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Abstract- We address the problem of state estimation of 
the power system for the Smart Grid. We assume that the 
monitoring of the electrical grid is done by a network of 
agents with both computing and communication capabilities. 
We propose a security mechanism aimed at protecting the state 
estimation process against false data injections originating from 
faulty equipment or cyber-attacks. Our approach is based on 
a multi-agent filtering scheme, where in addition to taking 
measurements, the agents are also computing local estimates 
based on their own measurements and on the estimates of 
the neighboring agents. We combine the multi-agent filtering 
scheme with a trust-based mechanism under which each agent 
associates a trust metric to each of its neighbors. These trust 
metrics are taken into account in the filtering scheme so 
that information transmitted from agents with low trust is 
disregarded. In addition, a mechanism for the trust metric 
update is also introduced, which ensures that agents that 
diverge considerably from their expected behavior have their 
trust values lowered. 

I. INTRODUCTION 

Smart Grid refers to the modernization of the electric 

system through the integration of new information-age tech­

nologies and new strategic public policies. It is based on 

adding and integrating new digital computing and commu­

nication technologies and services with the power-delivery 

infrastructure. Some of the characteristics of the Smart Grid 

include an increased use of digital information and controls 

technology to improve reliability, security, and efficiency of 

the electric grid, dynamic optimization of grid operations and 

resources, with full cyber security [1]. It is widely recognized 

that one of the most challenging tasks in implementing 

the Smart Grid is putting in place security policies that 

address security threats to the infrastructure. The main goal 

of a cyber-security strategy is the prevention of damages to, 

unauthorized use of, exploitation of electronic information 

and communication systems and services, and to ensure 

confidentiality, integrity and availability [2]. 

The part of the Smart Grid infrastructure used to control 

the electricity generation and transmission is represented 
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by the Supervisory Control and Data Acquisition (SCADA) 

systems. A SCADA system receives measurements of the 

state of the power grid and computes an estimate on the state 

of the power grid on which the control strategy is based. 

Power blackout events due to the failure of the SCADA 

systems to recognize load and stability restrictions, human 

errors, faults, etc. suggest the need for improved system­

wide monitoring, alarms and power system state estimation 

programs [9]. 

In this paper we focus on the security of the state 
estimation of the power system. We propose a strategy 

aimed at improving the security of the SCADA systems, by 

implementing algorithmic policies aimed at protecting the 

estimation process against false data injection generated by 

faulty equipment or cyber attacks. Our approach is based 

on a multi-agent filtering scheme, where intelligent agents, 

geographically distributed in the power grid, receive (local) 

measurements on the state of the power grid and compute 

local estimates based on their own measurements and on the 

estimates of the neighboring agents as well. We combine the 

multi-agent filtering scheme with a trust-based mechanism 
under which each agent associates a trust metric to each of its 

neighbors. These trust metrics are taken into account in the 

filtering scheme so that information transmitted from agents 

with low trust is disregarded. In addition, a mechanism for 

the trust metric update is introduced, which is based on 

the long-term behavior characteristics of the agents. Other 

approaches for dealing with false data injections on SCADA 

systems can be found in [5], for example. Note that a similar 

problem setup was proposed in [11]. However, in the current 

paper we consider a different update mechanism for the trust 

metrics attributed to the agents. 

II. PROBLEM FORMULATION 

State estimation of power systems, using real-time mea­

surements of active and reactive power flows in the network, 

is used to build the model for the observable part of the 

power grid. It was introduced to help the system operators 

having a good image on the state of the power system in 

order to increase the ability to tackle contingency conditions. 

Rather than centralizing the measurements to the SCADA 

systems for state estimate computations, we propose a strat­

egy to decentralize the estimation process, under which a 

network of intelligent agents computes local estimates based 

on their measurements and the estimates computed by other 

agents. 

