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Consensus problems arise in many instances of collaborative control of multi-agent
complex systems; where it is important for the agents to act in coordination with the
other agents. To reach coordination, agents need to share information. In large groups
of agents the information sharing should be local in some sense, due to energy limi-
tation, reliability, and other constraints. A consensus protocol is an iterative method
that provides the group with a common coordination variable. However, local infor-
mation exchange limits the speed of convergence of such protocols. Therefore, in order
to achieve high convergence speed, we should be able to design appropriate network
topologies. A reasonable conjecture is that the small world graphs should result in
good convergence speed for consensus problems because their low average pairwise
path length should speed the diffusion of information in the system. In this paper we
address this conjecture by simulations and also by studying the spectral properties of
a class of matrices corresponding to consensus problems on small world graphs.

1 Introduction

Consensus problems arise in many instances of collaborative control of multi-
agent complex systems; where it is important for the agents to act in coordination
with the other agents [10, 4, 8, 5, 13]. In this paper we consider Vicsek’s model

1The material is based upon work supported by National Aeronautics and Space Adminis-
tration under award No NCC8235.
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for leaderless coordination and reaching consensus [4, 10], in which at each time
instant each agent’s state variable is updated using a local rule based on the
average of its own state variable plus the state variables of its neighbors at that
time. The local neighborhoods are time dependent in general. Each agent’s
dynamic can be represented as:

θi(t + 1) =< θi(t) >=
1

1 + ni(t)
[θi(t) +

∑

j∈Ni(t)

θj(t)] (1)

Here Ni(t) denotes the set of neighbors of agent i at time t and ni(t) denotes
the cardinality of this set. The dynamics of the system can be written in matrix
form. Let Gu be the set of possible graphs on n vertices. Let P be a suitably
defined set that indexes the set Gu and p ∈ P . For each Gp ∈ Gu define a
corresponding F -matrix as:

Fp = (I + Dp)−1(Ap + I) (2)

where Ap is the adjacency matrix of the graph Gp and Dp is the diagonal matrix
whose ith diagonal element is the degree of vertex i.

This way the simplified Vicsek’s model is represented as a switched linear
system whose switching signal takes values in a set of indices that parameterize
the set of underlying graphs.

θ(t + 1) = Fσ(t)θ(t) (3)

The F matrices are a class of stochastic matrices and convergence of consensus
protocols depends on properties of their infinite products. In this way linear con-
sensus schemes are closely related to Markov chains and random walks on graphs
with self loops. Different connectivity assumptions (symmetric vs. asymmetric
neighborhoods) as well as different topology assumptions (fixed vs. changing)
result in different sufficient conditions for convergence of consensus problems
which can be found in [4, 3, 1] and references therein. In this paper we limit
our scope to symmetric topologies, for which being connected is a sufficient con-
dition for convergence. In fact there exist even less restrictive assumptions for
convergence.

This paper addresses the convergence speed and effects of structural proper-
ties of graphs on performance of consensus protocols. After discussing measures
of convergence speed, we study the convergence of consensus protocols for a class
of complex networks, known as “small world” graphs [12], leading us to propose
design guidelines for reaching consensus fast. We examine the conjecture that
dynamical systems coupled in this way would display enhanced signal propaga-
tion and global coordination, compared to regular lattices of the same size. The
intuition is that the short paths between distant parts of the network cause high
speed spreading of information which may result in fast global coordination.

The organization of the paper is as follows. First, we use Perron-Frobenius
theory of nonnegative matrices to show that the Second Largest Eigenvalue Mod-
ulus (SLEM) of the corresponding F matrices are a good measure of convergence
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of the consensus protocol. Then we study the convergence speed for small world
graphs and try to find design guidelines. We use simulations to show a dras-
tic improvement of convergence speed by considering small values of φ and use
graph spectral methods to reason about this behavior.

2 Speed of convergence in fixed and changing
topologies

A very important issue in consensus problems is the speed of convergence. The
faster the consensus is reached, the better the performance of the protocol. Since
the applications that use consensus protocols involve many agents, it is necessary
for all of them to converge quickly. The convergence rate is a function of the
topology of the underlying graphs. This problem is actually in close connection
with the asymptotic behavior of Markov chains. In fact if we consider a fixed
topology, the convergence rate of the consensus protocol is nothing but the con-
vergence rate to the stationary distribution of the Markov chain corresponding
to the stochastic matrix F . Consider the system:

θ(t + 1) = Fσ(t)θ(t) (4)

as before where Fp = (I+Dp)−1Ap are stochastic matrices with nonzero diagonal
elements. In the case of fixed graph topology, the second largest eigenvalue
modulus (SLEM) of the corresponding F matrix determines the convergence
speed. This is because,

θ(∞)− θ(t) = (F∞ − F t)θ(0) (5)

Since F is a primitive stochastic matrix, according to the Perron-Frobenius
theorem [9], λ1 = 1 is a simple eigenvalue with a right eigenvector 1 and a left
eigenvector π such that 1T π = 1, F∞ = 1πT and if λ2, λ3, ..., λr are the other
eigenvalues of F ordered in a way such that λ1 = 1 > |λ2| ≥ |λ3| ≥ ... ≥ |λr|,
and m2 is the algebraic multiplicity of λ2, then

F t = F∞ + O(tm2−1|λ2|t) = 1πT + O(tm2−1|λ2|t) (6)

where O(f(t)) represents a function of t such that there exists α, β ∈ R, with
0 < α ≤ β < ∞, such that αf(t) ≤ O(f(t)) ≤ βf(t) for all t sufficiently large.
This shows that the convergence of the consensus protocol is geometric, with
relative speed equal to SLEM. We denote µ = 1 − SLEM(G) as the spectral
gap of a graph, so graphs with higher spectral gaps converge more quickly.

