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ABSTRACT 

 
Wireless ad-hoc networks rely on the cooperation of 
participating nodes for almost all their functions. 
However, due to resource constraints, nodes are generally 
selfish and try to maximize their own benefit when 
participating in the network. Therefore, it is important to 
study mechanisms which can be used as incentives to 
form coalitions inside the network. In this paper, we study 
coalition formation based on game theory, especially 
cooperative game theory. First, the dynamics of coalition 
formation proceeds via pairwise bargaining. We show that 
the size of the maximum coalition is a decreasing function 
of the cost for establishing a link. After the coalition 
formation process reaches the steady state, we are 
interested in the stability of coalitions. We prove that 
coalitions are stable in terms of both pairwise stability and 
coalitional stability. 
 

1. INTRODUCTION 
 

Ad hoc networks rely on the cooperation of 
participating nodes for almost all their functions, for 
instance, to route data between source and destination 
pairs that are outside each other's communication range. 
However, because nodes are resource constrained, we 
deal with networks composed of selfish users who are 
trying to maximize their own benefit from participation in 
the network. In particular, we assume that each user is in 
complete control of his network node. In this case, the 
fundamental user decision is between forwarding or not 
forwarding data packets sent by other users. Given the 
constraints (mostly related to battery power) that the user 
faces, there is a very real cost incurred when choosing to 
forward. So, all users would like to send their own data 
packets, but not forward those of other users. 
Unfortunately, if all users were to do that, the network 
would collapse. In order to form the necessary 
infrastructure that makes multi-hop communication 
achievable, cooperation enforcement mechanisms are 
needed to cope with such selfish behavior of nodes in ad 
hoc networks. 

 
One type of mechanism introduces incentives for 

collaboration. Buttyan and Hubaux (Buttyan and Hubaux, 
2003), for instance, propose to use nuglets to reward 
nodes who choose to forward. In (Buchegger and Boudec, 
2003; Marti et al., 2000), trust or reputation systems are 
used as another mechanism to promote cooperation and 
circumvent misbehaving nodes. A growing body of 
literature, a comprehensive overview of which is in 
(Félegyházi et al., 2006) deals with circumstances under 
which the cooperation between nodes can be sustained. 

 
The conflict between the benefit from cooperation 

and the required cost for cooperation naturally leads to 
game-theoretic studies, where each node strategically 
decides the degree to which it volunteers its resources for 
the common good of the network. The players in game 
theory attempt to maximize an objective function that 
takes the form of a payoff. Users make choices and each 
user's payoff depends not only on his own choice, but also 
on those of the other users. Hence, in the wireless network 
context, a user's payoff depends not only on whether he 
decides to cooperate (by transmitting other users' data) or 
not, but also on whether his neighbors will decide to 
cooperate. Srinivasan et al. (Srinivasan et al., 2003) 
address the problem of cooperation among energy 
constrained nodes and devised behavior strategies of 
nodes that constitute a Nash equilibrium. In (Johari et al., 
2006), there is a link between two nodes if they agree to 
cooperate. These links are formed through one-to-one 
bargaining and negotiation. 

 
In this work, we assume that users want to be 

connected to as many other users as possible, directly 
(one-hop) or indirectly (multi-hop, through other users). 
This is the incentive that, according to our scenario, the 
users have for forwarding packets. In other words, by 
activating a communication link towards one of their 
neighbors, they gain by having access to the users with 
which that neighbor has activated his links, and so on, 
recursively. The more users that a user has access to, the 
more desirable it is for his neighbors to activate their link 
towards him. 
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We study cooperation based on the notion of 
coalitions. The concept of users being connected to each 
other, and -- by getting connected -- acquiring access to 
all the other users that each of them had so far access to, 
can be well captured by cooperative game theory (also 
known as coalitional game theory (Osborne and 
Rubinstein, 1991)). In cooperative game theory, the 
central concept is that of coalition formation, i.e., subsets 
of users that join their forces and decide to act together. 
Players form coalitions to obtain the optimum payoffs. 
The key assumption that distinguishes cooperative game 
theory from non-cooperative game theory is that players 
can negotiate collectively (Myerson, 1991). 

