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Abstract— In earlier work of the authors[1], [2], [3], [4], [5],
it was shown that Gibbs sampler based annealing algorithms
could be used for vehicle swarms to achieve self-organization.
Nevertheless, the earlier convergence analyses were based on
the assumption that the Gibbs potential can be precisely
evaluated. In practice, Gibbs potentials have to be measured
via sensors, which usually introduce errors. The robustness of
the stochastic algorithm under sensor errors is studied in this
paper. Two types of sensor error, range-error and random-
error, are investigated. Analytical results on convergence are
derived for sensor errors with limited support, and are further
validated through simulations.

I. INTRODUCTION

In recent years, with the rapid advances in sensing,
communication, computation, and actuation capabilities,
groups (or swarms) of autonomous unmanned vehicles
(AUVs) are expected to cooperatively perform dangerous or
explorative tasks in a broad range of potential applications
[6]. Due to the large scale of vehicle networks and band-
width constraints on communication, distributed methods
for control and coordination of these autonomous swarms
are especially appealing [7], [8], [9], [10], [11].

A popular distributed approach is based on artificial
potential functions (APF), which encode desired vehicle
behaviors such as inter-vehicle interactions, obstacle avoid-
ance, and target approaching [12], [13], [14], [15]. Despite
its simple, local, and elegant nature, this approach suffers
from the problem that the system dynamics could be trapped
at the local minima of potential functions [16]. Researchers
attempted to address this problem by designing potential
functions that have no other local minima [17], [18], or
escaping from local minima using ad hoc techniques, e.g.,
random walk [19], virtual obstacles [20], and virtual local
targets [21].

An alternative approach to dealing with the above prob-
lem was explored using the concept of Markov Random
Fields (MRFs) by Baras and Tan [1]. Traditionally used in
statistical mechanics and in image processing [22], MRFs
were proposed to model swarms of vehicles. Similar to the
APF approach, global objectives and constraints (e.g., obsta-
cles) are reflected through the design of potential functions.
The movement of vehicles is then decided using simulated
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annealing based on the Gibbs sampler. Theoretical studies
have shown that, with this approach, it is possible to achieve
desired configurations with minimum potential despite the
presence of local minima, which was further confirmed
by simulations [2], [3]. Due to the stochastic nature and
sequential location updating, slow convergence rate prevents
the stochastic algorithm to be used in practice. To deal with
these problems, parallel sampling techniques and a hybrid
scheme were proposed to reduce the traveling time [4], [1].

However, an underlying assumption in our previous
studies was that the potential function can be precisely
evaluated. In practice, the potential values are calculated
using sensor measurements. In many applications, e.g.,
battle field scenario, cost-effective sensors are preferred to
reduce the total expense. As a result, sensor uncertainties
introduce noise to Gibbs potential evaluations. It is then of
interests to study the robustness of the annealing algorithm.
In the past, this issue has been studied for the annealing
algorithm based on classical MRF. Grover presented an
early analysis of the impact of fixed range-error on equilib-
rium properties [23]. Gelfand and Mitter studied the effects
of state-independent Gaussian noise. They showed that in
certain conditions, slowly decreasing random-error will
not affect the limiting configurations [24], [25]. Greening
studied the impact of errors for the Metropolis annealing
algorithm [26]. In this paper, we investigate the impact
of both fixed range-error and bounded random-error on
the annealing algorithm proposed in [3]. In our analysis,
unlike previous studies, we do not assume that the random-
error follows a Gaussian distribution. Sufficient conditions
that guarantee the convergence to the global minimizer are
derived. Simulations confirm the analysis results.

The remainder of the paper is organized as follows. In
section II, a battle field scenario is described, which was
used for the illustration of the problem formulation. Then,
the Gibbs sampler based algorithm and the convergence
analysis are revisited for the convenience of the readers.
Section III, investigates the convergence and equilibrium
properties of the annealing algorithm with inaccurate Gibbs
potential. Simulation results and conclusions are provided
in sections IV and V.

II. REVIEW OF GIBBS SAMPLER BASED ALGORITHM

A. MRFs and Gibbs Sampler

One can refer to, e.g., [22], [27], for a review of MRFs.
Let S be a finite set of cardinality σ, with elements indexed
by s and called sites. For s ∈ S, let Λs be a finite set
called the phase space for site s. A random field on S
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is a collection X = {Xs}s∈S of random variables Xs

taking values in Λs. A configuration of the system is
described by x = {xs, s ∈ S}, where xs ∈ Λs, ∀s. The
product space Λ1 × · · · × Λσ is called the configuration
space. A neighborhood system on S is a family N =
{Ns}s∈S , where ∀s, r ∈ S, Ns ⊂ S, s /∈ Ns, and
r ∈ Ns if and only if s ∈ Nr.
Ns is called the neighborhood of site s. The random field

X is called a Markov random field (MRF) with respect to
the neighborhood system N if, ∀s ∈ S, P (Xs|XS\s) =
P (Xs|Xr, r ∈ Ns).

