
A TESTBED FOR COMPARING TRUST COMPUTATION ALGORITHMS

George Theodorakopoulos, and John S. Baras*

Institute for Systems Research,

University of Maryland,

College Park, MD 20742

ABSTRACT

Trust is the expectation of a person about another
person’s behavior. Trust is important for many secu-
rity related decisions about, e.g., granting or revoking
privileges, controlling access to sensitive resources and
information, or evaluating intelligence gathered from
multiple sources. More often than not, the issue is
complicated even further because the person making
the decision has no direct trust relationship with every
single subject whose trustworthiness needs to be eval-
uated. So, the decision maker needs to rely on recom-
mendations by others, and then somehow aggregate
the trust related information that is collected. In this
work we provide an algebraic framework in which we
can describe multiple ways that trust related informa-
tion can be aggregated to form a single value. We
show the similarities and differences that the various
so called trust computation algorithms have, and asso-
ciate these with the algebraic properties of the frame-
work that we consider.

1. INTRODUCTION

Trust is a weighted binary relation between two mem-
bers of a network. As an example, consider a network
of intelligence gathering agents, organized in a hierar-
chical manner. Trust could then be the expectation of
a person A (presumably high in the hierarchy) that a
person B (low in the hierarchy) is honest, as opposed,
e.g., to being a double agent. The weight of this rela-
tion is then a way to quantify this expectation: The
greater the weight, the higher the expectation.

Real life interactions build trust (or distrust) be-
tween some of the members of the network. In this
way, what we call direct trust is created, and, since
not all members of a network have direct interactions,
such direct trust links do not exist between all pairs.
However, members without direct interactions will also
need to make trust assessments for others, as in our

example above. Trust computation deals with the cal-
culation of these indirect trust relations.

Ultimately, we want to combine all relevant direct
trust relations and associated weights to come up with
an indirect trust value (weight). For this, first of all
we assume that trust is in some sense transitive: If A
directly trusts B (to some degree) and B directly trusts
C (to some degree), then we can derive how much A
indirectly trusts C (through B). Hence, we can talk
about trust paths from a source (A in this case) to a
destination (C in this case). These paths can be of any
length, not just of length 2, as in this case. A further
observation is that there could be multiple trust paths
from A to C, through nodes other than B, and all these
paths will be relevant for the trust computation.

Several approaches to trust computation have
been proposed in the literature by (Theodorakopoulos
and Baras, 2006), (Jøsang, 1999), (Levien and Aiken,
1998), and others. Unfortunately, all these attempts
have been made in a relatively ad-hoc fashion. With
few exceptions, no researchers have compared their
own approach to the others. As a result, someone
– say, a network administrator – who believes that a
notion of trust would be useful to incorporate in his ad-
ministrative domain, has no easy way to choose which
trust metric would be more suited to his needs.

It is this omission that we set out to correct in this
paper. We show how multiple trust computation algo-
rithms can be seen from a common viewpoint. Their
properties are formalized within an algebraic frame-
work. The benefit of this approach is that it is much
easier to see the differences and similarities that ex-
ist. Moreover, it is easier to design an algorithm that
satisfies the desired set of properties for a particular
situation, since the relevant properties are clearly sin-
gled out. Finally, it is easier to implement and evalu-
ate the algorithms under a common software solution
which makes use of the common framework that all
algorithms are instantiations of.

1



The rest of the paper includes the description of
our system model; detailed expositions of published
algorithms under that model; requirements that the
algorithms are intuitively expected to satisfy; and al-
gebraic properties that the algorithms may or may not
have. We interpret the algebraic properties in terms
of practical implications. Finally, we emphasize pro-
posals on evaluating the robustness of the algorithms
to attacks by malicious adversaries.

2. GENERAL FRAMEWORK AND
DESCRIPTION OF ALGORITHMS

We will be dealing with what is called recommenda-

tion trust in the literature, as opposed to direct trust.
In other words, we assume that direct trust has al-
ready been built between some pairs of users in the
network through real life interactions or otherwise, as
mentioned earlier. Then, our area of interest is the
combination of these direct trust values into indirect
ones. The term recommendation comes from the fact
that the intermediate trust values can be seen as rec-
ommendations of users for other users. Also note that,
in general, the recommendation trust values of two
users A and A’ about a user B will differ. Different
users can have different opinions about the same user.