Thanks to their simplicity, the most common models used 

to represent the dynamics of the power grid are linear [8], 

[10], [22]. Similarly, throughout this paper we consider the 
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following stochastic linear equation as an approximate model 

for the power grid dynamics 

x(k + 1) = A(k)x(k) + w(k), (1) 

where k denotes the discrete time, x(k) E lRl1 is the state 

vector, A(k) is the matrix connecting the current state with 

the one at the next time instant, and w(k) E lRl1 is the state 

noise, assumed Gaussian with zero mean and covariance 

matrix Q. The state variables usually include nodal voltages 
(voltage magnitudes, voltage angles), transformer ratios, and 

complex power flows (active and reactive power flows) [20]. 

The initial state Xo has a Gaussian distribution, with mean 

j.lo and covariance matrix Po. The parameters of the model, 

A(k) and Q, are assumed to be determined a priori through 

a parameter identification process [8]. Usually, the matrix 

A(k) is assumed slow time-varying; and, for simplicity in 

this paper we assume A(k) to be constant, i.e., A(k) = A for 

all k. 
In the context of this paper an agent is an intelligent 

device with computation and communication capabilities; it 

can receive measurements on the state of the power grid 

and it is able to compute state estimates. A candidate for 

playing the role of an agent is the Phasor Data Concentrator 

(PDC), which collects the measurements from a set of 

GPS synchronized Phasor Measurement Units (PMUs). Their 

ability to measure positive sequence voltages at network 

busses and positive sequence currents in transmission lines 

and transformers led to an improvement of the state esti­

mation capabilities [19]. The estimation setup considered in 

this paper is somewhat similar to the two-level estimator 

framework proposed in [25], where the bus system is split 

into different areas where SCADA-like systems compute 

separately estimates. These estimates are centralized and 

combined to obtain an overall estimate of the entire power 

system. Unlike the aforementioned approach, we do not 

centralize the estimates computed by different areas, but use 

local collaboration to obtain an overall estimate of the power 

grid. We assume that the agents (PDCs) can conununicate 

with each other and the SCADA system, thereby forming a 

communication network. We denote by 

Ni = {j such that i conununicates with j} 

the neighborhood of agent i, i.e., all agents it is capable 

to cOlmnunicate with (by convention i belongs to Ni). We 

assume linear sensing models for the agents, given by 

Yi(k) = Cix(k) + vi(k), (2) 

where Yi(k) E lRPi is the observation of the state x(k) made 

by the agent i and vi(k) E lRPi is the measurement noise, 

assumed Gaussian with zero mean and covariance matrix Ri. 
The measurements that are normally included in practical 

state estimators are voltage magnitudes and angle differences, 

active and reactive powers, current magnitude flows, magni­

tude of turn ratios, phase shift angles of transformers, and 

active and reactive power flows [20]. The above model is 

usually obtained as a linearization of a nonlinear sensing 
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model, where the matrix Ci is the Hessian of a nonlinear 

function Ci(X) computed at some nominal point [10], relating 

the measurements to the states. 

Remark 2.1: We would like to point out that the entries of 

matrix Ci reflect only components from the state vector x(k) 
related to the bus(es) the agent i monitors. This implies that 

the agent i has only a local view on the state of the network, 

but through collaboration with other agents, this view can be 

potentially enlarged. 

We denote by xi(k) and by ei(k) � x(k) - xi(k) the local 

estimate and the estimation error computed by agent i, re­

spectively. Each agent i associates with each of its neighbors 

a trust metric denoted by Tij, for j E Ni. Intuitively, the trust 

metrics designate the weight agent i gives to the information 

received from its neighbors. 

Problem: We assume that some agents can become faulty 

or under the control of non-authorized entities that can cause 

the respective agents to spread false data on the power grid 

to the other agents. This false information can affect the 

computation of control strategies for the power generation 

and transmission needed to cope with changes in the state of 

the power grid. Our goal is to propose a strategy aimed at 

limiting the effect of false data injection on the state estimate 

computation, based on the notion of trust. 

III. TRUST MODEL 

Trust appears in various ways and meanings. We can 

refer to the reduced trustworthiness of a sensor, meaning 

that the sensor may have been compromised, or we can 

refer to the trustworthiness of the data transmitted by a 

sensor. Similarly, we can refer to a compromised link due 

to jamming, which reduces the trustworthiness of the link. 