A random field X is a Gibbs random field if and only if
it has the Gibbs distribution:

P (X = x) =
e−

U(x)
T

Z
, ∀x,

where T is the temperature variable (widely used in sim-
ulated annealing algorithms), U(x) is the potential (or
energy) of the configuration x, and Z is the normalizing
constant, called the partition function: Z =

∑
x e−

U(x)
T .

One then considers the following useful class of poten-
tial functions U(x) =

∑
s∈Λ Φs(x), which is a sum of

individual contributions Φs evaluated at each site. The
Hammersley-Clifford theorem [27] establishes the equiva-
lence of a Gibbs random field and an MRF.

The Gibbs sampler belongs to the class of Markov Chain
Monte Carlo (MCMC) methods, which sample Markov
chains leading to stationary distributions. The algorithm
updates the configuration by visiting sites sequentially or
randomly with certain proposal distribution [22], and sam-
pling from the local specifications of a Gibbs field. A
sweep refers to one round of sequential visits to all sites,
or σ random visits under the proposal distribution. The
convergence of the Gibbs sampler was studied by D. Geman
and S. Geman in the context of image processing [28].
There it was shown that as the number of sweeps goes to
infinity, the distribution of X(n) converges to the Gibbs
distribution Π. Furthermore, with an appropriate cooling
schedule, simulated annealing using the Gibbs sampler
yields a uniform distribution on the set of minimizers of
U(x). Thus the global objectives could be achieved through
appropriate design of the Gibbs potential function.

B. Problem Setup

Consider a 2D mission space (the extension to 3D space
is straightforward), which is discretized into a lattice of
cells. For ease of presentation, each cell is assumed to be
square with unit dimensions. One could of course define
cells of other geometries (e.g., hexagons) and of other
dimensions (related to the coarseness of the grid) depending
on the problems at hand. Label each cell with its coordinates
(i, j), where 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, for N1, N2 > 0.
There is a set of vehicles (or mobile nodes) S indexed by
s = 1, · · · , σ on the mission space. To be precise, each
vehicle s is assumed to be a point mass located at the center
of some cell (is, js), and the position of vehicle s is taken

to be ps = (is, js). At most one vehicle is allowed to stay
in each cell at any time instant.

The distance between two cells, (ia, ja) and (ib, jb), is
defined to be

R
�
= ‖(ia, ja) − (ib, jb)‖ =

√
(ia − ib)2 + (ja − jb)2.

There might be multiple obstacles in the space, where an
obstacle is defined to be a set of adjacent cells that are
inaccessible to vehicles. For instance, a “circular” obstacle
centered at pok = (iok, jok) with radius Rok can be defined

as O
�
= {(i, j) :

√
(i − iok)2 + (j − jok)2 ≤ Ro}. There

can be at most one target area in the space. A target area is
a set of adjacent cells that represent desirable destinations
of mobile nodes. A “circular” target area with its center
at pg can be defined similarly as a “circular” obstacle. An
example mission scenario is shown in Fig. 1.
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Fig. 1. An example mission scenario with a circular target and a
nonconvex obstacle (formed by two overlapping circular obstacles). Note
that since the mission space is a discretized grid, a cell is taken to be
within a disk if its center is so.

In this paper all vehicles are assumed to be identical.
Each vehicle has a sensing range Rs: it can detect whether
a cell within distance Rs is occupied by some node or obsta-
cle through sensing or direct inter-vehicle communication.
The moving decision of each node s depends on other nodes
located within distance Ri (Ri ≤ Rs), called the interaction
range. These nodes form the set Ns of neighbors of node s.
A node can travel at most Rm (Rm ≤ Rs), called moving
range, within one move. See Fig. 2 for illustration of these
range definitions.

The neighborhood system defined earlier naturally leads
to a dynamic graph, where each vehicle represents a vertex
of the graph and the neighborhood relation prescribes the
edges between vehicles. An MRF can then be defined on
the graph, where each vehicle s is a site and the associated
phase space Λs is the set of all cells located within the
moving range Rm from location ps and not occupied by
obstacles or other vehicles. The configuration space of the
MRF is denoted as X .
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Fig. 2. Illustration of the sensing range Rs, the interaction range Ri,
and the moving range Rm.

The Gibbs potential U(x) =
∑

s Φs(x), where Φs(x) is
considered to be a summation of all clique potentials Ψc(x),
and depends only on xs and {xr, r ∈ Ns}. The clique
potentials Ψc(x) are used to describe local interactions
depending on applications. Specifically,

Φs(x) =
∑
c�s

Ψc = Ψ{s}(xs) +
∑

r∈Ns

Ψ{s,r}(xs, xr). (1)

C. Gibbs sampler based algorithm

In [3], a two-step annealing algorithm was proposed
to coordinate maneuvering autonomous swarms to achieve
a global task. In this subsection, we briefly review the
algorithm and some convergence analysis results.

