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Abstract—This paper revisits the problem of detecting greedy
behavior in the IEEE 802.11 MAC protocol by evaluating the
performance of two previously proposed schemes: DOMINO and
the Sequential Probability Ratio Test (SPRT). The evaluation
is carried out in four steps. We first derive a new analytical
formulation of the SPRT that takes into account the discrete
nature of the problem. Then we develop a new tractable
analytical model for DOMINO. As a third step, we evaluate
the theoretical performance of SPRT and DOMINO with newly
introduced metrics that take into account the repeated nature
of the tests. This theoretical comparison provides two major
insights into the problem: it confirms the optimality of SPRT
and motivates us to define yet another test, a nonparametric
CUSUM statistic that shares the same intuition as DOMINO but
gives better performance. We finalize the paper with experimental
results, confirming our theoretical analysis and validating the
introduction of the new nonparametric CUSUM statistic.

I. INTRODUCTION

Communication protocols were designed under the assump-
tion that all parties would obey the given specifications.
However when these protocols are implemented in an un-
trusted environment, a misbehaving party can deviate from
the protocol specification and achieve better performance at
the expense of honest participants (e.g. changing congestion
parameters in TCP, free-riding in p2p networks etc.) In this
paper we focus our attention to misbehavior at the IEEE
802.11 MAC layer protocol. Examples of misbehavior at the
MAC layer can include a user modifying the parameters for
accessing the channel in order to obtain a better throughput,
or a network card with an inaccurate implementation of the
protocol [1].
MAC layer protocol misbehavior has been previously stud-

ied in the literature, where it has been identified that a selfish
user can implement a whole range of strategies to maximize
its access to the medium. However, the most challenging
detection task is that of detecting backoff manipulation [2],
[1].
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The current literature offers two major approaches to ad-
dress this problem. The first set of approaches provides solu-
tions based on modification of the current MAC layer protocol
by making the monitoring stations aware of the backoff
values of its neighbors. The approach proposed in [3] assumes
existence of a trustworthy receiver that can detect misbehavior
of the sender and penalize it by assigning him higher back-off
values for subsequent transmissions. A decision about protocol
deviation is reached if the observed number of idle slots of the
sender is smaller than a pre-specified fraction of the allocated
back-off. The sender is labeled as misbehaving if it turns out
to deviate continuously based on a cumulative metric over a
sliding window. The work in [4] attempts to prevent scenarios
of colluding sender-receiver pairs using a similar approach.
A different line of thought is followed in [2], [5], [6],

where the authors propose misbehavior detection schemes
without making any changes to the MAC layer protocol. In
[2] the authors focus on multiple misbehavior policies in the
wireless environment and places emphasis on detection of
backoff misbehavior. They propose a sequence of conditions
on available observations for testing the extent to which MAC
protocol parameters have been manipulated. The proposed
scheme does not address the scenarios that include intelli-
gent adaptive cheaters or collaborating misbehaving nodes.
The authors in [5], [6] address the detection of an adaptive
intelligent attacker by casting the problem of misbehavior de-
tection within the minimax robust detection framework. They
optimize the system’s performance for the worst-case instance
of uncertainty by identifying the least favorable operating
point of a system and derive the strategy that optimizes the
system’s performance when operating at that point. System
performance is measured in terms of number of required
observation samples to derive a decision (detection delay).
However, DOMINO and SPRT were presented indepen-

dently, without direct comparison or performance analysis.
Additionally, both approaches evaluate the detection scheme
performance under unrealistic conditions for continuous mon-
itoring, such as probability of false alarm being equal to
0.01, which in our simulations results in roughly 700 false
alarms per minute (in saturation conditions), a rate that is
unacceptable in any real-life implementation. Our work con-
tributes to the current literature by: (i) deriving a new pmf for
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the worst case attack using an SPRT-based detection scheme,
(ii) providing new performance metrics that address the large
number of alarms in the evaluation of previous proposals, (iii)
providing a complete analytical model of DOMINO in order
to obtain a theoretical comparison to SPRT-based tests and (iv)
proposing an improvement to DOMINO based on the CUSUM
test.
The rest of the paper is organized as follows. Sect. II outlines

the general setup of the problem. In Sect. III we propose a
minimax robust detection model and derive an expression for
the worst-case attack in discrete time. In Sect. IV we provide
extensive analysis of DOMINO, followed by the theoretical
comparison of two algorithms in Sect. V. Motivated by the
main idea of DOMINO, we offer a simple extension to
the algorithm that significantly improves its performance in
Sect. VI. In Sect. VII we present the experimental performance
comparison of all algorithms. Finally, Sect. VIII concludes our
study. In subsequent sections, the terms “attacker” and “adver-
sary” will be used interchangeably with the same meaning.