Thus trust in sensor networks, and more generally in hybrid 

networks consisting of collaborating humans and automated 

agents (sensors, actuators, computers) is a composite entity, 

represented by several metrics and/or parameters. 

There are various ways to represent trust weights nu­

merically. In some trust schemes, continuous or discrete 

numerical values are assigned to measure the level of 

trustworthiness. For example, in [18], an entity's opinion 

about the trustworthiness of a certificate is described by 

a continuous value in [0, 1]. In [24], a 2-tuple in [0, 1]2 

describes the trust opinion. In [12], the metric is a triplet 

in [0, 1]3, where the elements in the triplet represent belief, 

disbelief, and uncertainty, respectively (we denoted by [0, 1]11 

the n times Cartesian product of the set [0, 1]). Trust can also 

be interpreted as probability. In [l3], subjective probability 

is employed, while objective probability is used in [14]. As 

a concept of uncertainty, entropy in information theory is a 

natural measurement of trust as well [23]. In the extreme 

case, trust can be binary: trust (trust weight=l) or distrust 

(trust weight=O); because either there is 100% security in 

the network or the approach to evaluate trust is very coarse. 

In this paper, we assume each agent i assigns a trust metric 

to each of its neighbors j, denoted by Tij, which refers to 

the reliability of data received from agent j. We represent 

trust values as non-negative real numbers taking values in 
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the interval [0, T max] , for some positive real T max. In the 

following, these trust values will be used in conjunction with 

a multi-agent estimation algorithm to limit the negative effect 

on the state estimation process caused by false data injection. 

IV. TRUST-BASED MULTI AGENT STATE ESTIMATION 

In this section we present the trust-based multi-agent 

filtering scheme aimed at improving the security of the state 

estimation process in the power grid. The section is divided 

into three parts. First, we present a multi-agent filtering 

scheme. Second, we describe the update mechanism for the 

trust values, based on the behavior of the agents. Third, 

we combine the multi-agent filtering scheme with the trust 

update mechanism, which ensures that agents with low trust 

values have limited influence on the estimation process. 

A. Distributed Estimation 
A fundamental problem in sensor networks is developing 

multi-agent (distributed) algorithms for the state estimation 

of a process of interest. Generically, a process is observed by 

a group of sensors organized in a network. The goal of each 

sensor is to compute accurate state estimates. The distributed 

filtering (estimation) problem has received a lot of attention 

during the past years, starting with the contributions made 

by Borkar and Varaiya [6]. The main idea behind distributed 

estimation, found in most of the papers addressing this 

problem, consists of using a standard Kalman filter locally, 

together with a consensus step in order to ensure that the 

local estimates agree [7], [16], [21]. 

In what follows, we use a simplified version of the 

algorithm proposed in [21], which is described next. For 

Algorithm 1: Distributed Filtering 

Input: 110, Po 
1 Initialization: Xi = 110, Pi = Po 
2 while new data exists 
3 Compute the filtering gain Li 
4 Compute the intermediate estimate of the state: 

</!i = Xi + Li(Yi - CiXi) 

5 Estimate the state after a Consensus step: 

gi = "LjEN, Wij</! j 

6 Update the state of the local filter: 

Xi =Agi 

simplicity we omitted the time index in Algorithm 1. There 

are several approaches for computing the filtering gains. In 

[21], the authors propose the filtering gains to be computed 

using the local Kalman filter equations. Other ideas include 

the off-line computation of the (stationary) filtering gains 

using Linear Matrix Inequalities techniques [16], which takes 

into account the topology of the network. In line 5 of 

Algorithm 1, the local information is linearly combined with 

information received from neighbors. Unlike the algorithm 

introduced in [21], we assume that only local estimates are 
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exchanged but not output measurements. We will refer to line 

5 as either the information fusion step or the consensus step. 
Further on in the paper, we will focus our analysis on the 

values of the weights Wij, which are positive values summing 

up to one. Through these weights each agent controls how 

the information received from neighbors is used. 

