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and Robust Output Feedback Control for Nonlinear Systems*
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Abstract—1In this paper, we develop a framework for
designing controllers for general, partially observed discrete-
time nonlinear systems which are robust with respect to
uncertainties (disturbances). A general deterministic model
for uncertainties is introduced, leading to a dynamic game
formulation of the robust control problem. This problem is
solved using an appropriate information state. We derive a
partially observed nonlinear stochastic model as the maxi-
mum entropy stochastic model for the nonlinear system. A
risk-sensitive stochastic control problem is formulated and
solved for this partially observed stochastic model. The two
problems are related using small noise limits. These small
noise asymptotics are for the first time justified as the
appropriate randomization, using time asymptotics of the
Lagrange multipliers involved in the maximum entropy model
construction. Thus for the first time a complete unification of
deterministic and randomized uncertainty models is achieved.
Various interpretations, consequences and applications of this
unification are explained and discussed.

I. INTRODUCTION

We revisit the robust output feedback control problem for
general nonlinear systems of the type

rrr1 = f(ar,ur),
(1
k=0,1,....,M—1.

Ukr1 = h(zg,ug),

Here, x;, € R™ denotes the state of the system, and is not
in general directly measurable; instead an output quantity
yr € RP is observed. The control input is ux, € U C R™.
The system behavior is determined by the functions f :
R"xR™ —- R", h:R"™ x R™ — RP. It is assumed that
the origin is an equilibrium for the system (1): £(0,0) =0,
and h(0,0) = 0.

In many applications we are interested to analyze the
behavior of the system (1) in the presence of model un-
certainties or disturbances; e.g., as arising from modeling
errors, sensor noise, parametric variations, etc.. In almost
all applications performance and operational robustness is
of paramount importance. By that we mean the design
of system structures and input strategies that can sustain
desired performance and operation despite model uncertain-
ties and/or signal disturbances. Such problems are widely
known as robust control-communication-signal processing
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problems. In this paper we refer collectively to such prob-
lems as robust decision and control problems, or simply
robust control problems. We propose and solve a general
robust control problem for nonlinear systems, and in the
process we develop a new and deeper understanding of
the fundamental principles that support the framework that
has been developed for linear systems (e.g. [6], [12], [4],
[11]), as well as nonlinear systems [2], [36], [37], [38],
[39], [20]. We selected to present the discrete time case in
this paper, due to space limitations and in order to make the
exposition easier. Our constructions and results hold also for
the continuous time case, albeit the technical development
is much more complicated and lengthy; we refer the reader
to [42]. The work and results reported here are a natural
extension of our results on automata [41]. At the same time
we obtain a generalization of our earlier results [8], in that
we consider more general nonlinear systems here (of the
same generality as we considered in [36]).

The starting point of our approach is motivated by the
method developed in [6], [12], [3], [13], [7], [2], [11], [1],
[4], [8], [36], [37], [38], [39], [20]. We then develop a
general framework for robust output feedback control of
nonlinear systems, by carefully studying two basic method-
ologies for representing model uncertainties and signal
disturbances: a deterministic one and a stochastic one.
We investigate the relationship between the two resulting
design methodologies for robust output feedback control,
and establish a certain “duality” between them. Key to this
linkage is the formulation of the robust control problem
as a dynamic game between two players: nature (who
selects model uncertainties and signal disturbances) and the
control designer (who selects control strategies). When we
use deterministic models for the system uncertainties the
corresponding game is a deterministic game, while when
we use stochastic models for the system uncertainties the
corresponding game is a stochastic one. The relationship
between the two design methods is a consequence of the
relationship between the deterministic and the stochastic
games.

When we model system uncertainties stochastically, the
nonlinear system (1) is transformed to a partially observed
stochastic nonlinear system (POSNLS) or Hidden Markov
Model (HMM) [5], or chapter 5 of [18]. HMMs [10], [18],
[17] have been studied extensively and numerous filtering,
estimation, and control problems for them have been pro-
posed and employed in applications. As already stated these
models use a probabilistic description of system uncertain-
ties and signal disturbances. Over the last fifteen years the
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output robust control problem has been investigated for
various classes of systems, within the context of the so-
called H®° control. This substantial body of research results
established the equivalence of the output robust control
problem (or “four-block problem”), with the problem of
solving a non-cooperative two player deterministic dynamic
game, as well as with the problem of solving a single player
risk-sensitive and partially observed stochastic optimal con-
trol problem. The equivalence of these three problems
has been established for various system and performance
metric models, but it has principally been interpreted and
understood as a means for obtaining the solution of any
of these problems in terms of the solution of the other.
A key conclusion from these earlier research results is
that risk-sensitive controllers are very closely related to
robust controllers, see [4], [8], [36], [37], [38], [39], [20].
This discovery created quite a research activity on these
problems, and it broke with the previously typical use of
risk-neutral stochastic optimal control formulations for the
majority of applications involving probabilistic models of
uncertainty. It was the early work of Jacobson [6], Whittle
[13] and few others that made it clear at first, that a
controller more conservative than the risk-neutral one could
be very useful.