 
A question that has only relatively recently began to 

attract attention ((Aumann and Myerson, 1988) is the first 
work in this area) is the actual way in which the coalition 
is formed. The cooperative game is usually modeled as a 
two-period structure. Players must first decide whether or 
not to join a coalition. This is done by pairwise bargaining, 
in which both players have to agree to join in a coalition. 
In our case, this pairwise bargaining involves, for each 
node, a comparison between the cost for activating the 
link towards the other node, and the benefit from joining 
the coalition, which the other player is a member of. The 
pairwise bargaining is modeled as a non-cooperative 
game. In the second step, players in the coalition 
negotiate the payoff allocation. The central problem is to 
study the payoff allocation scheme and whether the 
scheme results in a stable solution. 

 
The rest of the paper is organized as follows: In 

Section 2, we describe the mathematical framework 
within which we deal with the concepts just discussed. 
The terminology we use in the paper is defined. In 
Section 3, we state and prove some properties of our 
model. We also evaluate our approach using simulations. 
Section 4 analyzes, from the point of view of cooperative 
game theory, the stability of the solutions (coalitions) that 
our model finds. Section 5 concludes the paper. 

 
 

2. PROBLEM FORMULATION 
 

The model we use for our scenario is a complete 
undirected graph G=(V,E) with weighted edges, where 
w(i,j) is the weight of edge (i,j) ∈ E. In general, however, 
we allow for a different weight w(j,i) ≠ w(i,j) for the same 
edge. The motivation will soon be clear. Each node 
corresponds to a user, and the weight w(i,j) represents the 
cost that user i needs to pay in order to activate the edge 
towards j. This cost is in general different from the cost 
that user j needs to pay, hence w(j,i) ≠ w(i,j). If they both 
decide to activate their edge, then the edge is said to be 
active. Note that all possible topologies can be described 
in our model, since we can model non-existent edges with 
edges of infinite weight. The reason is that a node will 

never choose to activate an edge if he has to pay an 
infinite cost to do so, which means that that edge is as 
good as non-existent.  
 

The easier way to link the link activation cost to 
something specific is to equate it with one-hop 
transmission energy (or power). So, the cost for user i to 
activate his communication link to user j is equal to the 
transmission energy (or power) necessary for i to send 
data to j. But the cost can also be something like the 
inverse of the expectation that j will forward i’s data: the 
higher the expectation, the lower the cost. Or it can be the 
degree of trust between users i and j: the more i trusts j, 
the lower the cost of establishing the link. 

 
When both i and j activate the edge towards each 

other, they join in a coalition. A coalition is a subset of 
nodes that is connected in the subgraph induced by the 
active edges (i.e., the graph G'=(V,E'), where E' is the set 
of active edges). In other words, two users are in the same 
coalition, if and only if there exists a path of active edges 
between them. The users in a coalition are the coalition's 
members. If two members of separate coalitions join, then 
the two coalitions merge into one. The size of a coalition 
is the number of its members. A single isolated user can 
also be said to be in a trivial coalition of size 1. 

 
We have described a user's incurred cost of activating 

an edge. The incentive for user i to activate the edge (i,j) 
is the size of the coalition that user j is a member of. So, 
the larger j's coalition is, the greater the incentive for i to 
activate the edge, provided that they are in separate 
coalitions. If, on the other hand, i and j are in the same 
coalition, they will only pay the costs Eij, Eji, but they will 
not gain anything, since they are already part of the same 
coalition. In Section 3, we will use this observation to 
show that coalitions can only have a tree topology (i.e., no 
cycles formed exclusively with nodes of a coalition). 