For the general case where topology changes are also included, Blondel et
al [1] showed that the joint spectral radius of the set of matrices determines the
convergence speed. For Σ a set of finite n×n matrices, their joint spectral radius
is defined as:

ρ = lim sup
t→∞

max
A1,...,At∈Σ

||At...A1||1/t (7)
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Calculation of the joint spectral radius of a set of matrices is a mathematically
hard problem and is not tractable for large sets of matrices. Our goal is to find
network topologies which result in good convergence rates. Switching over such
topologies will also result in good convergence speed. We limit our scope to the
case of fixed topology and examine the conjecture that “small world” graphs
have high convergence speed.

3 Convergence in “small world” graphs

Watts and Strogatz [11] introduced and studied a simple tunable model that
can explain behavior of many real world complex networks. Their “small world”
model takes a regular lattice and replace the original edges by random ones
with some probability 0 ≤ φ ≤ 1. It is conjectured that dynamical systems
coupled in this way would display enhanced signal propagation and global coor-
dination, compared to regular lattices of the same size. The intuition is that the
short paths between distant parts of the network cause high speed spreading of
information which may result in fast global coordination. We examine this con-
jecture. To the best of our knowledge, the only existing result in the literature
is a very recent paper of Olfati-Saber [7], which belongs to continuous time con-
sensus protocols and contains some conjectures on the second largest eigenvalue
of the Laplacian of the small world graphs. In this study, we use a variant of the
Newman-Moore-Watts [6] improved form of the φ−model originally proposed
by Watts and Strogatz. The model starts with a ring of n nodes, each con-
nected by undirected nodes to its nearest neighbors to a range k. Shortcut links
are added -rather than rewired- between randomly selected pairs of nodes, with
probability φ per link on the underlying lattice; thus there are typically nkφ
shortcuts. Here we actually force the number of shortcuts to be equal to nkφ
(comparable to the Watts φ−model.) In our study, we have considered different
initial rings (n, k) = (100, 2), (200, 3), (500, 3), (1000, 5), generated 20 samples of
small world graphs G(φ) for 50 different φ values chosen in a logarithmic scale
between 0.01 and 1. Picking these choices of (n, k) is done for comparison pur-
poses with the results of [7]. In the figures 1 and 2, we have depicted the gain
in spectral gap of the resulting small world graphs with respect to the spectral
gap of the base lattice. We will just include the results of cases (500, 3) and
(1000, 3). The others follow a similar pattern. Some important observations
and comments follow:

1. In the low range of φ (0 < φ < 0.01) there is no spectral gap gain observed
and the SLEM is almost constant and a drastic increase in the spectral
gap is observed around φ = 0.1.

2. Simulations show that “small world graphs” possess good convergence
properties as far as consensus protocols are concerned. Some analytical
results are included in the next section but the complete analysis as will
be mentioned is subject to future work.
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Figure 1: Spectral gap gain for
(n, k) = (500, 3)
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Figure 2: Spectral gap gain for
(n, k) = (1000, 5)

The results show that adding nkφ shortcuts to a 1 − d lattice dramatically
improves the convergence properties of consensus schemes for φ ≈ 0.1. For
example in a (500, 3) lattice, by adding randomly 150 edges, we can on average
increase the spectral gap approximately by a factor of 100. However, our aim is
to find a more clever way of adding edges so that after adding 150 edges to a
(500, 3) lattice we get much more increase in the spectral gap.

To formulate this problem, we consider a dynamic graph which evolves in
time starting from a 1-d lattice G0 = C(n, k). Let’s denote the complete graph
on n vertices by Kn. Also, denote the complement of a graph G = (V, E) -which
is the graph with the same vertex set but whose edge set consists of the edges
not present in G - by Ḡ. So, E(Ḡ) = E(Kn) \ E(G).

If we denote the operation of adding an edge to a graph by A, the dynamic
graph evolution can be written as:

G(t + 1) = A(G(t), u(t)) t = 0, 1, 2, ..., nkφ− 1
u(t) = e(t + 1) e(t + 1) ∈ E(Ḡ(t))
G(0) = G0

(8)

So, now the problem to solve is:

mine(1),...,e(n)∈E(Ḡ(0)),...,E(Ḡ(n−1)) max [λ2(F (nkφ)),−λN (F (nkφ))]
subject to : (8)

(9)

where F (nkφ) = D(G(nkφ))−1A(G(nkφ)). We will now mention some observa-
tions which are useful to build a framework for studying the above problem.