Remark 4.1: It is reasonable to assume that the agents 

cannot observe the entire state of the grid. However, through 

collaboration (line 5 of Algorithm 1), provided that the power 

grid is globally observable, the agents will potentially have 

a global view on the state of the power grid. 

B. Trust Update Algorithm 
Due to the dynamic nature of agents (some of them may 

become faulty, receive measurements from faulty equipment, 

or may come under the control of unauthorized entities), 

agents need to implement a mechanism for updating the 

trust values Tij. Examples of trust update mechanisms are 

presented in [15], in the context of reputation systems where 

the update is based on the notion of belief divergence and in 

[l7] in the context of distributed estimation. 

In this paper we pursue a different avenue of investigation. 

We assume that the agents "learn" the behavior patterns of 

their neighbors, and when they determine significant changes 

in these patterns, they adjust the trust values accordingly, i.e., 

by decreasing them. We assume that the learning period takes 

place during the initial operation of the system, when it is 

reasonable to assume that the agents function properly, i.e., 

the information provided by them is correct. 

As mentioned earlier, agent i receives from its neighbors 

their local estimates x/k), for j E Ni. Let us denote by ei/k) 
the difference between the estimates of agents i and j, i.e. 

e;JCk) = x;(k) - xJCk). 

We note that ei/k) can be equivalently written as 

e;JCk) = e/k) - ei(k), 

where e;(k) = x(k) - xi(k) is the estimation error at agent i. 
If we define the vector e(k) = (ei(k», then it can be easily 

shown that this vector has a multivariate normal distribution, 

for all k, since e(k) is updated according to linear dynamics 

with initial state normally distributed. Consequently, it can 

be shown that the vectors eij(k) have multivariate normal 

distributions as well. From the equations of the distributed 

estimation algorithm we get that ei(k) have zero means, and 

therefore eiJCk) have zero means as well, for all k 2 O. Let 

us denote by P;JCk) the covariance matrices of the vectors 

ei/k). Unfortunately, due to cross-correlations, computing 

these matrices exactly is intractable for large values of k 
(in fact the complexity increases exponentially with time). 

We consider that the statistics of the vectors eiJCk) deter­

tnine the behavior patterns of the agent i's neighbors. We can 

define confidence regions for eiJCk) based on the chi-square 
distribution. It is well known that for a multivariate normally 

distributed vector X in lRll, with mean J.l and covariance L, 

the region 

(3) 
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contains (1 -a) 100% of the probability in the distribution, 

where x2(a) is the chi-square distribution with n degrees of 

freedom, computed at a. By varying a we can define different 

confidence regions. 

The update mechanism of the trust values is based on the 

following idea. Every time eij(k) is outside the confidence 

region determined by parameter a, the trust value Tij is 

decreased up to a zero value, while every time ei/k) is inside 

the confidence region, the trust value Tij is increased up to 

a maximum value T max. 
Learning - As mentioned earlier, the behavior patterns are 

determined by the covariance matrices PUCk) whose exact 

computation is unfortunately not tractable for large values 

of k (computing Pij(k) is in the same spirit as computing 

the gains in a decentralized control problem; problem which 

is still open for decades [4 D. Therefore, the agents need to 

approximate these matrices. Denoting by Pij(k) the estimate 

of Pi/k), we propose the use of a time averaging filter given 

by 
, 1 I k , Pi/k+1)= k+le;/k)e;/k) + 

k+lPi/k), (4) 

to approximate the covariances matrices. The intuition be­

hind this approach is the following. Under the assumption 

that the parameters of the stochastic process are time­

invariant (and under the assumption that the estimation errors 

are mean square stable), the distributions of the estimation 

errors ei(k) will converge to some stationary distributions. 

Consequently, the same will happen for the random vectors 

ei/k). The covariance matrix of the stationary distribution 

of eij(k) can be approximated by taking the average over a 

sufficiently large numbers of samples. Writing the averaging 

operation iteratively, it results in a filter as in (4). Let Pij be 

the approximation of the covariance matrix of the stationary 

distribution of the vector ei/k), given by 

Pij = Pij(K), 

where K is sufficiently large and represents the learning 

horizon. Algorithm 2 summarizes the trust update mecha­

nism implemented by agent i (for brevity, the time index is 

ignored). 