A key and differentiating contribution in our earlier
work [8], [36], [37], [38] was a framework that incor-
porates a separation principle, which in essence permits
the replacement of the original output feedback problem
by an equivalent one with full information, albeit infinite
dimensional. We also introduced the use of an information
state for solving the partially observed dynamic games.
Indeed the information state for the games was obtained
as an asymptotic limit of the information state for the
risk-sensitive stochastic control problem; the latter arising
from general principles of stochastic control, see [10]. The
culmination of our earlier results was that the resulting
feedback controller has an observer/controller structure,
where the observer is the dynamical system describing the
evolution of the information state. Indeed the control law
is a memoryless (or instantaneous in time) function of the
information state.

Yet, despite these developments, from a deeper systems
perspective, a key question that remained unanswered was
the following. It is clear that the risk-sensitive stochastic
control problem involved in these equivalences, represents
a randomization of the robust output feedback control
problem. It is also clear that it represents a particular
randomization. As is true in many other problems this
randomization reduces the computational complexity of the
underlying computational problem for computing robust
output feedback controls. In the present paper we inves-
tigate exactly this deeper question, following the methods
and goals of our recent work for automata [41]. Namely,
what is the deeper fundamental principle leading to the
particular randomization used in the risk-sensitive stochastic
control formulation of the robust control problem? The
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answer, established here, is that this randomization is in
fact equivalent to the construction of a maximum entropy
model [27], [28], [31], [34], [23], which is a carefully
constructed HMM. In this paper we establish this result
for discrete time general nonlinear systems (1) and the
associated HMMs. Establishing the result for continuous
time nonlinear systems and hybrid systems, will be done
elsewhere [42].

We establish the result by first reviewing our earlier
work [8], [36]. We formulate the robust output feedback
control problem for (1) and summarize the description of its
equivalence to a deterministic partially observed dynamical
game. We then formulate the robust output feedback control
problem for the maximum entropy randomization of (1),
following ideas from [22], [40], [16], [43]. We then solve
the risk-sensitive stochastic optimal control problem for
the resulting continuous state, discrete time HMM. Our
solution, which is interesting in itself, leads us to the
solution of the robust output feedback control problem for
nonlinear systems. Finally, we link the two problems in yet
another way by employing large deviation limits as in [8].
As in [41] we obtain another generalization from earlier
approaches by us and others, in that we use a substantial
generalization of the finite gain condition [8], [36], [20],
which allows us to treat general constrained robust control
problems, vs just robust stabilization problems.

The robust output feedback control problem for (1) is
formulated in Section II; this entails defining deterministic
uncertainty (disturbance) mechanisms with associated cost
functions. In Section III, a stochastic uncertainty (distur-
bance) model is derived via the principle of maximum
entropy modeling [27], [28], [31], [34], [23]. In the same
Section we also derive the duality of this randomization
with a partially observed risk-sensitive control problem.
The risk-sensitive control problem is solved, and the large
deviation principle is invoked (i.e. a small noise limit is
evaluated) and used in Section IV to solve the robust output
feedback control problem of Section II.

II. OuTPUT ROBUST CONTROL PROBLEM WITH
DETERMINISTIC UNCERTAINTY MODELS

A. Deterministic Perturbation

We model the influence of disturbances as follows. We
consider the discrete-time nonlinear system (plant) (1) X
augmented with two additional (disturbance) inputs w and
v

Tpy1 = b(wp,up, wy),

Yk+1 = c(xk,uk,vk). kiO,l,...,M*l.