3.1 Spectral analysis

The choice of G0 = C(n, k) to be a regular 1-d lattice with self loops means
that (possibly after re-labeling vertices) the adjacency matrix of the graph can
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be written as a circulant matrix:

A =




a1 a2 a3 . . . an

an a1 a2 . . . an−1

an−1 an a1 . . . an−2

. . . . . . .

. . . . . . .

. . . . . . .
a2 a3 . . . . a1




= circ[a1, a2, ...an] (10)

in which:
a , [a1, a2, ...an] = [1, ..., 1︸ ︷︷ ︸ 0, ..., 0︸ ︷︷ ︸, 1, ..., 1︸ ︷︷ ︸]

k + 1 n− 2k − 1 k
(11)

Circulant matrices have a special structure which provides them with special
properties. All entries in a given diagonal are the same. Each row is determined
by its previous row by a shift to right (modulo n). Consider the n×n permutation
matrix, Π = circ[0 1 0 ... 0]. Then for any circulant matrix we can write:

A = circ[a1, a2, ..., an] = a1I + a2Π + ... + anΠn−1. For a vector a =
[a1, a2, ..., an], the polynomial pa(z) = a1 + a2z + a3z

2 + ...anzn is called the
representer of the circulant. The following theorem based on [2] states how to
calculate the eigenvalues of circulants.

Theorem 3.1 [2] Let ω = e
2π
√−1
n be the nth root of unity. The eigenvalues of

A = circ[a1, a2, ..., an] are given by λi = pa(ωi−1), where i = 1, 2, ...n.

The main result considering the spectral properties of G0 follows.

Proposition 3.1 The corresponding F matrix of G0 = C(n, k) is circulant.
Furthermore, its SLEM has multiplicity at least 2.

Sketch of Proof: Since G0 = C(n, k) is 2k+1-regular (including the self loop),
F = D−1A = 1

2k+1A. So F is circulant F = circ( 1
2k+1a), where a is as in (11).

The representer of this circulant is

pa(z) =
1

2k + 1
(1 + z + ... + zk−1 + zk + zn−k + zn−k+1 + ... + zn−1) (12)

So, the eigenvlues of this matrix are λi = pa(ωi−1). It is easy to show that λ1 = 1
and moreover it is a simple eigenvalue because the underlying graph is connected.
Since for integers A and B, ωAn+B = ωB , it follows that λ2 = λn, λ3 = λn−1 and
so on. In the case that n is odd apart from λ1 = 1, all eigenvalues come in pairs.
In the case that n is even, it can be shown that λn

2 +1 is the only eigenvalue apart
from −1 which can be single, however direct calculation shows that it is equal
to (−1)k

2k+1 which is clearly less than λ2 = λn. A simple geometric argument shows
that SLEM = λ2 = λn = 1

2k+1 [1 + 2Re(ω) + 2Re(2ω) + ... + 2Re(kω)] < 1 and
λi ≤ λ2 for i ∈ 2, ..., n− 1. This shows that for the case where k ¿ n, which are
the cases we are more interested in, as n →∞ two of the non-unity eigenvalues
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Figure 3: Adding a shortcut
(1000,5), The dotted line tangent
to curve shows SLEM before adding
edge

Figure 4: The optimal
topology; adding 2 shortcuts
to C(16, 2)

approach 1. This describes the slow convergence of consensus protocols when
diameter is large. The following theorem gives an upper bound on the change
in SLEM resulting from adding shortcuts.

Theorem 3.2 If Gl is the graph resulted from adding l shortcuts to
G0 = C(n, k) in a way that each vertex involves in at most 1 shortcut, then
|SLEM(Gl)− SLEM(G0)| ≤ l

(k+1)(2k+1)

Sketch of Proof: Let F0 and Fl show the F matrices corresponding to G0 and
Gl.

∑n
i=1 λi(G0) = Tr(F0) = n

2k+1 and
∑n

i=1 λi(Gl) = Tr(Fl) = 2l
2k+2 + n−2l

2k+1 ,
and the bound follows by subtracting the corresponding eigenvalues due to the
above equations.

4 Simulation results: The effect of adding one
and two shortcuts

We ran a set of simulations with different purposes based on (8). A counter
intuitive result is that the SLEM does not monotonically change with addition
of edges. Specially, in cases when n is even, adding an edge will increase SLEM
unless the case that a vertex is connected to the farthest vertex from it that is
i is connected to i + n/2 (modulo 2). In this case one of the multiplicities of
the SLEM is lessened but the other multiplicity is not changed. Figures 3 and
4 illustrate this effect. The dotted line tangent to the curves show the SLEM of
the original curves. The more distant the two joined vertices, the less increase in
SLEM. Adding two shortcuts can however decrease the SLEM. It is worthwhile
to mention that in all of our simulations, for a given n, shortcuts that reduced
the diameter of the graph more, resulted in higher spectral gap. For example,
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for the case of adding 2 shortcuts to G0 = C(16, 2), Figure 4 shows the optimal
topology. The analysis of this conjecture is subject of future work.
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