According to the aforementioned algorithm, every time the 

error eij(k) lies in the confidence region {x I x' Pi} x :::::x2(a)}, 
the trust value Tij is increased by 61 (a positive real value) 

up to Tmax, while every time the trust values lie outside the 

aforementioned confidence region, they are decreased by 62 
(assumed positive). We note that even a correctly functioning 

agent j can have its trust value decreased. In the long run, 

the trust value Tij is decreased approximately ax2(a)100% 
of the total time. A good idea is to choose the parameters 

61 and 62 so that they reflect how close or far the errors are 

from the regions of type (3). For example, if </i} eij is large 

compared to x2(a), then 62 should be chosen large as well, 

so that the corresponding trust value is decreased rapidly. We 

chose an incremental procedure for updating the trust values, 

through the parameters 61 and 62. We can also envisage a 

model where the increase/decrease rate of the trust values is 
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exponential. In such a case, we would have 

where 61 > 1 and 0<62 < 1. 

Algorithm 2: Trust update 

Input: Pij, TmGx, 01, 02, a 
1 while new data exists 

I p-1 < 2( ) eij ij eij -x a 
I p-I 2( ) eij ij eij > X a 

2 Compute the errors between estimates: 

3 Update the trust values: 

Tij = { 
4 end while 

min{Tij + 01, TmGx} 

max{Tij - 02,O} 

I [>-1 < 2( ) eij ij eij -x a 
I [>-1 2( ) eij ij eij > X a 

C. Trust-based Distributed Estimation 
In this subsection we introduce an estimation algorithm 

where the distributed estimation scheme presented in Al­

gorithm 1 is combined with the trust update mechanism 

presented in Algorithm 2. 

We note that the weights Wij control how much the 

neighbors influence the update of the estimates xi(k). A small 

value of the weight Wij means that agent j will have little 

influence on the agent i. Therefore, it makes sense to choose 

the weights wij to be proportional to the trust values Tij. We 

propose to choose the weights Wij as weighted trust values, 

so that they sum up to one, i.e., 

Tij 
Wij = . 'LjEN; Tij 

This way the weights decrease with the trust values, so that 

agents with low reliability will have little influence in the 

computation of the local estimates. Algorithm 3 presents the 

trust-based distributed estimation algorithm. We would like 

to emphasize that Algorithm 3 acts on two levels. On one 

level it extends the scope of the agents' view with respect to 

the grid by making the estimation process distributed. This 

way, through collaboration, the agents can potentially have 

a more accurate image on the global state of the grid, which 

otherwise would be more difficult. On another level, the 

agents limit the effect of false data injection by updating the 

agents' trust in their neighbors, according to their recorded 

behavior. Thus, the estimation process becomes more robust. 

V. NUMERICAL EXAMPLE 

We consider an example of a power grid with three 

generators and nine buses [3], shown in Figure 1. We assume 

that a PMU is placed at each bus that measures the complex 

voltages and currents (in the case of adjacent buses). We use 

an estimation model similar to the one presented in [26]. 

Under this model, the state vector is formed by the voltages 

measured at buses, i.e., X = (Vi), where Vi is the complex 

voltage at bus i. The measurement models are as follows. In 
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Algorithm 3: Trust-based Distributed Estimation Algo­

rithm 
Input: 110, Po,Tmax, a, 01, 02, K 

1 Initialization: Xi = 110, Pi = Po, Tij = TlIlax 
2 For a learning horizon K, apply Algorithm 1 together with (4) 

to approximate the covariance matrices Pij(k). 
3 Set Pij = Fij(k) 
4 while new data exists 
5 Compute the filtering gain Li 
6 Compute the intermediate estimate of the state: 

'Pi = Xi + Li(Yi - CiXi) 

7 Compute the errors between estimates: 

8 Update the trust values: 

Ti' = 

{ min{Tij +01, Tmaxl I p-I < 2( ) eij ij eij -x a 
J max{Tij - 02,Ol I p-I 2( ) eij ij eij > X a 

9 Update the consensus weights 

Wij = . 