Our model of this situation is a directed graph
G = (V, E) with weights on the edges, the weight func-
tion being w : e −→ S, e ∈ E. The set S contains all
possible trust values, usually from some minimum to
some maximum value. The nodes of the graph cor-
respond to the users, and the edges and edge weights
correspond to the direct trust relations and the degree
of trust associated with each relation. The set of neigh-

bors of a user i, denoted Ni, consists of all nodes j ∈ V
such that a directed edge e = (i, j) exists. We distin-
guish a source node s. The task of the algorithm that
we present is to compute the source node’s opinions
(recommendation trust values) for every other node
(user). That is, we want to come up with a single
value in S for each user in the network. We denote s’s
recommendation trust value for user d by t(s, d) ∈ S,
where t : V × V −→ S.

Each of the algorithms that we present differs in
the values and interpretation of edge weights (the set
S), and the way the function t(s, d) is computed from
the graph and the weights. The unifying theme is the
path interpretation that can be given to these com-
putations. More specifically, we can define two opera-
tors that can be used to combine the available direct
trust information. The first operator, which we will

call concatenation operator and denote with the sym-
bol ⊗, is used to combine trust values along a path
from the source to the destination, as shown in Fig-
ure 1. More formally, consider a path p1 from the
source s to the destination d comprising of the edges
e1 = (s, a1), e2 = (a1, a2), . . . , ek = (ak−1, d). The rec-
ommendation trust value of s about d along the path
p1 is

tp1 = w(e1) ⊗ w(e2) ⊗ . . . ⊗ w(ek). (1)

Note that it only makes sense to use the ⊗ opera-
tor for edge weights that are one after the other, i.e.,
form a directed path from the first to the last.

Figure 1: The concatenation operator ⊗ is used to
combine opinions along a path.

The second operator, which we will call sum-

mary operator and denote with the symbol ⊕, is
used to combine opinions computed along paths that
start at the same node X , and end at the same
node Y , i.e., paths that are, in a sense, parallel (see
Figure 2). More formally, consider multiple paths
p1, p2, . . . , pn from the source s to the destination d
with associated computed recommendation trust val-
ues tp1(s, d), tp2(s, d), . . . , tpn(s, d). The total recom-
mendation trust is

t(s, d) = tp1(s, d) ⊕ tp2(s, d) ⊕ . . . ⊕ tpn(s, d). (2)

Overall, we can write

t(s, d) =
⊕

path p:s d

tp(s, d). (3)

We now proceed to describe several trust compu-
tation algorithms within the framework that we have
just built. For each algorithm, we will give the defini-
tion and interpretation of the weights, and the defini-
tion of the operators.

2



Figure 2: The summary operator ⊕ is used to combine
opinions across paths.

2.1 Information Theoretic (Sun et al., 2006)

2.1.1 Entropy-Based

The weight is derived from a Bernoulli probability
mass function, which, in effect, defines the probabil-
ity pAB that user B is trustworthy according to user
A. The weight w(A, B) is then computed as a func-
tion of the entropy of the Bernoulli distribution in the
following way:

w(A, B) =

{

1 − H(pAB), for 0.5 ≤ pAB ≤ 1,

H(pAB) − 1, for 0 ≤ pAB ≤ 0.5.
(4)

The entropy function is defined as H(p) = −p log2 p−
(1 − p) log2(1 − p), and since 0 ≤ p ≤ 1, we can see
that −1 ≤ w(A, B) ≤ 1. So, in this case, the set S is
S = [−1, 1].

The concatenation operator is:

w(A, B) ⊗ w(B, C) = w(A, B)w(B, C), (5)

i.e., regular multiplication.

The summary operator is:

tp1(s, d) ⊕ tp2(s, d) =
w(ep1

1 )

w(ep1

1 ) + w(ep2

1 )
tp1(s, d)+

w(ep2

1 )

w(ep1

1 ) + w(ep2

1 )
tp2(s, d),

(6)

i.e., a weighted sum, where the weight of each path is
proportional to the trust value on the first edge of the
path.

2.1.2 Probability-Based

The weight w(A, B) in this case is a pair of numbers
(pAB, σAB). The number pAB is the mean of a Beta
probability distribution function, and σAB is the vari-
ance of this Beta distribution. It is interpreted as the
confidence that user A has about the trust value pAB,
i.e., how certain A is that pAB is an accurate estimate
of the probability that B is trustworthy.