II. PROBLEM DESCRIPTION AND ASSUMPTIONS

Assume each station generates a sequence of random back-
offs X1,X2, . . . ,Xi in order to access the channel. The
backoff values of each legitimate protocol participant are then
distributed according to the probability mass function (pmf)
p0(x1, x2, . . . , xi) (specified by the MAC layer protocol). Fur-
thermore, the pmf of the misbehaving participants is unknown
to the system and is denoted with p1(x1, x2, . . . , xi).
We assume that a detection agent (e.g., the access point)

monitors and collects the backoff values of a given station. It
is important to note that observations are not perfect and can
be hindered by concurrent transmissions or external sources
of noise. It is impossible for a passive monitoring agent
to know the internal exponential backoff stage of a given
monitored station due to collisions, or to the fact that a station
might not have anything to transmit. Furthermore, in practical
applications the number of false alarms in anomaly detection
schemes is very high. Consequently, instead of building a
“normal” profile of network operation with anomaly detection
schemes, we utilize specification based detection. In our setup
we identify “normal” (i.e., a behavior consistent with the
802.11 specification) profile of a backlogged station in the
IEEE 802.11 without any competing nodes, and notice that
its backoff process X1,X2, . . . ,Xi can be characterized with
pmf p0(xi) = 1/(W + 1) for xi ∈ {0, 1, . . . ,W} and
zero otherwise. We claim that this assumption minimizes the
probability of false alarms due to imperfect observations. At
the same time, a safe upper bound on the amount of damaging
effects a misbehaving station can cause to the network is
maintained.
Although our theoretical results utilize the above expression

for p0, the experimental setting utilizes the original implemen-
tation of the IEEE 802.11 MAC. In this case, the detection
agent needs to deal with observed values of xi larger than
W , which can be due to collisions or due to the exponential

backoff specification in the IEEE 802.11. We further discuss
this issue in Sect. VII.

III. SEQUENTIAL PROBABILITY RATIO TEST (SPRT)
A monitoring station observing the sequence of backoffs

X1,X2, . . . ,XN will have to determine how many samples
(N ) it is going to observe before making a decision. It is there-
fore clear that two quantities are involved in decision making:
a stopping time N and a decision rule dN which at the time of
stopping decides between hypothesesH0 (legitimate behavior)
and H1 (misbehavior). We denote the above combination with
D=(N, dN).
In order to proceed with our analysis we first define the

properties we want our detector to satisfy. Intuitively, we want
to minimize the probability of false alarms P0[dN = 1] and
the probability of deciding that a misbehaving node is acting
normally P1[dN = 0] (missed detection). Additionally, we
want to minimize the average number of samples we collect
from a misbehaving station E1[N ] before calling the decision
function. It is now easy to observe that E1[N ], P0[dN = 1]
and P1[dN = 0] form a multi-criteria optimization problem.
However, not all of the above quantities can be optimized at
the same time. Therefore, a natural approach is to define the
accuracy of each decision a priori and minimize the number
of samples collected:

inf
D∈Ta,b

E1[N ] (1)

where

Ta,b = {(N, dN) : P0[dN = 1] ≤ a and P1[dN = 0] ≤ b}

The solutionD∗ (optimality is assured when the data is i.i.d. in
both classes) to the above problem is the SPRT [5]:

N = inf
n
Sn ∈ [L,U ] and dN =

½
1 if SN ≥ U
0 if SN ≤ L,

where

Sn = ln
p1(x1, . . . , xn)

p0(x1, . . . , xn)
(2)

and where L ≈ ln b
1−a and U ≈ ln 1−ba . Furthermore, by

Wald’s identity:

Ej [N ] =
Ej [SN ]

Ej
h
ln p1(x)

p0(x)

i = Ej [SN ]PW
x=0 pj(x) ln

p1(x)
p0(x)

(3)

with E1[SN ] = Lb + U(1 − b) and E0[SN ] = L(1 − a) +
Ua, where the coefficients j = 0, 1 in Eq.(3) correspond to
legitimate and adversarial behavior respectively.