L.jEN, Tij 

10 Compute the state after a Consensus step: 

I;i = L.jEN, Wij'P j 

11 Update the state of the local filter: 

Xi = Al;i 

12 end while 

Bu. 9 Bu. 3 
230 tV TJ 13.B � Gl 

t---o-�---{)--I �_lf_�1 '''." �� �� 

Fig. l. The 3-generators, 9-bus system 

the case where the buses (i, j) are adjacent (e.g., (2, 7), (3, 9) 

and (1,4) in Figure 1), the complex measurement model for 

each PMU is given by 

Zi(k) = ( 1 
Yij 

o 

-Yij 
) ( Xi(k) ) 

X/k) + V;(k), 

where the measurement vector Z;(k)' = (U;(k),l;j(k)) encom­

passes the complex voltage at bus i and the complex current 

on the line (i,j), Yij is the admittance of line (i,j) and Vi(k) 
is the complex measurement noise. In the case bus i has no 

other adjacent bus, the measurement model gets simplified 
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to 

Thus, we can generically represent the complex measurement 

model as 

The real valued measurement model is given by 

where 

. 

= ( Re(Zi) ) C. = ( Re(Hi) 
Yl Im(Z;) ' I Im(H;) 

-lm(Hi) ) . 

= ( Re(Vi) ) 
Re(H;) ,Vz Im(V;) ' 

and x' = (Re(X/),lm(X/)). 
We consider the power system to be reasonably stable, and 

where the oscillations in the state variables are assumed to 

be small and induced by a white Gaussian noise. Thus, we 

model the dynamics of the power system by 

x(k + 1) = x(k) + w(k), x(O) = xo, 

where a solution to the power grid in Figure 1 is used as 

initial state for the dynamics of the state variables. 

We assume that each PMU plays the role of a PDC and 

that they form a communication network, as shown in Figure 

2, where each node represents a PMU. 

Fig. 2. PMU network 

In the numerical simulations that follow, we assume the 

estimation is performed over 1500 time units and that during 

the interval [500,1000] agent (PDC) 8 (color red in Figure 

2) shares false data with the neighbors. 

Figure 3(a) shows the voltage at bus 1 (ul(k)) and the 

estimates of the voltage at bus 1 made by agents 4, 7 and 9 

o:tl (k), uj(k), u�(k)), together with the false data injected by 

agent 8 (u�(k)), when Algorithm 1 is used (and assigning 

equal consensus weights), i.e., the trust update mechanism 

is not applied. We note that the estimates of the aforemen­

tioned agents are significantly affected. We have repeated 

the numerical simulation using Algorithm 3. The results 

are presented in Figure 3(b). We note that although agent 

8 shares false information, its neighbors are not affected 

this time. This is because the neighbors of agent 8 adjust 

their trust values so that the data coming from agent 8 

are rejected. Figure 3( c) shows the time evolution of the 

consensus weights of agent 4. We note that between the 

interval [500,1000] the weight w4,s(k) is lowered to zero, 

as a result of decreased trust in agent 8. 

Remark 5.1: The local filtering gains were computed us­

ing only the observable part of the pairs (A, Ci). However, 
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Fig. 3. (a) Estimates of the voltage at bus 1 using Algorithm 1, with agent 8 injecting false data; (b) Estimates of the voltage at bus 1 using Algorithm 
3, with agent 8 injecting false data; (c) The evolution of agent 4's weights. 

as it can be seen from Figure 3(b), through collaboration 

(consensus step) even agents that do not measure directly 

the voltage at bus 1 are still able to compute good estimates 

for the aforementioned voltage. 

VI. CONCLUSIONS 

In this paper we proposed an algorithm for the state 

estimation of the power grid, aimed at making the estimation 

process robust to false data injection. Our approach consisted 

of combining a multi-agent filtering algorithm with a trust 

metric, where agents with low trust values have little in­

fluence on the computation of the estimates. In addition, we 

proposed a trust update mechanism so that the trust values of 

the agents are updated according to their recorded behavior. 
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