2)
Here, wp, € W C R" and vy € V C RS? are the
disturbance inputs. The functions b : R” xR™ xR"™ — R",
c: R*" xR™ x R® — RP, are required to satisfy the
following consistency conditions: b(x,u,0) = f(z,u) and
c(x,u,0) = h(z,u) for all x and u. We have used the origin

(0) in these conditions w.l.o.g., in that 0’s [9] play the role
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of “zero inputs”, so that when no disturbances are present
(i.e. wr = 0, and v, = 0), the behavior of (2) is the same as
(1). The set of possible initial states is denoted Ny C R",
and assumed to contain 0, while the set of possible future
states for the disturbance model (2) is

Nx(z,u) = {b(z,u,w) : we W} C R",

and the corresponding set of possible future outputs is

Ny (z,u) = {c(z,u,v) : vV} CRP.

These sets can be thought of as “neighborhoods” of the
nominal future values f(z,u), h(z,u), and are determined
by the maps b and c. These can be designed as best fitting
the application at hand.

B. Cost Functions

To quantify the effects of the disturbances, a measure of
their “sizes” is required. To this end, we specify functions

o :RTXxR"xR™ —-R, ¢,:R°xR"xR™ — R,

with the following properties:

dw(0;2,u) =0 forall z € R",u € R™,
dw(w;z,u) >0 forall 0 £ we W,z e R, ueR™,
dp(0;z,u) =0 forall z € R",u € R™,

dp(v;z,u) >0 forall 0 £veV,xz e R",ueR™,

and

+o0o > f(xg) >0 for all zg # 0 € Ny,

B(xg) = 400 for all 2y & Ny,

We think of ¢, (w;x,u) as the ‘magnitude’ of the dis-
turbance w as it affects the system when it is in state x
with control u applied, and ¢, (v;z,u) as the ‘magnitude’
of the disturbance v when in state « with control u applied.
The cost function [ specifies the ‘amount of uncertainty’
regarding the initial state.

Associated with these cost functions are quantities which
define the optimal one-step cost of transferring from z to
2" and the optimal cost of producing the output y”. These
quantities will be used in the solution of the robust control
problem below. They are defined by

U,a"u) 2 infyew {¢w(w;z,u) : 2" = b(z,u,w)},
Viz,y"su) 2 infeey {do(v;z,u) 1 y" = c(z,u,0)}.
3)

We adopt the convention that the minimum over an empty
set equals +oco. Thus U and V are extended real valued
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functions. Note that

Uz, f(x,u);u) =0 forallz e R"ueU,

U(z,b(z,u,w);u) > 0 forall 0#we W, z,u,

U(z,2";u) = 4oo if 2’ & Nx(z,u).
and

V(z,g(x,u);u) = 0 forallz € R uelU

Viz,h(z,u,v);u) > 0 forall0#£veV,zeR™

V(z,y";u)
C. Robust Control

As part of the output robust control problem specification,
we define an additional output quantity

= +oo if y’ & Ny(z,u).

Ziy1 = C(zk, up), €]

where z; takes values in R/, and ¢ : R"” x R™ — R'. In
the so called “four-block” formulation of the robust output
feedback control problem, zj; represents the regulated vari-
able, while y,, represents the measured (observed) variables
available to the controller. We assume that the origin is the
null element such that ¢(0,0) = 0. A cost function for this
output is also specified, with the properties

6.(2) > 0 forall ze R

The output quantity z and its associated cost function ¢,
encode the performance objective of the problem at hand.
To summarize, the complete system is described by the
equations

Thr1 = b(wg, up, wy),
zer1 = (T, ur),
Yr1 = c(xg,uk,vg), k=0,1,...,M —1.
®)
The state variable xj is not measured directly, and so

the controller must make use of information available in
the output signal yg x; i.e., the controller must be an output
feedback controller. We denote by Oy ;- the set of non—
anticipating control policies defined on the interval [k, k'];
i.e., those controls for which there exist functions u; :
RPU—FTD U such that u; = i;(yxs1,) for each
Jj €k, k.