A. Adversary Model
In this section we set a theoretical framework to address

the discrete time nature of the MAC layer protocol. Due to
the different nature of the problem, the relations derived in
[5], [6] no longer hold and a new pmf p∗1 that maximizes the
performance of the adversary is derived.
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We assume the adversary has full control over the proba-
bility mass function p1 and the backoff values it generates. In
addition to that we assume that the adversary is intelligent,
i.e. the adversary knows everything the detection agent knows
and can infer the same conclusions as the detection agent.
Now before stating the objective of the adversary we require

the following result.
Lemma 1: The probability that the adversary accesses the

channel before any other terminal when competing with n
neighboring (honest) terminals for channel access in saturation
condition is:

Pr[Access] ≡ PA =
1

1 + nE1[X]E0[X]

(4)

Note that when E1[X] = E0[X] the probability of access is
equal for all n+1 competing nodes (including the adversary),
i.e., all of them will have access probability equal to 1

n+1 .
We omit the proof of this result and refer the reader to [6] for
the detailed derivation.
Since we want to prevent the misbehaving station from

stealing bandwidth unfairly from the contending honest nodes,
we consider worth of detection any adversarial strategy that
causes enough damage to the network, where “damage” is
quantified by a parameterG in the following relation: PA ≥ G.
The goal of the adversary is therefore to find a strategy p1 such
that PA ≥ G while minimizing the probability of detection.
By solving PA ≥ G for E1[X] we obtain: E1[X] ≤ gE0[X],

where g = 1−G
nG . Notice that for G ∈

³
1

1+n , 1
´
, g ∈ (0, 1),

so g = 0 corresponds to complete misbehavior and g = 1
correspond to legitimate behavior. Therefore, for any given g,
p1 must belong to the following class of feasible probability
mass functions:

Ag ≡
(
q :

WX
x=0

q(x) = 1 and
WX
x=0

xq(x) ≤ gE0[X]

)
(5)

Knowing g, the objective of the attacker is to maximize the
amount of time it can misbehave without being detected. As-
suming that the adversary has full knowledge of the employed
detection test, it attempts to find the access strategy (with
pmf p1) that maximizes the expected duration of misbehavior
before an alarm is fired. By looking at equation Eq.(3),
the attacker thus needs to minimize the following objective
function

min
p1∈Ag

WX
x=0

p1(x) ln
p1(x)

p0(x)
(6)

Theorem 2: The pmf p∗1 that minimizes Eq.(6) is:

p∗1(x) =

(
rx(r−1−1)
r−1−rW for x ∈ {0, 1, . . . ,W}
0 otherwise

(7)

where r is the solution to the following equation:

WrW − r−1(WrW + rW − 1)
(r−1 − 1)(r−1 − rW )

= g
W

2
(8)
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Fig. 1. Form of the least favorable pmf p∗1 for two different values of g.
When g approaches 1, p∗1 approaches p0. As g decreases, more mass of p

∗
1

concentrated towards the smaller backoff values.

Proof: Notice first that the objective function is convex in
p1. We let q�(x) = p∗1(x)+�h(x) and construct the Lagrangian
of the objective function and the constraints

WX
x=0

q�(x) ln
q�(x)

p0(x)
+µ1(

WX
x=0

q�(x)−1)+µ2(
WX
x=0

xq�(x)−gE0[X])

(9)
By taking the derivative with respect to � and equating this
quantity to zero for all possible sequences h(x), we find that
the optimal p∗1 has to be of the form:

p∗1(x) = p0(x)e
−µ2x−µ0 (10)

where µ0 = µ1 + 1. In order to obtain the values of the
Lagrange multipliers µ0 and µ2 we utilize the fact that p0(x) =
1

W+1 . Additionally, we utilize the constraints in Ag. The first
constraint states that p∗1 must be a pmf and therefore by setting
Eq.(10) equal to one and solving for µ0 we have

µ0 = ln
WX
x=0

p0(x)r
x = ln

1

W + 1

r − rW

r − 1 (11)

where r = e−µ2 . Replacing this solution in Eq. (10) we get

p∗1(x) =
rx(r−1 − 1)
r−1 − rW

(12)