 
Putting both the cost and the incentive together, we 

create a game on the graph G. The players of the game are 
the users, and the strategies available to user i are 
“Activate edge (i,j)” and “Not activate edge (i,j)” for each 
neighboring user j. If the edge (i,j) becomes active, then 
both users pay the costs and reap the benefits (each his 
own). Otherwise, neither one receives or pays anything. 
The game on each edge is shown in Fig. 1. 
 

Fig. 1 The game between i and j for the activation of the 
edge (i,j), when they are in different coalitions. Only if 
they both decide to activate, will the edge become active. 
A: Activate, NA: Not Activate, Ni, Nj: sizes of i's and j's 

2 



coalitions, Eij, Eij: costs for edge activation for i and j, 
respectively 
 

We can see from Fig. 1 that an edge (i,j) will become 
active if and only if the following edge activation 
condition holds (Ni, Nj: sizes of i's and j's coalitions): 
 .j ij i jiN E N E≥ ∧ ≥   (1) 
Note, however, that the values Ni can change after 
coalitions are formed. In particular, if users i and j are in 
different coalitions, the activation of edge (i,j) will change 
both Ni, Nj to Ni + Nj . This, in turn, may make the edge 
activation condition true for edges for which it used to be 
false, and thus enable more coalitions to be formed. 
 

This leads us to observe that the dynamics of the 
game can be separated in rounds of successive coalition 
expansions. That is, in the first round, some edges will be 
activated based on the initial N-values, which will 
increase the appropriate N-values for the next round. In 
the second round, we will examine the new N-values to 
see if new edges can potentially become active, and so on. 
When no further edge activations are possible, the game 
has reached an equilibrium. 
 

To simplify the analysis, in Section 3 we consider 
that the weights Eij are either equal to ∞ (i.e., the 
corresponding edges do not exist) or to Ei for all 
neighbors j, that is, the cost for user i to activate an edge 
depends only on i. Therefore, in the following sections we 
refer to the E weights as node weights, as opposed to edge 
weights. The edge activation condition in Eqn. (1) 
becomes 
  (2) .j i iN E N E≥ ∧ ≥ j

 
 
3. DYNAMIC FORMATION OF COALITIONS 

 
3.1 General Properties 

In this section we derive some of the general 
properties of our model. Despite the fact that a lot depend 
on the actual topology and the weights (node weights 
from now on), we can still reach some interesting results. 
 

In general, the weights can take any non-negative real 
value. But we now show that when it comes to deciding 
which edges will become active, allowing non-integer 
values does not make a difference. 

 
Proposition 1: A weight Ei can be replaced with its 

ceiling iE⎡ ⎤⎢ ⎥ , with no changes in the game dynamics. 
Proof: This is rather obvious if we consider the 

activation condition (2), and notice that the N values can 
only be integers. More formally, 
  (3) , (N E N E N E∈ ∈ ⇒ ≥ ⇔ ≥ ⎡ ⎤⎢ ⎥Ν R )

■ 

 
The following proposition deals with the question: 

Can an active edge stop being active in later rounds? We 
should note that we do not allow edges to “break” by 
accident, as could be the case in a real wireless network, 
where communication links may fail. We only consider 
purposeful deactivation by a user, in the case where the 
gain no longer outweighs the cost of activation. 

 
Proposition 2 (monotonicity): If an edge becomes 

active, then it is never deactivated in the future. 
Proof: By induction on the rounds of coalition 

forming. In the first round, an edge (i,j) is activated iff 
Ei=Ej=1, which means that the values Ni and Nj are 
increased. In the second round, the number of potential 
edge activations is increased, since the Ni values are 
increased. Since the Ni values are monotonically non-
decreasing, the activation conditions for the already 
activated edges cannot become false. 

■ 
 

We now attempt to characterize the coalitions that 
can form. In particular, given only the first round results, 
we can already say some things about coalitions that can 
never form. 