As an aside, a Beta pdf is often used in the lit-
erature to model how direct trust values appear from
direct positive and negative experiences between two
users. The connection is that if user A has a positive
and b negative experiences with user B, the mean of
the associated Beta pdf will be a

a+b
and the variance

will be ab
(a+b)2(a+b+1) . This will help make it easier to

understand why the summary operator does what it
does. However, we do not look into what alternatives
exist to the generation of direct trust values. Our aim,
as we have noted, is to compare alternatives to the
computation of recommendation trust values.

The concatenation operator is:

w(A, B) ⊗ w(B, C) =(pAB, σAB) ⊗ (pBC , σBC) (7)

=(pABC , σABC), (8)

where the two components are

pABC = pABpBC + (1 − pAB)(1 − pBC) (9)

σABC = pABσBC +
1

12
(1 − pAB)

+pAB(1 − pAB)(2pBC − 1)2
(10)

The summary operation is done through an inter-
mediate transformation :

tp1(s, d) ⊕ tp2(s, d) = (pp1

sd, σp1

sd) ⊕ (pp2

sd, σp2

sd) (11)

Each (p, σ) pair is transformed to an (a, b) pair.
Then, the two pairs (a1, b1) and (a2, b2) are composed,
and the result is transformed back to a (p, σ) pair.

(p, σ) → (a, b) =
(

p(p(1−p)
σ

− 1), (1 − p)(p(1−p)
σ

− 1)
)

(12)

(a1, b1) ⊕ (a2, b2) = (a1 + a2 − 1, b1 + b2 − 1) (13)

(a, b) → (p, σ) =

(

a

a + b
,

ab

(a + b)2(a + b + 1)

)

(14)

3



2.2 EigenTrust (Kamvar et al., 2003)

The weights in this case are real numbers between
0 and 1: S = [0, 1]. The weights are normal-
ized on a user-per-user basis, i.e., for each user i,
∑

j∈Ni
w(i, j) = 1.

The concatenation operator is:

w(A, B) ⊗ w(B, C) = w(A, B)w(B, C), (15)

i.e., regular multiplication.

The summary operator is:

tp1(s, d) ⊕ tp2(s, d) = tp1(s, d) + tp2(s, d), (16)

i.e., regular addition.

2.3 Probabilistic (Maurer, 1996)

In this case the weights are treated exactly as prob-
abilities: S = [0, 1]. A weight w(A, B) is interpreted
to be the probability that the directed edge (A, B) ex-
ists. Then, the recommendation trust value of user s
for user d is equal to the probability that there ex-
ists at least one directed path from s to d. We assume
throughout that the probabilities on different edges are
independent.

The concatenation operator is:

w(A, B) ⊗ w(B, C) = w(A, B)w(B, C), (17)

i.e., regular multiplication.

The summary operator is:

tp1(s, d) ⊕ tp2(s, d) = tp1(s, d) + tp2(s, d)

−tp1(s, d)tp2(s, d),
(18)

which is derived from the simple law of the probability
of the union of two events: P (A∪B) = P (A)+P (B)−
P (A ∩ B) = P (A) + P (B) − P (A)P (B).

2.4 Multi-level (Abdul-Rahman and Hailes,
1997)

The weights are discrete: S = {−1, 0, 1, 2, 3, 4}. The
interpretation ranges from complete distrust (-1), to
ignorance (0), to increasing levels of trust (1,2,3,4).

The concatenation operator is:

w(A, B) ⊗ w(B, C) =
w(A, B)

4

w(B, C)

4
, (19)

i.e., multiplication of the values divided by 4. The di-
vision by 4 is presumably done to normalize the values
to have a maximum equal to 1, but this is not explicitly
stated in (Abdul-Rahman and Hailes, 1997).

The summary operator is:

tp1(s, d) ⊕ tp2(s, d) =
1

2
tp1(s, d) +

1

2
tp2(s, d), (20)

i.e., averaging. This operator can be applied to multi-
ple opinions at once, taking the average of all of them:

tp1(s, d) ⊕ tp2(s, d) ⊕ . . . ⊕ tp
n

(s, d) =

1

n
(tp1(s, d) + tp2(s, d) + . . . + tpn(s, d)).

(21)

2.5 Subjective Logic (Jøsang, 1999)

The weights are ordered triplets of positive real num-
bers that sum to 1: S = (b, d, u), b+d+u = 1, b, d, u ∈
[0, 1]. These three numbers are called, respectively,
belief, disbelief, and uncertainty.

