks

Sensor motes (wireless routers or base stations) consist

of physical platforms and softwares (i.e., algorithms and

protocols), communicating through wireless channels. Sensor

motes provide ports to get the clear channel assessment (CCA),

query environment phenomenon data, register themselves to

the wireless channel component and send/receive packets.

1) Physical Platforms: A physical platform is composed

of four parts: battery, CPU, sensor and transceiver. Their

interactions in a typical composition of a physical sensor

platform is shown in Fig. 3. We describe the transceiver

module in detail as an example, whose behaviors are modeled

as a state machine in Fig. 2.

Each transceiver has four power states, whose power levels

are given by sleepPower, standbyPower, txPower and

rcvPower, respectively. To support the Unit Disk Graph

(UDG) model, the txRange attribute can specify the trans-

mission range. The transceiver sends the energy consumption

information to the battery periodically and transits to the

termination state if an evDead event is received. In addition,

it will transit its power state accordingly if an evMoteCtrl
message is received.

If an evMACCCAQ query is received from the MAC layer,

which requires to poll the channel to get the CCA information,

1For more details, please refer to http://www.ece.umd.edu/∼briankw/
resources/Wang WETICE 2012 Full.pdf

Fig. 2. Behavior Model of a Transceiver Using Statechart

the transceiver will forward this query with the mote ID

to the wireless channel component via pCCAQ. The reply

evCCAR that contains the strength of the strongest signal in

the channel near this mote is returned by the wireless channel

component through pCCAR. The transceiver compares this

signal strength with its carrier sense threshold (specified by

the CCAThreshold attribute) and sends the result (true or

false) to the MAC layer through pMACCCAR.

If an evMACSend request that contains the packet to

be sent is received from the MAC layer, the transceiver

will forward this packet to the wireless channel component

through pChSend. Furthermore, the amount of energy con-

sumed to send this packet is sent to the battery compo-

nent. If an evChReceive event that contains the packet

forwarded by the wireless channel component is received

from pChReceive, the transceiver will check the received

signal strength (RSS) and the destination of the packet. If it

is the destination and the RSS exceeds its receive sensitivity

(specified by rcvThreshold), it will forward this packet

to the MAC layer through pMACRcv. Otherwise, this packet

will be dropped. Similarly, the energy consumption for packet

processing is sent to the battery component.

2) MAC Layer Components: A MAC layer component

provides the ports for upper layers to send and receive packets,

set the transmission power of the transceiver and control

the power states of the physical sensor platform. The main
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subcomponents in this layer are described as follows, some of

which are developed based on [2]. A composition example is

shown in Fig. 4.

The Low Power Listener (LPL) component is responsible to

adjust the transceiver’s power state based on channel activity.

Both the fixed LPL listener and the periodic LPL listener are

provided in the MBSD framework. The CSMA/CA Channel
Access component is responsible to gain the channel access

right for a transmission using the CSMA/CA mechanism.

The CSMA/CA Sender component is responsible to send a

packet using the CSMA/CA mechanism. The Slot Manager
component manages the slot schedule for TDMA mechanism.

The TDMA Sender component is similar to the CSMA/CA

Sender, except that packets are sent using the TDMA mech-

anism. The Receiver component is responsible to broadcast

received packets to the MAC Controller and other protocol-

specific components for further process. The Queue Manager
component is responsible to buffer packets in the MAC layer.

The MAC Controller component is the only one that needs

to be customized by users. This component specifies the

control logic of a MAC protocol. Every MAC protocol should

extend this abstract component and implement the protocol-

specific behaviors. The ports to interact with other modules

have been defined, including components in upper layers and

other components in the MAC layer.

3) Wireless Channels: Wireless channel components model

various wireless channels with different radio propagation

models, channel fading models and bit error rates (BERs)

under different modulation schemes. Each network instance

usually has only one wireless channel component, to which

all sensor motes, actuators, wireless routers and base stations

must register themselves with their IDs, physical positions and

transmission powers/ranges.