 
Definition 1 (Subset Distance): The distance between 

two subsets of nodes V1, V2 ⊆  V is the shortest distance 
between any two nodes i∈  V1, j∈  V2. Formally, 
 

1 2
1 2 ,

( , ) min ( , ).
i V j V

d V V d i j
∈ ∈

=  

 
Definition 2 (Coalition Boundary): The boundary 

C∂ of coalition C  is the set of nodes outside the 
coalition that have at least one neighbor inside the 
coalition. Formally,  

V⊆

{1 \ | ( , )  for some }.C V C i j E j C∂ = ∈ ∈ ∈  
 

If we know the boundaries of coalitions formed in the 
first round (i.e. the coalitions consisting exclusively of 
nodes i with Ei=1), then we can determine what coalitions 
will never form. In particular, the following proposition 
holds. 

 
Proposition 3: If a coalition C is more than 3 hops 

away from the nearest coalition,  then C will not join 
any other coalition. 

Proof: If there are 3 nodes (i.e., 4 hops) separating C 
from the nearest first round coalition, then the 2 nodes 
that are on the boundaries of the two coalitions have 
weight necessarily larger than 1. The node in the middle 
is not initially and will never be a member of any non-
trivial coalition, since the adjacent nodes will never want 
to activate their edges towards him. So, C will at most 
expand to include its boundary, but not more than that. 

■ 
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As a corollary, only first round coalitions whose 
boundaries intersect (i.e., the set intersection of their 
boundaries is non-empty) or touch (i.e., there exists an 
edge from a node of one boundary to a node of the other 
boundary) can eventually join each other directly (i.e., not 
through other coalitions). For example, two coalitions 
whose boundaries intersect will join directly, if and only 
if at least one intersection node has weight less than or 
equal to both coalition sizes.  
 

So, in effect, the nodes with E-values larger than 1 
create a barrier for the expansion of the coalition. If that 
barrier is more than 2 nodes deep, i.e., the distance 
between two first round coalitions is more than 3, then it 
can never be overcome. The next proposition is one we 
have already hinted at in a previous section. 
 

Proposition 4: All coalitions formed are trees. 
Proof: Since the coalition value is a function of the 

number of its members, and not of its structure, any extra 
links between nodes that are already connected only cost, 
and do not add to the value. 

■ 
 

From Proposition 2, we see that, once formed, a link 
will never be destroyed. This, however, crucially depends 
on the payoff that each node receives by joining the 
coalition. The way our non-cooperative game is described, 
each member of the coalition receives a payoff equal to 
the size of the coalition. That is, the total value of a 
coalition is equal to the square of its size, which is exactly 
the network effect. 
  (4) 2( ) | |v C C=
 
3.2 Experimental Evaluation 

For a specific topology and a specific choice of E-
weights, the coalitions that will form are deterministically 
defined. We are interested in the size of the largest 
coalition. The most desirable outcome would be if the 
global coalition would form, but this does not always 
happen.  
 

In our simulations, we consider 100 players in a 
10×10 square grid topology. Each player is connected to 
his N, S, W, and E neighbors, except, of course, the 
players on the sides of the square. The node weights are 
chosen according to an exponential distribution with 
parameter λ . Since, as we have seen in proposition 1, 
only the ceiling of each weight matters, the distribution of 
the rounded up weights is as follows: 

  (5) 
( 1)

1

Pr{ } Pr{ 1 }

.

i
k x k k

k

E k k E K

e dx e eλ λ λλ − − − −

−

= = − < ≤ =

= −∫
i

 
The moment generating function for this random variable 
is  

( ) ( 1) ,  for .
1i

s

E s

es e s
e

λ
λ

λ λ
−

−Φ = − <
−

 

 
 

Fig. 2 The expected value (e eλ λ− − −1)  of the node 
weights as a function of λ . The errorbars depict one 
standard deviation / 2 (e eλ λ− − −1) on each side of the 
average. 
 

 
Fig. 3 Maximum coalition size as a function of the 
parameter λ . Edge weights are λ -exponentially 
distributed. Averages of 100 simulations are plotted, 
along with one standard deviation on each side of the 
average. Averages and standard deviations are in Table 1. 
 