The concatenation operator is:

w(A, B) ⊗ w(B, C) = (b1, d1, u1) ⊗ (b2, d2, u2)

= (b1b2, b1d2, d1 + u1 + b1u2).
(22)

The summary operator is:

tp1(s, d) ⊕ tp2(s, d) = (bp1

sd, d
p1

sd, up1

sd) ⊕ (bp2

sd, dp2

sd, up2

sd)

=

(

bp1

sdu
p2

sd + bp2

sdup1

sd

k
,
dp1

sdup2

sd + dp2

sdup1

sd

k
,
up1

sdu
p2

sd

k

)

,

(23)

where k = up1

sd + up2

sd − up1

sdu
p2

sd.

2.6 Path-strength (Lee et al., 2003)

The weights are real numbers between 0 and 1: S =
[0, 1].

2.6.1 Strongest Path

The concatenation operator is the min operator:

w(A, B) ⊗ w(B, C) = min(w(A, B), w(B, C)). (24)

The summary operator is the max operator:

tp1(s, d) ⊕ tp2(s, d) = max(tp1(s, d), tp2 (s, d)). (25)

4



2.6.2 Weighted Sum of Strongest Disjoint
Paths

The concatenation operator is the min operator:

w(A, B) ⊗ w(B, C) = min(w(A, B), w(B, C)). (26)

The summary operator is similar to the one in
2.1.1, a weighted sum of paths, where the weights are
those of the first edges on each path. The difference is
that now the paths are required to be disjoint.

2.7 Graph flows (Levien and Aiken, 1998)

This and the next algorithm are based on arguments
related to flows in graphs.

In this algorithm, the edge weights are viewed as
capacities. A unit flow is sent out from the source s,
and the trust value for the destination d is equal to the
fraction of the flow that reaches the destination. Edge
weights are again between 0 and 1: S = [0, 1].

We can define the concatenation and summary op-
erators as follows:

The concatenation operator is the min operator:

w(A, B) ⊗ w(B, C) = min(w(A, B), w(B, C)). (27)

The summary operator is regular addition:

tp1(s, d) ⊕ tp2(s, d) = tp1(s, d) + tp2(s, d). (28)

2.8 Certificate Insurance (Reiter and Stub-
blebine, 1999)

In this algorithm, the weights are nonnegative real
numbers: S = [0,∞). Again, the algorithm is a flow
algorithm, just as the previous one. The same opera-
tors apply. However, the interpretation of the weights
is different. Here, weights are expressed in monetary
terms, in particular dollars. An edge (i, j) corresponds
to a public key certificate that user i has issued for the
public key of user j. The weight w(i, j) is the amount
of dollars that i agrees to pay to someone who believes
that i’s certificate is correct and later it turns out that
it was not. This amount of dollars can be thought of
as a kind of insurance.

3. REQUIREMENTS FOR TRUST
METRICS

So far, we have listed several pairs of concatenation
and summary operators. All of them are used to do
the same calculation, that is, compute the recommen-
dation trust value that a source node s should place
on a destination node d. Based only on our intuition
about this objective we can derive some conclusions
about the desirable behavior of the operators. In this
section we discuss some conditions that these opera-
tors should satisfy.

First of all, a user should not be able to unilater-
ally increase the source’s recommendation trust value
for the destination to a level higher than the source’s
trust value for the user himself. In other words, if s’s
trust in user i is t(s, i) ∈ S, then tPi(s, d) � t(s, i),
where � is a partial order defined on S, and Pi is the
set of paths from s to d that pass through i. The
rationale is to avoid maliciously manipulated reports
of trust values by users. A user’s trust values about
others cannot be trusted more than the user himself.
At the most, a user can give the maximum trust value
to everyone else, but even then, we do not want the
source to increase its own trust values for everybody
beyond some level.

On a related note, if s knows about d only through
i, i.e., the path s i d is the only path from s to d,
then s cannot trust d more than how much i trusts d.
Simply, there is no reason for s to be more optimistic
than i’s recommendation is. Continuing from the last
paragraph, tPi(s, d) � t(i, d). Translating these con-
siderations into a condition for the concatenation op-
erator, we impose that trust should decrease along a
path.

a ⊗ b � a, b, a, b ∈ S. (29)

We now come to the summary operator, which
deals with aggregating recommendation trust values
derived from different paths. Throughout the litera-
ture there is a prevailing notion that more independent
paths are better than fewer (Reiter and Stubblebine,
1998). More paths should in a sense be better than
fewer paths, since more evidence is better than less
evidence. It takes more malicious users to collaborate
and subvert the trust computation algorithm, since at
least one is needed on every path from the source to
the destination.