The finite-time output feedback robust control problem
generalizing [38] is then: given v > 0 and a finite time
interval [0, M] find an output feedback controller v €
Oo, -1 such that

Z;ICVI:Bl ¢:(2k41) < Blxo) + 72&61 (o (Wi; T, uk)
+ ¢ (Vi T, uk)) ©

for all (w,v) € WM x VM 7, € R".
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D. Dynamic Game

The robust control problem formulated above can be
recast as a dynamic game problem, see, e.g., [36], [37],
[38]. The payoff function for the controller v € Oy pr—1
(player 1) and disturbances (w,v,z0) € WM x VM x N,
(player 2) is given by

M-1
—B(x0) + Y $=(2k41)

k=0
— ¥ (Pw (Wi T, u) + G (Vrs Ths u)) . (1)

We consider the upper game for this payoff given the
dynamics (2). Define

J’Y(ua w, v, Qfo) é

Jiw) 2 sup sup {J7(u,w,v,0)}
(wW)EWM X VM zo€Ng
The bound
0 < J'(u) < M sup ¢.(2) (®)

zER?
is readily verified. The dynamic game problem is to find an
output feedback controller u* € O ps—1 such that
JV(u*) = inf  J7(u). 9
(w) = _inf (W) ©
Then if

(W) = 0, (10)

the robust control objective (6) is achieved.
We will solve this dynamic game problem in Section IV.

III. OuTPUT ROBUST CONTROL PROBLEM WITH
STOCHASTIC UNCERTAINTY MODELS

A. Maximum Entropy Model Construction

We follow [16]. The second law of thermodynamics
asserts that a physical system in equilibrium has maximal
entropy among all states with the same energy. Translating
this into a probabilistic language and replacing entropy
by the more general relative entropy, we are led to the
following question. Let C be a class of probability measures
on some measurable space (F,€) and yu a fixed reference
measure on (F, £). What then are the probability measures
in C minimizing D(.|x)? The universal significance of such
minimizers has been put forward by Jaynes [27], [28]:
maximum entropy principle. These minimizers arise also
in the celebrated Sanov’s theorem [16], [43], which is of
fundamental importance to large deviation theory (LDT).
In the general setting just described the relative entropy
can be defined by D(v|u) = suppD(vp|up), where the
supremum extends over all finite £-measurable partitions
‘P and vp stands for the restriction of v to P. Equivalently,
D(v|u) = v(logf) if v is absolutely continuous with
respect to p with density f, and D(v|u) = oo otherwise.
This definition shows that D(.|u) is lower semicontinuous
in the so-called 7 — topology generated by the mappings
v — v(A) with A € £. Consequently, a minimizer does
exist whenever C is closed in this topology. If C is also
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convex, the minimizer is uniquely determined due to the
strict convexity of D(.|u), and is called the I - projection
of 1 on C [30].

For our purposes here it suffices to consider the most
classical case when C is defined by an integral constraint (or
constraints). To this end we will denote by v(g) the integral
of some bounded measurable function g : £ — R? with
respect to v. We will then assume that C = {v : v(g) = a}
for suitable a € RY. In other words we are interested in the
constrained variational problem

(1)

minD(v|u), over v(g) = a.

In this case we use a convex Lagrange multiplier calculus as
follows. For any bounded measurable function f : £ — R
let L(f) = log p(e) be the log-Laplace functional of .
We then have the variational formula (from duality)

D(v|p) = sups[v(f) = L(f)], (12)

meaning that D(.|u) and L are convex conjugates (i.e.
Legendre-Fenchel transforms in duality [44]) of each other;
c.f. Lemma 6.2.13 of Dembo and Zeitouni [43]. Let

Jg (a) = infu:{y(g):a}D(V|N) (13)
be the entropy distance of {v : v(g) = a} from u. Applying
convex analysis (specifically Fenchel duality) then we get

Jg(a) = supyera[X-a— L(X- g)], (14)

i.e. J, is a partial convex conjugate of L (or in other
terms, the Cramér transform of the distribution p o gf1 of
g under p; c.f. Varadhan, chapter 9 of [16]. Moreover, if g
is nondegenerate (in the sense that ;0 ¢! is not supported
on a hyperplane), then J, is differentiable on the interior
I, = int{J, < oo} of its essential domain. As a result we
have the celebrated Gibbs-Jaynes principle, see chapter 3 of
[16]:

Theorem 3.1: The Gibbs-Jaynes Principle. For any
nondegenerate g : £ — R% a € I, and A = VJ,(a)
the probability measure

pa(de) = Z5 e pu(da) (15)
on (E, £) is the unique minimizer of D(.|u) on {v : v(g) =
a}. Here Z, = e“(*9) is the normalizing constant.

Several generalizations of this result have been obtained,
see for example [29], [30].