 
So we can compute the expected value for this discretized 
exponential distribution: (e eλ λ− − −1)  and the standard 

deviation: ( / 2) (e eλ λ− − 1)− , both of which are shown in 
Fig. 2. In Fig. 3, we show that as the parameter λ  
increases, which corresponds to decrease of the expected 
node weight, the maximum coalition size increases.  
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Table 1 Results for averages and standard deviations. 
Data are shown in Fig. 3. 

 
 
For a toy example of how coalitions are formed, 

consider the following 5×5 grid, where the node weights 
are shown (exponential with parameter 0.3, so the 
expected node weight is 3.9, with standard deviation 3.3): 

 
 

In the first round, the players at A23 and A33 will join, 
but no other coalition will be formed. In the second round, 
because there exists a coalition of size 2, some expansions 
are possible: A22 will join with A23, and A34 will join with 
A33. In the beginning of round 3, there exists a coalition of 
size 4 comprising A22, A23, A33, A34. So, nodes A13, A24, A32 
will join, for a size 7 coalition. There are no more changes 
after that. The result is shown below, where the coalition 
members are circled. 

 
Note that, with the exception of A43=10, all the other 
nodes that are adjacent to the coalition are willing to join 
in. However, none of the ``outer'' nodes of the coalition 
will let them join, so to speak. All the outer nodes have 
weights more than 1, so they would only join with a 
coalition of size greater than 1. We can see that these 
“outer” nodes, which are the boundary of the 
coalition C of 1-weighted nodes formed in the first round, 
form an obstacle to the further expansion of the coalition. 

C∂

 
However, if the average weight is lower, a larger 

coalition will form. For λ =0.5, the expected node weight 
is 2.5, with standard deviation 2.0. In the following 
example grid, 13 1s appear as opposed to 5 in the 
previous case. 

 

 
The final coalition will include the circled nodes, which in 
this case is almost every node, as the reader can verify. 

 
 
 

4. STABILITY OF COALITIONS 
 

We study cooperation based on the notion of 
coalitions. The concept of users being connected to each 
other, and -- by getting connected -- acquiring access to 
all the other users that each of them had so far access to, 
can be well captured by cooperative game theory (also 
known as coalitional game theory). In cooperative game 
theory, the central concept is that of coalition formation, 
i.e., subsets of users that join their forces and decide to act 
together. Players form coalitions to obtain the optimum 
payoffs. The key assumption that distinguishes 
cooperative game theory from non-cooperative game 
theory is that players can negotiate collectively (Myerson, 
1991). We believe that the cooperative game model fits 
better to the practical scenarios, where agents naturally 
form coalitions, such as soldiers in the same group. 
Furthermore, the cooperative games are constrained, in 
the sense that there is communication constraining the 
collaboration, so they are called network-restricted 
cooperative games (Myerson, 1977). 

 
A question that has only relatively recently began to 

attract attention (Slikker and Nouweland, 2001; Dutta and 
Jackson, 2003) is the actual way in which the coalition is 
formed. The cooperative game is usually modeled as a 
two-phase structure. Players must first decide whether or 
not to join a coalition. This is done by pairwise bargaining, 
in which both neighboring nodes have to agree to join in a 
coalition. In our case, this pairwise bargaining is modeled 
as the iterated game in Sec. 2. In the second step, players 
in the coalition negotiate the payoff allocation. The 
central problem is to study the payoff allocation scheme 
and whether the scheme results in a stable solution. One 
of the payoff solutions is the Myerson value (Myerson, 
1977) for the network-restricted cooperative game, which 
is equivalent to the Shapley value in cooperative games.  
 

Having formed coalitions in the network, we are 
interested in studying the stability of such coalitions. Two 
concepts of stability are considered: pairwise stability and 
coalitional stability, where the latter one is stronger. 
These two concepts of stability are defined in followings. 

• Weak stability (or pairwise stability): there is no 
single node that can gain more by deviating from 
the current strategy, i.e., activating an inactive 
edge or destroying an active edge.  