But it is not the trust value that should increase;

5



it is the confidence in the accuracy of the computed
value, as long as, and to the extent that the trust val-
ues of different paths agree. In other words, if all rec-
ommendations agree that the destination is untrust-
worthy, then it stands to reason that the result of the
summary operator should not increase the trustwor-
thiness of the destination.

However, this conclusion is not always correct.
What happens if some recommendations are positive
and some are negative? Then two results are possi-
ble: One is that the confidence in the accuracy of the
computed value should decrease, since the recommen-
dations are in conflict. The other one is that the com-
puted value should be the average of the recommenda-
tions (possibly weighted by the respective confidence
values), while the confidence in its accuracy should in-
crease.

Which one is more correct depends on the par-
ticular situation. If trust is ultimately assumed to be
binary, i.e, a user is in reality either fully trustwor-
thy or fully untrustworthy, then the summary of con-
flicting opinions should decrease the confidence. This
happens, for instance, when entities in the network
are assumed to be divided in either friendly or enemy,
with no gradation in between. On the other hand,
trust can also be interpreted to be something that can
legitimately be grey, as opposed to just black or white.
It can be, for instance, the fraction of the time when
a user has been seen to behave in a cooperative way,
which is a quantity that can take any value between
0 and 1. In this case it is perfectly admissible to say
that a user is trusted at a level of, say, 0.7. Therefore,
two conflicting opinions could be reconciled by arguing
that the two recommenders have seen different aspects
of the behavior of the destination user. As a result, it
would make sense to compute a summary value as the
average of the two recommendations, and increase the
total confidence value in the result.

So far, we have mentioned in passing a distinction
between two concepts: trust and confidence. We de-
fined trust to be an estimate of the behavior of a user,
and confidence to be the accuracy of that estimate.
However, not all the algorithms that we described in-
corporate the notion of confidence. As transpires from
the discussion in this section, the usefulness of con-
fidence is more apparent when there exist conflicting
opinions. So, one situation that simplifies things is
when conflicting opinions are not needed, or can be
explicitly forbidden to exist. This saves us the trouble
of having to deal with malicious users falsely accusing
benign ones, but also prevents good users from notify-
ing the network about potential misbehavior that they

have noticed. If, for instance, trust values are used for
access control decisions, then disallowing conflicting
opinions amounts to disallowing revocation of privi-
leges. Whether this can be tolerated or not depends
on the particular situation.

4. ALGEBRAIC PROPERTIES OF THE
OPERATORS

After going over the intuitive properties that we would
like the operators to have, and the conditions under
which we would like them to have those properties,
we now proceed to the algebraic properties of these
operators. The motivation for talking about algebraic
properties is that they can be linked to issues with the
numerical results that the computation returns. As a
high level example to be elaborated on later, with cer-
tain operators it could happen that some edge weights
are taken into account twice, which is clearly undesir-
able. Moreover, related to the algebraic properties are
performance issues, as well as whether the computa-
tion can be done in a distributed manner or not.

First and foremost, both operators should be
closed with respect to the set S, that is, if a, b ∈ S,
then a ⊗ b ∈ S, and a ⊕ b ∈ S. The reason is that
our admissible results are in the set S, and any value
outside S has by definition no meaning in our compu-
tations. If S and ⊗ satisfy this property, then the pair
(S,⊗) is called a magma or a groupoid. Similarly for
the pair (S,⊕). Although this look like a fundamental
property, some times it can be tricky to get right. For
example, in one of the two proposed algorithms in (Sun
et al., 2006), presented in Section 2.1.1, the summary
operator is not closed for the set S = [−1, 1]. That
summary operator is weighted averaging and it would
create a problem in a situation where the following
holds for four users A, B, C, and D:

w(A, B) = 0.95 w(B, C) = 1 (30)

w(A, D) = −0.9 w(D, C) = 1 (31)

The algorithm would then compute

t(A, D) = tABC(A, C) ⊕ tADC(A, C)

= w(A, B)w(B, C) ⊕ w(A, D)w(D, C)

= w(A,B)
w(A,B)+w(A,D)w(A, B)w(B, C)

+ w(A,D)
w(A,B)+w(A,D)w(A, D)w(D, C)

= 0.95
0.95−0.90.95 · 1 + −0.9

0.95−0.9 (−0.9 · 1)

= 34.25 /∈ S = [−1, 1]

(32)

6



A property for the summary operators, which is
so natural, that is satisfied by all summary operators
described above, is the commutativity property:

a ⊕ b = b ⊕ a, ∀a, b ∈ S (33)

Remembering that a and b correspond to recom-
mendation values derived from paths, we can see that
it would not make sense to differentiate between, in ef-
fect, the names of the two paths when combining them.
Commutativity makes the pair (S,⊕) a commutative

magma.