In statistical mechanics, the measures ) of the above
form are called Gibbs distributions, and the above theorem
justifies that these are indeed the equilibrium distributions of
physical systems satisfying a finite number of conservation
laws. In mathematical statistics, such classes of probability
measures are called exponential families. For us it is impor-
tant that they provide the maximum entropy models needed
(and used) in our theory.
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B. Random Perturbation

The random perturbation (disturbance model) developed
below is a stochastic analog of the deterministic pertur-
bation model introduced in Section II. It is based on the
maximum entropy principle described in Section III-A.

Let

g = {((58072/0), (3017 Y1), - (CI?M, yM))}
c RTL(]\/I—‘,-l) x Rp(M-&-l)’

and let, PM (o) be the joint probability density function of
the set of random variables

{((XO,YO), (X1, Y1), .. (XM,YM))} _

i.e. the joint finite dimensional probability density function
(pdf) of the state and output trajectories over the entire
observation interval [0, M]. We choose the statistics of
the stochastic system model in the least biased way [27],
[28] by picking the joint pdf (P (o)) that generates the
maximum entropy over the set of all possible joint pdfs,
while at the same time satisfying the constraints imposed
by the ’observed levels’ of disturbances. Thus we want to
maximize

—Elog (PlM(U))

over all pdfs that generate specified levels of disturbances.
As explained in Section III-A there are many ways to
specify constraints expressing observed quantities of the
process trajectories. For simplicity of exposition we chose
here constraints on observations expressed through the
average costs of the disturbances; i.e. expectations with
respect to the process measure. So the pdf we pick must
satisfy:

EU($¢,$¢+1;U) = Q4 fOI‘OSiSM—l,
EV(zi,yiv1;u) = [ for0<i< M —1,
EB(z0) = 7.

In addition, the probabilities P (o) must integrate to one.
We thus have to maximize a strictly concave function on the
simplex subject to linear constraints. The function achieves
the global maximum at the only critical point it has. This
is exactly the case we described in section III-A, and we
obtain the solution via Theorem 3.1. Equations (12,13,14)
provide the means to compute the solution and characterize
its properties. Due to space limitations we omit the lengthy
and tedious details.

The most important for us properties of the solution
are the asymptotic behavior of the Lagrange multiplier
vector, the A\ in the expression of the Gibbs distribution
(measure) of Theorem 3.1. We use Lagrange multipliers
Xyt = 0, M — 1}, {ps,s = 0,-,M — 1},v,K). An
analysis of the solution allows us to establish that the
multipliers ({\;}, {;},v) are monotonic functions of the
corresponding disturbance levels {«;},{0;},7; they de-
crease monotonically as the disturbanceslevels are raised.
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For instance using the results of section III-A as applied to
{\i} we can show that

dX;
<
dai - 0

Also, when o; = infy, o {U(zs,255u)}, A\; = oo. Thus
when the disturbance levels go down to zero, the Gibbs
distribution we get as the maximum entropy solution, re-
duces to the unperturbed partially observed deterministic
nonlinear system we started with.

When we choose the expected disturbance levels so that
the Lagrange multipliers ({\; }, {u: }, v) are all equal to 1 /e,
the maximum entropy model we derived (15) is a controlled
Hidden Markov Model; discrete-time and continuous state.
It consists of an R™ valued controlled Markov process x5,
together with a R valued output process ;. The combined
(joint) state and output process is Markov and it is therefore
described by the conditional pdfs of state transitions and
state to output values. We have:

P" (2 = 2" |@p = 2, %0 -1, Wk = U, Ug k1) = A% (W)g0r,

(16)
and
P (y,‘iJr1 =y |zp =z, UK = u) = B(u,x)yr, (17)
where,
A% () gz 2 ﬁf{ exp (—1U(z,2";u)),
(18)
A
Bua)y 2 Svew (—1V(nyi),

where the functions U and V' are defined by (3), and Z;:g
and Z;:L/ are appropriate normalizing constants. Similarly,
the initial distribution is

pe(xo) = Zl exp (—éﬁ(%)) .

€
zQ

Thus where P is the probability distribution on R™M+1) x
RP(M+1) defined by a control policy u € O as—1:

P“(zo,0y1,m) = ptg A% (un) ap ap sy BE (Wks ) gy o0 p° (20)

The probability distribution P" is equivalent to a dis-
tribution P' under which {y{} is iid uniformly on R,
independent of {z}}, and {5} is a controlled Markov
process as above. Let

apP*
W |gk

where Gy, is the filtration generated by (2§ 5., ¥ x)-

C. Cost
The cost function is defined for admissible u € Oy pr—1
by
M—1

J(u) = B exp% S 6. (Clfow)| (19
=0
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and the output feedback risk-sensitive stochastic control
problem for the HMM (18) is to find u* € Oy ps—1 such
that

inf
u€Oo,Mm—1

TV () = JVE ().