Since the channel component interacts with all nodes in a

network instance, it may not be able to process all requests

immediately. Therefore, the channel component needs to buffer

the received requests in FIFO queues. In addition, the channel

component needs to maintain the information of all nodes in

the network, including their IDs, physical positions and trans-

mission powers/ranges. Furthermore, this component needs

to maintain the information of all ongoing transmissions in

the channel, including the physical positions and transmission

powers/ranges of the senders, the start time-stamps and their

required transmission times. These information are essential

for the evaluation of CCAs and BERs.

B. Modeling Physical Environments

Environment phenomena (e.g., temperature and humidity)

usually exhibit continuous dynamic behaviors, which are typ-

ically described by differential equations according to their

physical laws and modeled using Matlab/Simulink or Mod-

elica. Simulink is a generic data-flow simulation tool good

for modeling control systems. Simulink models are first built

using the Embedded Coder in Matlab to generate C/C++

source codes, and then imported as SysML blocks to Rational

Rhapsody. Modelica is a more powerful topological-based

modeling language with support for symbolic manipulation

of equations and non-causality, which makes it excellent for

modeling plants and physical world. Modelica models should

be transformed to Simulink S-Functions first [10]. The outputs

of their solvers are forwarded to the Phenomenon module

through flow ports.

The Phenomenon component serves as the interface between

the continuous-time domain and the event-triggered domain.

The basic Phenomenon component periodically sends new

phenomenon information to the Environment component. The

Environment component models the propagation of informa-

tion that are received from the Phenomenon module. It accepts

queries from sensors, computes the phenomenon values based

on the propagation model and the distances between sensors

and the phenomenon, and returns the results to sensors. Several

Environment modules can be composed in a network for

different environment regions. For example, two such modules

are included in our case study with one for each room.

IV. Case Study

The MBSD framework proposed in this work is intended to

provide a reusable and extensible mechanism for system de-

sign and performance simulations. In this section, we present

a simple building thermal control system as the case study to

demonstrate the composability, reusability and power of the

MBSD framework.

A. Building Thermal Control System

A building thermal control system is responsible to control

the temperature inside a building so that people can feel

comfortable and equipments can work in a optimal condition.

In addition, it also needs to reduce the energy consumed by

heaters and air conditioners (ACs).

In this case study, we consider a simple building that

consists of two large rooms: the living room and the data

center. Each room has a desired temperature, which is usually

22 ◦C and much higher than the environment temperature in

the winter. Therefore, a heater is needed in the living room

to generate warmth. On the other side, the temperature in the

data center will naturally rise because the large amount of

electrical power used by the computer systems will heat the

air. Consequently, an AC is needed in the data center to keep

the temperature at the desired level.

An efficient way to reduce the energy consumption is to

use the heat emitted by the computer systems to heat the

living room through a pipe. A central control system decides

when the heater, AC and pipe should be turned on or off. One

temperature sensor is deployed in each room, which sends the

room temperature to the control system in the base station

through the wireless channel. The commands from the control

system are sent to the heater, AC and pipe directly.

In this case study, we assumed the IEEE 802.15.4 unslotted

CSMA/CA mode [11] is used as the MAC protocol, and both

the two sensors and base station can communicate with the

personal area network (PAN) coordinator directly. The com-

positions of the main components are introduced as follows.
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1) Physical Platforms: The temperature sensors, base sta-

tion and PAN coordinator can be composed using components

from the physical system model library. The internal compo-

sition of a temperature sensor is shown in Fig. 3. The base

station and PAN coordinator can be composed in the similar

way but without the sensor component.

Fig. 3. SysML Internal Block Diagram for Physical Sensor Motes

2) IEEE 802.15.4 MAC Protocol: The unslotted CSMA/CA

MAC protocol for each node can be composed using compo-

nents from the network model library. The internal composi-

tion of the MAC protocol for the PAN coordinator is shown

in Fig. 4. Both the sensors and base station act as RFDs,

whose MAC protocols can be composed in the similar way but

without the queue manager component, and the PAN controller

component is replaced with a RFD controller component.

Fig. 4. SysML Internal Block Diagram for the IEEE 802.15.4 Unslotted
CSMA/CA Mode for the PAN Coordinator

3) Building Thermal Model in Simulink: The control sys-

tem and building thermal dynamics are modeled in Simulink.