The second constraint in Ag must be satisfied with equality
and is therefore rewritten in terms of Eq.(12) as

r−1 − 1
r−1 − rW

WX
x=0

xrx = gE0[X] (13)

from where Eq.(8) follows.
Fig. 1 illustrates the optimal distribution p∗1 for two values of
the parameter g.
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B. SPRT Optimality for any Adversary in Ag

Let Φ(D, p1) = E1[N ]. We notice that the above solution
was obtained in the form

max
p1∈Ag

min
D∈Ta,b

Φ(D, p1) (14)

That is, we first minimized Φ(D, p1) with the SPRT (mini-
mization for any given p1) and then found the p1 that max-
imized Φ(SPRT, p1). However this assumes a non-adaptive
adversary, since the SPRT was derived assuming a given p1.
In a real scenario we can expect the adversary to select its
strategy after the detection algorithm has been selected; that
is, the problem we are interested in solving is:

min
D∈Ta,b

max
p1∈Ag

Φ(D, p1) (15)

Fortunately, our solution also satisfies this optimization prob-
lem since it forms a saddle point equilibrium:
Theorem 3: For every D ∈ Ta,b and every p1 ∈ Ag

Φ(D∗, p1) ≤ Φ(D∗, p∗1) ≤ Φ(D, p∗1) (16)
We omit the proof of the theorem since its derivation follows
a reasoning similar to the one in [6]. As a consequence of
this theorem, there is no incentive for deviation from (D∗, p∗1)
for any of the players (the detection agent or the misbehaving
node).

C. Evaluation of Repeated SPRT
The original setup of SPRT-based misbehavior detection

proposed in [5] was better suited for on-demand monitoring
of suspicious nodes (e.g., when a higher layer monitoring
agent requests the SPRT to monitor a given node because it is
behaving suspiciously, and once it reaches a decision it stops
monitoring) and was not implemented as a repeated test.
On the other hand, the configuration of DOMINO is suited

for continuous monitoring of neighboring nodes. In order to
obtain fair performance comparison of both tests, a repeated
SPRT algorithm is implemented: whenever dN = 0, the SPRT
restarts with S0 = 0. This setup allows a detection agent to
detect misbehavior for both short and long-term attacks. The
major problem that arises from this setup is that continuous
monitoring can raise a large number of false alarms if the
parameters of the test are not chosen appropriately.
This section proposes a new evaluation metric for con-

tinuous monitoring of misbehaving nodes. We believe that
the performance of the detection algorithms is appropriately
captured by employing the expected time before detection
E[TD] and the average time between false alarms E[TFA] as
the evaluation parameters.
The above quantities are straightforward to compute for the

SPRT. Namely, each time the SPRT stops the decision function
can be modeled as a Bernoulli trial with parameters a and 1−b;
the waiting time until the first success is then a geometric
random variable. Therefore:

E[TFA] =
E0[N ]
a

and E[TD] =
E1[N ]
1− b

(17)
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Fig. 2. Tradeoff curve between the expected number of samples for a false
alarm E[TFA] and the expected number of samples for detection E[TD ]. For
fixed a and b, as g increases (low intensity of the attack) the time to detection
or to false alarms increases exponentially.

Fig. 2 illustrates the tradeoff between these variables for
different values of the parameter g. It is important to note
that the chosen values of the parameter a in Fig. 2 are small.
We claim that this represents an accurate estimate of the false
alarm rates that need to be satisfied in actual anomaly detection
systems [7], [8], a fact that was not taken into account in the
evaluation of previously proposed systems.

IV. PERFORMANCE ANALYSIS OF DOMINO
We now present the general outline of DOMINO [2]. The

first step of the algorithm is based on computation of the
average value of backoff observations: Xac =

Pm
i=1Xi/m.

In the next step, the averaged value is compared to the given
reference backoff value: Xac < γB, where the parameter
γ (0 < γ < 1) is a threshold that controls the tradeoff
between the false alarm rate and missed detections. The
algorithm utilizes the variable cheat_count which stores
the number of times the average backoff exceeds the threshold
γB. DOMINO raises an alarm after the threshold is exceeded
more than K times. A forgetting factor is considered for
cheat_count if the monitored station behaves normally
in the next monitoring period. That is, the node is par-
tially forgiven: cheat_count=cheat_count-1 (as long
as cheat_count remains greater than zero).
More specifically, let condition be defined as