5 



• Strong stability (or coalitional stability): once a 
coalition is formed, for any subset of nodes in 
this coalition, it cannot gain more by forming a 
separate coalition which only consists of this 
subset.    

 
We first study the weak stability of coalitions formed 

via the dynamic game defined in the previous section. The 
definition of weak stability is equivalent to the Nash 
equilibrium in non-cooperative games. We have the 
following proposition. 

 
Proposition 5 (Weak stability): When the dynamic of 

coalition formation reaches the steady state, every pair of 
neighboring nodes is in the Nash equilibrium of the 
pairwise game defined in Fig. 1, and the formed coalition 
is weekly stable.  

Proof: Following the same reasoning for the 
monotonicity of coalition formation in Proposition 2, no 
node gains by deactivating any of its active edge. On the 
other hand, since no new active edges can introduce 
higher payoff in the steady state, no node gains by 
activating one of its links. 

■ 
 

Strong stability allows that a node is able to interact 
and negotiate with any other node in the same coalition, 
which belongs to the cooperative game theory. 
 

In cooperative games, a coalition is a subset of nodes 
that are accessible with each other. Among all coalitions,  
there are so-called maximal coalitions which are not 
subsets of any other coalition, i.e., if S is a maximum 
coalition, then , i and j are disconnected with 
each other. In this paper, all coalitions are maximal 
coalitions, so we omit maximal from now on. An 
important concept in cooperative games is the 
characteristic function, which is the summation of the 
payoffs from all cooperative pairs in the coalition as 
follows  

,i S j S∀ ∈ ∉

  (6) 
,

( ) ,ij
i j

v S x
∈

= ∑
where xij is the payoff that node i gains in the game with 
node j. Notice that . We denote the 
cooperative game defined from the characteristic function 
v(S) as 

, ({ }) 0i v i∀ =

( , )N vΓ = . 
 

In our game, some nodes are not directly connected 
with each other due to the limit of wireless 
communication range and activation of edges, therefore 
the game we consider has to take the communication 
constraints into consideration. Myerson (Myerson, 1977) 
was the first to introduce a new game associated with 
communication constraints, the network-restricted game, 
which incorporates both the possible gains from 
cooperation as modeled by the cooperative game and the 

restrictions on communication reflected by the 
communication network. We define the network-
restricted game as (N, vG) which is associated with a 
cooperative game (N,v) and a network G. In particular, 
given the pairwise payoff defined in Fig. 1 and the graph 
G'=(V, E') induced by the active edges, we have 

  (7) 
( )

,     if ( , ) '
.

0,                otherwise

i
j i

ij

N E i j E
x

⎧ −⎪= ⎨
⎪⎩

∈

  
As we have discussed, the coalition S must be a tree. 

By removing link (i,j), the tree is divided into two 
subtrees. Then ( )i

jN  is the number of nodes in the subtree 
which includes j. Therefore, the characteristic function of 
the network-restricted game is defined as   
 ' ( )

,
( , ) '

( ) .G i
j

i j S
i j E

v s N E
∈
∈

i= −∑  (8) 

Suppose at the end of the coalition formation process in 
Section 3, R is one of the maximal coalitions. If we 
consider R as a network, we have a network-constrained 
cooperative game . Because of 
monotonicity, all nodes in R have only joined the 
coalition R throughout the formation procedure. Therefore, 
it is legitimate to limit our consideration to nodes in R. 
From the definition of , we have the following fact: 

' ( ) ( , )G R R vΓ = 'G

'G

'Gv
 

Proposition 6:  is a superadditive 
game. 