We do not need commutativity for the ⊗ oper-
ator. This makes sense, since reversing the order of
the edges of a path need not necessarily result in the
same outcome. However, we note that some of the
concatenation operators proposed are indeed commu-
tative (e.g. ·, min). This is not a problem, as long as
the computation algorithm does not explicitly rely on
the commutativity of this operator.

Another property of interest is associativity, and
we would like both operators to be associative:

a ⊕ (b ⊕ c) =(a ⊕ b) ⊕ c (34)

a ⊗ (b ⊗ c) =(a ⊗ b) ⊗ c, ∀a, b, c ∈ S (35)

The reasoning is that the order in which the oper-
ator is applied should not matter. The justification in
the case of the summary operator is that, if we have
computed a recommendation trust value based on the
currently available information, and then another path
appears, we want to be able to just “add” together the
information from the new path, and not do the whole
computation from scratch. This pertains to the effi-
ciency of the computation, especially when done over
a network where information will arrive with different
delays. Unfortunately, one intuitive summary opera-
tor – namely, averaging – is not associative in general:

∃a, b, c ∈ S : avg(a, avg(b, c)) 6= avg(avg(a, b), c) (36)

The averaging operator is intended to average over
all available paths simultaneously, and not to include
them one by one. However, in distributed environ-
ments, this leads to the problems just stated. One
way to overcome this problem would be to count the
number of paths already taken into account in the cur-
rent result, so as to weight properly the current result
and the new path value.

When it comes to the concatenation operator, as-
sociativity means that the final result should depend
only on the order with which the edges appear in the

path, but not on the order with which we choose to do
the calculations. Associativity is not satisfied by all
the concatenation operators we have presented. For
example, the operator presented in Section 2.1.2 is
not associative. However, whether this is a significant
problem or not depends on the actual computation al-
gorithm and the way it is implemented distributedly.

As far as algebraic terminology goes, the pair
(S,⊗) is now a semigroup, whereas the pair (S,⊕) is
a commutative semigroup.

The last property we will consider is the distribu-

tivity (left and right) of ⊗ over ⊕:

a ⊗ (b ⊕ c) =(a ⊗ b) ⊕ (a ⊗ c)

(a ⊕ b) ⊗ c =(a ⊗ c) ⊕ (b ⊗ c)
(37)

Distributivity is the most useful operation in terms
of increasing the efficiency of computations. By in-
spection of (37), we see that the left sides need to com-
pute two operations (one ⊕ in the parenthesis, and one
⊗ next). However, the right sides need three. This fact
and the efficiency gains have been explored and dis-
cussed at length in the literature (Aji and McEliece,
2000). However, it seems to be the most difficult to
satisfy.

We will just limit ourselves to discussing the flow-
based metrics (presented in Sections 2.7 and 2.8) from
the point of view of distributivity. The operators used
there (⊗ = min,⊕ = +) do not satisfy distributiv-
ity. For this reason, only if applied in a particular way
will they return the correct (intended) result, which
is the flow from the source to the destination. If all
the paths from the source to the destination are edge-
independent (share no common edges), then no partic-
ular way is needed. But if they are not independent,
then the paths need to be decomposed into succes-
sive segments comprising parallel (edge-independent)
subpaths and common edges (a series-parallel decom-
position). Then the summary operator will be applied
to the edge-independent segments and then the con-
catenation operator will be applied to the successive
segments. This could be repeated as needed. However,
this cannot be done with all graphs, so other methods
for computing flows should be used.

In the case of Subjective Logic (Sec. 2.5) distrib-
utivity is also not satisfied. It seems that where the
series-parallel decomposition cannot be done, there is
no way to do the computation, so some graphs can
simply not be handled by that algorithm.

If the two operators satisfy all the properties that

7



we have assigned to them so far, then the triplet
(S,⊗,⊕) is an algebraic structure called a semiring.