In terms of the reference measure, the cost can be
expressed as
M—1

1
JVE(u) = ET )ﬁwexp% Z O (((xf,ul))l . (20)
1=0

D. Information State

Following [8], [36], [37], [38], we define an information
state process 07© € R" by the relation
k—1

1
I{mi:r} exp % Z ¢ (C(x‘?vul)) Ai | yk‘| ’

1=0 o)
where ) is the filtration generated by the observation
process y5 ;. and 0 (2) = Ify—y,)-

The evolution of this process is determined by an operator
with kernel X7 (u,y”) defined by

o (z) = E'

£ I A £ £ 7 1
DK (u,y’ )m,r” =A (U)z,m” v (I,y /) €xp ?d)z (C(x,u)) .

(22)
Indeed, the information state is the solution of the recursion
(c.f. [8], [38])

s€ €
op = X (w1, yR) ol
(23)
78 p—
Ug - p€7

where the x denotes adjoint operator. This equation is
infinite dimensional, and it is the analog of the Duncan-
Mortensen-Zakai discrete time evolution of the conditional
density in risk-neutral stochastic control.

We can also define an adjoint process v} by the standard
duality between measures and functions and the adjoint
relationships

(EZ7*0, vy = (o, XTEV),
(a5, vy = (o5, vi5)

Remark 3.2: The reason for introducing the information
state 0" is to replace the original output feedback risk-
sensitive stochastic control problem with an equivalent
stochastic control problem with a state variable o) which
is completely observed, and to solve this new problem using
dynamic programming. This will yield a state feedback
controller for the new problem, or equivalently, an output
feedback controller for the original problem which is sepa-
rated through the information state [10], [3], [8], [36], [37],
[38].

As in [8], [38], the cost function can be expressed purely
in terms of the information state:

T () = B0}, 1)]. (24)
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E. Dynamic Programming

Consider the state ¢”¢ on the interval k,..., M with
initial condition 0)° = o:

o) = X (o, y5) o, k+1<I< M,
oyt = o

(25)

The corresponding value function for this control problem

is defined for o by
SV (o, k) =

inf  E'[(6]7, 1)]|0)° =0]. (26)

u€O0k,m—1
The dynamic programming equation for this problem is as
follows [8], [38]:

SvE(o, k) = inf,ep B [S“”%E“”(u, Yri1)o kb + 1)]

Sre(e, M) = (o, 1).
27

The next theorem is a statement of the dynamic pro-
gramming solution to the output feedback risk-sensitive
stochastic control problem.

Theorem 3.3: [8], [38] The value function S7-¢ defined
by (26) is the unique solution to the dynamic programming
equation (27). Conversely, assume that S7¢ is the solution
of the dynamic programming equation (27). Suppose that
u* € Op,p—1 is a policy such that, foreach k£ =0,..., M —
1, uj = uj(o}°), where @} (o) achieves the minimum in
(27). Then u* is an optimal output feedback controller for
the risk—sensitive stochastic control problem (§III-C).

Remark 3.4: Note that the controller uy, is defined as a
function of the information state o}’°, and since ¢,° is a
non-anticipating function of yg ,, uj is an output feedback
controller for the risk-sensitive stochastic control problem;
indeed, u* is an information state feedback controller.

F. Small Noise Limit

In [8], [36], [37], [38] it was shown that a deterministic
dynamic game problem is obtained as a small noise limit of
a risk—sensitive stochastic control problem. In this subsec-
tion, we carry out this limit procedure for the risk-sensitive
stochastic control problem defined above. We first obtain
a limit for the information state, and use this to evaluate
the appropriate limit for the value function. This yields
an information state and value function for the dynamic
game problem of Section II-D. These results will be used
in Section IV in the solution of the output feedback robust
control problem of Section II.