' ( ) ( , )G R R vΓ =

Proof: Suppose S and T are two disjoint sets in R 
( S T =∅∩ ) and i S∈ and j T∈ , then  

 ' ( ) ( )

( ) ( )
( ) ( )    if ( , ) '

( ) ( )               otherwise

G i j
j i i j

v S v T
v S T N E N E i j E

v S v T

+ +⎧
⎪= − + − ∃ ∈⎨
⎪ +⎩

∪ (9) 

 
Therefore, . The inequality 
holds because if ( ,

' ( ) ( ) (Gv S T v S v T≥ +∪ )
) 'i j E∈ , the link satisfies the 

activation condition, i.e.  and ( ) 0i
j iN E− > ( ) 0j

i jN E− > . 
■ 

 
Having constrained the game into the coalition R, the 

strong stability of R means that the core in the game 
 is non-empty. The core is defined as a 

set of payoff allocations in which  nodes in R could not 
get better payoffs if they form separated coalitions than 
form the grand coalition R, which is formally defined as 
the set of all n-vectors x satisfying the linear inequality: 

' ( ) ( , )G R R vΓ = 'G

  (10) ( ) ( )    S N,x S v S≥ ∀ ⊂
 ( ) ( ),x N v N=  (11) 
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where ( ) i
i S

x S
∈

=∑ x  for all . If Γ is a game, we 

will denote its core by . It is known that the core is 
possibly empty. Therefore, it is necessary to discuss 
existence of the core for the game Γ . We first give the 
definition of a family of very common games: convex 
games. The convexity of a game can be defined in terms 
of the marginal contribution of each player.  
of v with respect to player i is 

S N⊆

( )C Γ

: 2N
id → R

( { }) ( )   if 
( ) .

( ) ( \{ })    if i

v S i v S i S
d S

v S v S i i S
− ∉⎧

= ⎨ − ∈⎩

∪  

A game is said to be convex, if for each i N∈ , 
 holds for any coalitions . ( ) ( )i id S d T≤ S T⊆

 
Proposition 7: ' ( ) ( , )G 'GR R vΓ =  is a convex game.  
Proof: For ' ( )G RΓ  and ,  S R⊆

  (12)         if 
( ) ,

1    if 
S i

i
S i

N E i S
d S

N E i
−⎧

= ⎨ + − ∉⎩ S
∈

∅

where NS is the number of nodes in S. Take two sets S  
and T, where S T , ⊆

  (13) 1,      if ,
( ) ( ) .

,           otherwise
T S

i i
T S

N N i S i T
d T d S

N N
− − ∉ ∈⎧

− = ⎨ −⎩
According to Eqn. (13),  is always greater 
or equal to 0. Therefore, the game is convex. 

( ) ( )i id T d S−

■ 
 

Because the core of a convex game is nonempty 
(Forgo et al., 1999), we have  ( )' ( )GC RΓ ≠

Proposition 8: ' ( )G RΓ  has a nonempty core, and the 
payoff allocation scheme 

i

i
j N

ijx x
∈

= ∑  is in the core. 

Thus, given the payoff ix for each node i , nodes in 
coalition R cannot get higher gain if some of them form a 
separate coalition. In other words, the coalition R is 
strongly stable.   

R∈

 
 

5. CONCLUSION 
 

In this paper, we study coalition formation in wireless 
ad-hoc networks, where nodes are selfish due to resource 
constraints. In such networks, most of the functions 
(routing, mobility management, and security) must rely 
on cooperation between nodes, because most nodes are 
not directly connected to each other. In this paper, we 
focused on the dynamics of coalition formation and 
stability of coalitions.   
 

Nodes cooperate with the other nodes in the same 
coalition. We modeled the interactions between nodes as 
a cooperative game, where nodes form a coalition to 

maximize their payoffs. The cooperative game is divided 
into two steps. In the first step, a node bargains with each 
one of his neighbors about activating (or not) their 
common edge. There is a cost associated with the 
activation of each edge. The accompanying benefit is that 
nodes have access to more users. In the second step, 
nodes in one coalition negotiate about their payoff 
allocations. If the coalition is stable, nodes are satisfied 
with their payoffs and participate in the functions within 
the coalition. We show that the coalitions that are formed 
from the dynamics of the first step are stable. 
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