1
m

Pm
i=1Xi ≤ γB and let the algorithm be initialized

with cheat_count = 0. After collecting m samples, the
following routine is executed:

i f c o n d i t i o n
c h e a t c ou n t = c h e a t c o un t + 1
i f c h e a t c o un t > K

r a i s e a la rm
end

e l s e i f c h e a t c o un t > 0
c h e a t c ou n t = c h e a t c o un t − 1
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Fig. 3. For K=3, the state of the variable cheat count can be represented as
a Markov chain with five states. When cheat count reaches the final state (4
in this case) DOMINO raises an alarm.

end

It is now easy to observe that DOMINO is a sequential test,
with N = m ∗Nt, where Nt represents the number of steps
cheat_count takes to exceed K and dN = 1 every time
the test stops. Therefore we can evaluate DOMINO and SPRT
with the same performance metrics. However, unlike SPRT
where a controls the number of false alarms and b controls
the detection rate, the parameters m, γ and K in DOMINO
are difficult to tune because there has not been any analysis
of their performance.
In order to provide an analytical model for the performance

of DOMINO, we proceed in the following two steps:
1) We first compute p := Pr

£
1
m

Pm
i=1Xi ≤ γB

¤
2) Secondly, we define a Markov chain with transition
probabilities p and 1−p. The absorbing state represents
the case when cheat_count> K. A Markov chain
for K = 3 is shown in Fig. 3.

We can now write

p = pj = Pj

"
1

m

mX
i=1

Xi ≤ γB

#
, j ∈ 0, 1

where j = 0 corresponds to the scenario where the samples
Xi are generated by a legitimate station p0(x) and j = 1
corresponds to the samples being generated by p∗1(x). In the
remainder of this section we assume B = E0[Xi] =

W
2 .

We now derive the expression for p for the case of a
legitimate monitored node. Following the reasoning from
Sect. II, we assume that each Xi is uniformly distributed
on {0, 1, . . . ,W}. It is important to note that this analysis
provides a lower bound on the probability of false alarms when
the minimum contention window of size W + 1 is assumed.
Using the definition of p we derive the following expression:

p = P0

"
mX
i=1

Xi ≤ mγB

#

=

bmγBcX
k=0

P0

"
mX
i=1

Xi = k

#
(18)

=

bmγBcX
k=0

X
{(x1,...,xm):

Pm
i=1 xi=k}

1

(W + 1)m

where the last equality follows from the fact that the X 0
is are

i.i.d. with pmf p0(xi) = 1
W+1 for all xi ∈ {0, 1, . . .W}.

The number of ways that m integers can sum up to k isµ
m+ k − 1

k

¶
and

PL
k=0

µ
m+ k − 1

k

¶
=

µ
m+ L
L

¶
.

However, an additional constraint is imposed by the fact that
Xi can only take values up to W , which is in general smaller
than k, and thus the above combinatorial formula cannot be
applied. Furthermore, a direct computation of the number of
ways xi bounded integers sum up to k is very expensive. As
an example, let W + 1 = 32 = 25 and m = 10. A direct
summation needed for calculation of p yields at least 250
iterations.
Fortunately, an efficient alternative way for computing

P0 [
Pm

i=1Xi = k] exists. We first define Y :=
Pm

i=1Xi.
Therefore the moment generating function of Y , MY (s) =
MX(s)m can be computed as follows:

MY (s) =
1

(W + 1)m
¡
1 + es + · · ·+ eW

¢m
=

1

(W + 1)m
×X

 k0, . . . , kW :P
ki = m



µ
m

k0; · · · ; kW

¶
1k0esk1 · · · esWkW

where
µ

m
k0; k2; · · · ;kW

¶
is the multinomial coefficient.

By comparing terms with the transform of MY (s) we
observe that Pr[Y = k] is the coefficient that corresponds
to the term eks in Eq.(19). This result can be used for the
efficient computation of p by using Eq.(18).
Alternatively, we can approximate the computation of p for

large values of m. The approximation arises from the fact that
as m increases, Y converges to a Gaussian random variable,
by the Central Limit Theorem. Thus,

p = Pr [Y ≤ mγB] ≈ Φ(z)

where
z =

mγB −mW
2p

(W )(W + 2)m/12

and Φ(z) is the error function.