The thermal dynamics model of the Data Center is shown in

Fig. 5 as an example.

The control system decides when the heater, AC and pipe

should be turned on or off based on the following rules:

• Heater: turn on if TLR ≤ 20 and turn off if TLR ≥ 24

• AC: turn on if TDC ≥ 24 and turn off if TDC ≤ 20

• Pipe: turn on if TLR ≤ 22 and turn off if TLR ≥ 24

T_DC

3

Pipe_Out

2

C_DC

1

Server Heat Splitter Pipe Heat 
Transfer Efficiency

Gain

1/s

1/s

Heat Losses

1/Req
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Temperature
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Data Server

HeatFlow

Cost 
Calculator

ColdCost

Air Conditionar

On/Off

T_DC

ColdFlow

1/Mc

1/(M*c)

A/C_On/Off

2

Pipe_On/Off

1

Fig. 5. Simulink Thermal Dynamics Model of the Data Center

where TLR and TDC are temperatures of the living room and

data center, respectively. Here, a variance of 2 ◦C around the

desired temperature is allowed to avoid oscillations.

4) Overall System Composition: After all required compo-

nents have been composed using the model libraries, they can

be connected together to model the whole system. The overall

system composition of our case study is shown in Fig. 6.

The channel component with the ITU indoor propagation

model [12], Rayleigh fading and BPSK modulation scheme

is selected for this system. The connections between the

channel component and the node components are not shown

here for clarity. Ports with the same name (indicated by the

same color) should be connected. The SL_ControlSystem
component is used to import the Simulink models by applying

the <<SimulinkBlock>> stereotype.

Fig. 6. SysML Internal Block Diagram for the Whole System

B. Evaluation

The Simulink source file for the overall system is generated

from the Simulink structure block in Figure 6 automatically,

which is then simulated in Matlab/Simulink. The following

four scenarios are considered in our simulations:

• Wireless + No Pipe. The temperatures are collected to

the base station using the WSN, but the pipe is never

turned on. Each sensor measures once every 5 seconds.

• Wireless + Pipe (5s). Similar to the above scenario, but

the pipe feature is enabled.

• Wireless + Pipe (60s). Similar to the above scenario, but

the sensor sleep interval is 60 seconds.
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• Wired + Pipe. The room temperatures are fed back to

the control center directly. This scenario is used as the

reference to study the impacts of the delays in the WSN.

The temperatures of the environment, the heater, the AC

and the air flow from the computer systems are 10 ◦C, 50 ◦C,

4 ◦C and 50 ◦C, respectively. The air flow rate of the AC,

the heater and the computer systems are 2 kg/s, 2 kg/s and

0.5 kg/s, respectively. We assume 50% of the air flow from

the computer systems can be piped out and 30% of their heat

can be delivered to the living room. The MAC protocol uses

the default parameter values specified in [11].

The initial temperature of both rooms is 20 ◦C. The simula-

tion results for the first 2 hours of the room temperatures and

cost are shown in Figure 7, and the working statuses of the

AC, heater and pipe are shown in Figure 8. The results indicate

that the pipe is working efficiently, which can decrease the

working time of the heater and AC, and thus reduce the total

electricity cost by 24%. When the sensors wake up to measure

the temperature once every 5 seconds, the impacts of the

delays on the system performance are negligible. However, if

the interval between two successive measurements is increased

to 60 seconds, the room temperatures may cross the desired

boundaries, which should be avoided. This can be used to

study the trade-off between the system performance and energy

efficiency of the sensor motes.
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Fig. 7. Room Temperatures and Total Electricity Cost

V. Conclusions

In this work, we have proposed a model-based system de-

sign framework for WSNs, which can model both continuous-

time and event-driven components, and integrate them by

composition for performance study by simulations. SysML,

Simulink and Modelica that are standard modeling languages

in the industry are used to develop the model libraries. The

main component models for physical platforms, the MAC
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Fig. 8. Working Statuses of the A/C, Heater and Pipe

layer, wireless channels and physical environments are de-

scribed briefly. A hybrid system is used as the case study

to demonstrate the composability, reusability and flexibility of

the MBSD framework.
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