Define the operator kernel A7 (u,y”) by its entries

A,y o 2 6(C(ayw) = (U, s u) + V(z, " u)).
(28)
Then we have

lir%yelogzv’e(u,y")z’xu = N (u,y gz (29)
£E—
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The action of A" (u,y"”) and its adjoint is defined in terms
of maximization operations as follows:
A
A *(u,y")p(z") = maxgern {AY(u, ¥ )z +p(2)},

N(u,y")g(x) 2

The duality pairing (-, -) is replaced by the “sup-
pairing”

(p, @) = sup {p(x)+q(z)}, (30)
zeR™
and in fact we have
1 1
lim yelog(e =", e75%) = (p, ). 31)
E—

The actions corresponding to A7 (u,y") are “adjoint” in the
sense that

(A"p, q) = (p, A7q). (32)

The limit result for the information state is the following:
Theorem 3.5: [8], [38] We have

lim._.q ’yslogE""'E*(U,y)@%p = A" (u,y)p,
(33)

limsﬂo'yslogZ%E(u,y)eéq = A(u,y)q

uniformly on the appropriate function space.
In view of this theorem, we define a limit information
state and its adjoint by the recursions

Pz = A’Y*(ukflvyk)pZ—l
(34)
pg = _B7
and
a_y = AN(up—1,yr)q;
(35
0 = 0.
Note that
(ri> @) = Pp_1s 1)
for all k.

Turning now to the value function, we have:
Theorem 3.6: [8], [38] The function W7 (p, k) defined
by

A 1
W(p,k) = limyelog S (e, k) (36)
£—>
exists (i.e. the sequence converges uniformly), is continu-
ous, and satisfies the recursion

W2(p,k) =

W(p,M) = (p,0).

(37)

maXgecRrnr {A’y(ua y//)w,a:” + q(a:”)} .
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IV. SOLUTION TO THE ROBUST CONTROL PROBLEM
A. Equivalent Game Problem

We now replace the deterministic output feedback game
problem (Section II) with an equivalent deterministic game
problem with p;, defined in Section III-F, as a completely
observed state variable. The solution of this new problem
will result in an information state feedback controller, and
thus an output feedback controller for the original game
problem which is separated through the information state.

The next theorem shows that the cost function can be
expressed in terms of the information state [8], [36], [37],
[38].

Theorem 4.1: We have for all u € Og pr—1

J'(u) = sup {(py, 0)}. (38)
yERP(M+1)
B. Dynamic Programming
Consider now the state p” on the interval k, ..., M with
initial condition p; = p:
p? = A’Y*(ulfhyl)p?_lv k+1§l§M7
(39)
P, =P
The value function is defined by
W7(p, k) = inf sup  {(p};, 0) : pl =p}.
u€O0k, M1 yERP(M—F)
(40)

The solution of the game problem is expressed as follows.
Theorem 4.2: The value function W7 (p, k) defined by
(40) is the unique solution to the dynamic programming
equation (37). Further, if W7 (p, k) is the solution of (37),
and if u* € Opp—1 is a policy such that, for each
k=0,...,M -1, u; = uj(p)), where @ (p) achieves
the minimum in (37), then u* is an optimal policy for the
output feedback dynamic game problem (Section II-D).
Proof: Standard dynamic programming arguments.

C. Robust Control

The solution to the state feedback robust control problem
was expressed in terms of the solution f (z) of a dynamic
programming equation, and a state feedback controller
Uy (x) was obtained. The framework we have developed
in this paper allows us to characterize the solution of
the output feedback robust control problem in terms of
the solution W7 (p, k) of an infinite dimensional dynamic
programming equation, and obtain an output feedback con-
troller @} (p)(-;y1,k)). Note that the information state p;
is also the solution of an infinite dimensional dynamic
programming equation (34).

Theorem 4.3: (Necessity) Assume that there exists a
controller u® € Oy pr—1 solving the output feedback robust

inf,cu SUp, e gy {W?(AY*(u,y)p, k + 1))control problem. Then there exists a solution W7 (p, k)

of the dynamic programming equation (37) such that
W7 (—3,0) = 0. (Sufficiency) Assume that there exits a
solution W7 (p, k) of the dynamic programming equation
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(37) such that W7(—(,0) = 0, and let @} (p) be a control
value achieving the minimum in (37). Then @} (p) (-;y1,x))
is an output feedback controller which solves the output
feedback robust control problem.

V. CONCLUSIONS AND DISCUSSION

In this paper we showed that the robust output feed-
back control problem for nonlinear discrete time systems
is solvable using deterministic and stochastic models for
the uncertainties. The stochastic model was shown to be
a HMM (discrete time continuous state) derived via the
maximum entropy principle.

For future work, it would be interesting to investigate
connections with model complexity and extensions to more
general dynamical systems, including hybrid systems.
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