Φ(z) =
1√
2π

Z z

−∞
e−x

2/2dx

Fig. 4 illustrates the exact and approximate calculation of p as
a function of m, for γ = 0.9 and W + 1 = 32. This shows
the accuracy of the above approximation for both small and
large values of m.
The computation of p = p1 follows the same steps (although

the moment generating function cannot be easily expressed in
analytical form, it is still computationally tractable) and its
derivation is therefore omitted.

A. Expected Time to Absorption in the Markov Chain
We now derive the expression for expected time to ab-

sorption for a Markov Chain with K + 1 states. Let µi be
the expected number of transitions until absorption, given
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Fig. 4. Exact and approximate values of p as a function of m.

that the process starts at state i. In order to compute the
stopping times E[TD] and E[TFA], it is necessary to find
the expected time to absorption starting from state zero, µ0.
Therefore, E[TD] = m × µ0 (computed under p = p1) and
E[TFA] = m× µ0 (computed under p = p0).
The expected times to absorption, µ0, µ1, . . . , µK+1 repre-

sent the unique solutions to the equations

µK+1 = 0

µi = 1+
K+1X
j=0

pijµj for i ∈ {0, 1 . . . ,K}

where pij is the transition probability from state i to state j.
For any K, the equations can be represented in matrix form:


−p p 0 · · · 0
1− p −1 p 0 0
0 1− p −1 p 0

...
0 · · · 0 1− p −1




µ0
µ1
µ2
...

µK

 =

−1
−1
−1
...
−1


For example, solving the above equations for µ0 with K = 3,
the following expression is derived

µ0 =
1− p+ 2p2 + 2p3

p4

V. THEORETICAL COMPARISON
In this section we compare the tradeoff curves between

E[TD] and E[TFA] for both algorithms. For the sake of
concreteness we compare both algorithms for an attacker with
g = 0.5. Similar results were observed for other values of g.
For SPRT we set b = 0.1 arbitrarily and vary a from 10−1/2

up to 10−10 (motivated by the realistic low false alarm rate
required by actual intrusion detection systems [7]). Due to the
fact that in DOMINO it is not clear how the parameters m, K
and γ affect our metrics, we vary all the available parameters
in order to obtain a fair comparison. Fig. 5 illustrates the
performance of DOMINO for K = 3 (the default threshold
used in [2]). Each curve for γ hasm ranging between 1 and 60.
Under these settings, we conclude that the best performance of
DOMINO is obtained for γ = 0.7, regardless of m. Therefore,
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Fig. 6. DOMINO performance for various thresholds K , γ = 0.7 and m
in the range from 1 to 60. The performance of DOMINO decreases with
increase of m. For fixed γ, the SPRT outperforms DOMINO for all values
of parameters K and m.

this value of γ is adopted as an optimal threshold in further
experiments.
Fig. 6 represents the evaluation of DOMINO for γ = 0.7

with varying threshold K. For each value of K, m ranges
from 1 to 60. In this figure, however, we noticed that with the
increase of K, the point with m = 1 forms a performance
curve that is better than any other point with m > 1.
Consequently, Fig. 7 represents the best possible perfor-

mance for DOMINO; that is, we let m = 1 and change K
from one up to one hundred. We again test different γ values
for this configuration, and conclude that the best γ is still
close to the optimal value of 0.7 derived from experiments in
Fig. 5. However, even with the optimal setting, DOMINO is
outperformed by the SPRT.
Due to the fact that m was not considered as a tuning

parameter in the original DOMINO algorithm (m was random
in [2], depending only on the number of observations in
a given unit of time,) we refer to the new configuration
with m = 1 as O-DOMINO, for Optimized-DOMINO, since
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according to our analysis, any other value of m is suboptimal.
Notice that O-DOMINO can be expressed as:

Ki = (Ki−1 + (1Xi≤γB − 1Xi>γB))
+ (19)

where 1R is the indicator random variable for event R.

VI. NONPARAMETRIC CUSUM STATISTIC

As concluded in the previous section, DOMINO exhibits
suboptimal performance for every possible configuration of its
parameters. However, the original idea of DOMINO is very
intuitive and simple; it compares the observed backoff of the
monitored nodes with the expected backoff of honest nodes
within a given period of time.
In this section we extend the above idea by proposing a test

that exhibits better performance than O-DOMINO, while still
preserving its simplicity.
Inspired by the notion of nonparametric statistics for change

detection by looking at Eq.(19), we adapt the nonparametric
cumulative sum (CUSUM) statistic and apply it in our analy-
sis. Nonparametric CUSUM is initialized with Y0 = 0 and
updates its value as follows:

Yi = (Yi−1 + (γB −Xi))
+ (20)

An alarm is fired whenever Yi > c.
Assuming E0[X] > γB and E1[X] < γB (i. e. the expected

backoff value of an honest node is always larger than a given
threshold and vice versa), the properties of the CUSUM test
with regard to the expected false alarm and detection times
can be captured by the following theorem.
Theorem 4: The probability of firing a false alarm decreases

exponentially with c. Formally, as c→∞

sup
i
|ln (P0[Yi > c])| = O(c) (21)

Furthermore, the delay in detection increases only linearly with
c. Formally, as c→∞

TD =
c

γB − E1[X]
(22)

The proof is a straightforward extension of the case originally
considered in [9].
It is easy to observe that the CUSUM test is similar to

DOMINO, with c being equivalent to the upper threshold K
in DOMINO and the statistic y in CUSUM being equivalent
to the variable cheat_count in DOMINO when m = 1.
The main difference between DOMINO when m = 1 and

the CUSUM statistic is that every time there is a “suspicious
event” (i.e., whenever xi ≤ γB), cheat_count is increased
by one, whereas in CUSUM yi is increased by an amount
proportional to the level of suspected misbehavior. Similarly,
when xi > γB, cheat_count is decreased only by one (or
maintained as zero), while the decrease in yi is proportional
to the amount of time the station did not attempt to access the
channel.

VII. EXPERIMENTAL RESULTS
We now proceed to the experimental evaluation of the

analyzed detection schemes. The backoff distribution of the
optimal attacker from Eq. (7) was implemented in the network
simulator Opnet and tests were performed for various levels of
false alarms. We note that the simulations were performed with
honest nodes that followed the standard IEEE 802.11 access
protocol (with exponential backoff). Therefore the detection
agent was implemented such that any observed backoff value
greater than W (Xi > W ) was scaled down to W . Our
experiments show that this decision works well in practice.
The results presented in this work correspond to the scenario

consisting of two legitimate and one selfish node competing
for channel access. It is important to mention that the resulting
performance comparison of DOMINO, CUSUM and SPRT
does not change for any number of competing nodes. SPRT
always exhibits the best performance.
In order to demonstrate the performance of all detection

schemes, we choose to present the results for the scenario
where the attacker attempts to access channel for 60% of the
time (as opposed to 33% if it was behaving legitimately).
This corresponds to g = 1/3. The backlogged environment
in Opnet was created by employing a relatively high packet
arrival rate per unit of time: the results were collected for
the exponential(0.01) packet arrival rate and the packet size
was 2048 bytes. The results for both legitimate and malicious
behavior were collected over a fixed period of 100s.
The evaluation was performed as a tradeoff between the

average time to detection and the average time to false alarm.
It is important to mention that the theoretical performance
evaluation of both DOMINO and SPRT was measured in
number of samples. Here, however, we take advantage of the
experimental setup and measure time in number of seconds, a
quantity that is more meaningful and intuitive in practice.
The first step in our experimental evaluation is to test the

optimality of the SPRT, or more generally, the claim that O-
DOMINO performs better than the original DOMINO, that
the nonparametric CUSUM statistic performs better than O-
DOMINO and that the SPRT performs better than all of the
above.
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The original DOMINO algorithm, as suggested in [2],
assumes K = 3 and γ = 0.9. As we have already mentioned
the original DOMINO takes averages over a fixed unit of time,
so the number m of observed samples for taking the average
is different for every computed average backoff. Therefore
in Fig. 8 we compare DOMINO with K = 3, γ = 0.9 and
m varying (representing the fact that the performance of the
original DOMINO algorithm can be any point on that tradeoff
curve, depending on the number of samples observed m),
vs. O-DOMINO with γ = 0.7 (the suggested algorithm ac-
cording to our analysis). This performance was also observed
for other configurations of DOMINO. In particular we noticed
that as long as DOMINO takes averages of the samples, i.e.,
as long as m > 1, DOMINO is outperformed by O-DOMINO,
even if they assume the same γ. Our experiments also suggest
that having γ close to 0.7 is the optimal setting. Notice that
this is true in our theoretical analysis (done with g=0.503)
and in our experimental analysis, where p∗1 was obtained for
g = 1/3.
We now test how our three proposed algorithms compare to