5. ATTACK RESISTANCE

Levien and Aiken, in (Levien and Aiken, 1998), sug-
gested a criterion for measuring the resistance of a
trust metric to attackers. First, they distinguished
between two types of attacks: node attacks, and edge
attacks. Node attacks amount to a certain node being
impersonated. So, the attacker can issue any num-
ber of arbitrary opinions (public key certificates in
Levien’s case) from the compromised node about any
other node. Edge attacks are more constrained: Only
one false opinion can be created per each attack. In
other words, an attack of this type is equivalent to in-
serting a false edge in the trust graph. Obviously, a
node attack is the more powerful of the two, since it
permits the insertion of an arbitrary number of false
edges.

The attack resistance of a metric can be gauged
by the number of node or edge attacks that are needed
before the metric can be manipulated beyond some
threshold. For instance, it has been shown (Reiter and
Stubblebine, 1999) that a single misbehaving entity (a
1-node attack) can cause the metric proposed in (Beth
et al., 1994) to return an arbitrary result.

Here an important clarification has to be made:
there are trust graphs that are “weaker” than others.
When, for example, there exists only a single, long
path between the source and the destination, then any
decent metric is expected to give a low trust value. So,
the attack resistance of a metric is normally judged by
its performance in these “weak” graphs.

CONCLUSIONS

We have presented an algebraic framework that unifies
many trust computation algorithms. By focusing on
the algebraic properties of the algorithms under this
framework, we are able to compare them in a much
more rigorous way. We have shown links between the
properties and considerations that can arise in prac-
tical implementations. As a result, we believe that a
security practitioner can benefit from our exposition
by adapting a particular metric to his own specifica-
tions, or even designing a new one. In the future, we
will further pursue the formal evaluation of the resis-
tance of metrics to attacks.

ACKNOWLEDGMENTS

This work is prepared through collaborative partici-
pation in the Communications and Networks Consor-
tium sponsored by the U.S. Army Research Labora-
tory under the Collaborative Technology Alliance Pro-
gram, Cooperative Agreement DAAD19-01-2-0011.
Research is also supported by the U.S. Army Research
Office under grant No DAAD19-01-1-0494. Any opin-
ions, findings, and conclusions or recommendations ex-
pressed in this publication are those of the authors and
do not necessarily reflect the views of the U.S. Army
Research Office.

REFERENCES

Abdul-Rahman, A. and Hailes, S., 1997: A distrib-
uted trust model. Proc. of the 1997 New Security

Paradigms Workshop, 48–60.
Aji, S. M. and McEliece, R. J., 2000: The generalized

distributive law. IEEE Transactions on Information

Theory, 46, 325–343.
Beth, T., Borcherding, M., and Klein, B., 1994: Valua-

tion of trust in open networks. ESORICS ’94 , 3–18.
Jøsang, A., 1999: An algebra for assessing trust in

certification chains. Proc. of the Network and Dis-

tributed Systems Security Symposium.
Kamvar, S. D., Schlosser, M. T., and Garcia-Molina,

H., 2003: The EigenTrust algorithm for reputation
management in p2p networks. Proc. WWW2003 ,
640–651.

Levien, R. and Aiken, A., 1998: Attack-resistant trust
metrics for public key certification. Proc. of the 7th

USENIX Security Symposium, 229–242.
Maurer, U., 1996: Modelling a public-key infrastruc-

ture. ESORICS ’96 , 325–350.
Reiter, M. K. and Stubblebine, S. G., 1998: Re-

silient authentication using path independence.
IEEE Trans. Comput., 47, 1351–1362.

Reiter, M. K. and Stubblebine, S. G., 1999: Authenti-
cation metric analysis and design. ACM Trans. Inf.

Syst. Secur., 2, 138–158.
Lee S., Sherwood, R. and Bhattacharjee, B., 2003: Co-

operative peer groups in NICE. Proc. IEEE Infocom

2003 , 1272–1282.
Sun, Y., Yu, W., Zhu, H. and Liu, K. J. R., 2006: A

trust evaluation framework in distributed networks:
Vulnerability analysis and defense against attacks.
Proc. IEEE Infocom 2006 .

Theodorakopoulos, G. and J. S. Baras, 2006: On trust
models and trust evaluation metrics for ad hoc net-
works. IEEE Journal on Selected Areas in Commu-

nications , 24, 318–328.

8