0 10 20 30 40 50 60 70 80 90
0

0.05

0.1

T
fa

T
d

Tradeoff curves for SPRT

SPRT detection of p
1
*

SPRT detection of p
1
D

Fig. 10. Tradeoff curves for SPRT with b = 0.1 and different values of a.
One curve shows its performance when detecting an adversary that chooses
pD1 and the other is the performance when detecting an adversary that chooses
p∗1

each other. Fig. 9 provides experimental evidence confirming
our predictions. In general, since the SPRT is optimal, it
performs better than the nonparametric CUSUM statistic, and
since nonparametric CUSUM takes into account the level of
the misbehavior (or normal behavior) for each sample, then
it outperforms the restricted addition and substraction in O-
DOMINO.
We have therefore shown how SPRT is the best test when

the adversary selects p∗1. We now show that if the adversary
deviates from p∗1 it will be detected faster. In order to come
up with another strategy p1 in A1/3 we decided to use
the attack distribution considered in [2], mainly a uniform
distribution with support between 0 and aW , where a denotes
the misbehavior coefficient of the adversary (and W is the
contention window size). We will call this pmf pD1 . In order
to make a fair comparison, we require pD1 ∈ A1/3, and thus
we set a = 1/3.
Fig. 10 shows the performance of SPRT when the adversary

uses pD1 and when it uses p∗1. This figure supports the analysis
that p∗1 is the worst possible distribution SPRT can face.
It is also interesting to see that the same phenomenon

happens for DOMINO. As can be seen in Fig. 11, an adversary
using p∗1 against DOMINO can misbehave for longer periods
of time without being detected than by using pD1 . Notice
however that we did not derive the optimal adversarial strat-
egy against DOMINO, and therefore there might be another
distribution pO1 which will yield a better gain to the adversary
when compared to using p∗1 against DOMINO.
Nevertheless, p∗1 can be argued to be a good adversarial

strategy against any detector in the asymptotic observation
case, since p∗1 is in fact minimizing the Kullback-Leibler
divergence from the specified pmf p0, as can be seen from
Eq.(6). The result is that the probability of detection of any
algorithm (when the false alarm rate goes to zero) is upper
bounded by 2D(p1||p0), where D(p||q) denotes the Kullback-
Leibler divergence between two pmfs [10]. On the other hand
we could not find any theoretical motivation for the definition
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of pD1 .
It is also interesting to note how close the theoretical shape

of the tradeoff curves is to the actual experimental data. Fig. 12
supports the correctness of our theoretical analysis since if
the logarithmic x-axis in the tradeoff curves in Section V
is replaced with a linear one, our theoretical curves closely
resemble the experimental data.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we performed extensive analytical and experi-
mental comparisons of several misbehavior detection schemes
in the MAC layer of IEEE 802.11. We confirmed the op-
timality of the SPRT-based detection schemes and provided
analytical explanations of why the other schemes exhibit
suboptimal performance when compared to the SPRT. In
addition to that, we offered two extensions to DOMINO: O-
DOMINO and nonparametric CUSUM. These extensions still
preserve the original intuition and simplicity of the algorithm,
while significantly improving its performance. Our results

show the value of performing a rigorous formulation of the
problem with the help of advanced statistical and game-
theoretic techniques, since these techniques can outperform
heuristic solutions in very practical scenarios.
It is also important to point out that the SPRT is a para-

metric statistic, while the other algorithms presented in this
work are nonparametric. Nonparametric statistics are easier
to apply since they do not require exact models of the normal
or adversarial distributions. They only require knowledge of
some of its parameters. DOMINO, O-DOMINO and nonpara-
metric CUSUM, for example only assume knowledge of some
nominal backoff. This nominal backoff represents the normal
backoff expected by honest stations. A parametric statistic,
on the other hand, needs a model for the distributions p0
and p1. If it has both models it should in principle perform
better than its corresponding nonparametric statistic. In order
to obtain the model for p1, we used the typical idea of robust
statistics: find the least favorable distribution p1. It should be
interesting to see the comparison of our robust SPRT statistic
with other robust versions of sequential parametric statistics,
such as the parametric version of CUSUM, or the Shiryaev-
Roberts statistic.
Another important aspect that needs to be addressed is the

response to an alarm. The effect of this responses should be
analyzed with respect to the network performance degradation
due to false alarms and the effectiveness in thwarting misbe-
havior.
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