Before stating the algorithm, we first introduce a key
idea involved, which is the configuration-and-temperature-
dependent proposal distribution Gx

T (s). In particular, given
a configuration x and a temperature T ,

Gx
T (s) =

∑
z∈Nx

m(s) e−
U(z)

T

∑
s′∈S

∑
z∈Nx

m(s′) e−
U(z)

T

. (2)

In (2) N x
m(s) denotes the set of s-neighbors of configuration

x within one move:

N x
m(s)

�
= {z : zS\s = xS\s, ‖zs − xs‖ ≤ Rm},

where S\s denotes the set of all nodes except s.
Let Dx

T (s) =
∑

z∈Nx
m(s) e−

Φs(z)−Φs(x)
T . It could be also

easily verified that

Gx
T (s) =

Dx
T (s)∑

s′ Dx
T (s′)

. (3)

Note that each node s would be able to evaluate Dx
T (s)

locally if Rs ≥ Ri + Rm.
Picking an appropriate cooling schedule T (n) and a

sufficiently large Nmax, the algorithm briefly works as
follows.

Initially, all nodes evaluate and send D
x(0
T (1)(s) to a prese-

lected node s(0). Node s(0) then calculates and samples the

proposal distribution according to (3) in order to select the
next node s1(1) for updating. Node s(0) notifies s1(1) and
sends the vector {Dx(0)

T (1)(s), s ∈ S}. Node s1(1) updates its
location by locally sampling possible vacant cells l using
Gibbs sampler:

P (xs = l) =
e−

Φs(xs=l,xS\s)

T

∑
l′∈Cs

m
e−

Φs(xs=l′,xS\s)

T

. (4)

Node s1(1) then asks its neighbors to recalculate and resend
D

x(1)
T (1)(s) to update the vector {Dx(0)

T (1)(s), s ∈ S}. Node
s1(1) reevaluates the proposal distribution and samples it to
select the next node for updating. The process is repeated
until the temperature is reduced to T (Nmax).

D. Convergence analysis results

Let PT denote the Markov kernel defined by the random
update scheme (2) and (4), i.e.,

PT (x, y)
�
= Pr(X(n + 1) = y|X(n) = x)

=
∑
s∈S

e−
U(y)

T · 1(y ∈ N x
m(s))∑

s′∈S

∑
z∈Nx

m(s′) e−
U(z)

T

. (5)

For a fixed temperature, the equilibrium distribution can be
expressed in the following theorem.

Theorem 2.1: The Markov kernel PT has a unique sta-
tionary distribution ΠT with

ΠT (x) =
e−

U(x)
T

∑
s∈S

∑
z∈Nx

m(s) e−
U(z)

T

ZT
, (6)

where ZT =
∑

y e−
U(y)

T

∑
s∈S

∑
z∈Ny

m(s) e−
U(z)

T is the
partition function.

Theorem 2.2: Let {T (n)} be a cooling schedule de-
creasing to 0 such that eventually, T (n) ≥ τ∆

ln n , where
τ is the minimum number of steps to ensure the Markov
chain kernel PT has a strictly positive power and ∆ =
max
x,y

{‖U(x)−U(y)‖1 : ‖px−py‖ ≤ Rm}. Let M be the set

of global minima of U(·). Then for any initial distribution
ν,

lim
n→∞ νP1 · · ·Pn → Π∞, (7)

where Π∞ is the distribution (6) evaluated at T = 0. In
particular, ∑

x∈M
Π∞(x) = 1. (8)

One can refer to [3] for the detailed proofs.

III. CONVERGENCE ANALYSIS WITH GIBBS POTENTIAL

INACCURACY

In this section, we study the impact of sensor errors on the
convergence properties of the annealing algorithm described
in subsection II-C. The sensor errors considered in this
paper fall into two categories: range-error and random-
error. A potential function is said to have range-errors if
the difference between the nominal potential value U(x)
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and the observed one Û(x) is confined to a fixed range,
and does not change with time. The range-error is usually
caused by the systematic error of defective sensors. On the
contrary, we consider that the potential function Ũ(x) has
random-errors if the difference between U(x) and Ũ(x)
is an independent random variable, which is denoted as
Z(x). The random-error introduces time-varying potential
evaluations. In what follows, the convergence properties
under these two types of sensor errors will be analyzed
respectively.

A. Gibbs potential with range-error

When sensors carried by vehicles have range-error, the
observed potential Û(x) of a configuration x can be ex-
pressed as

Û(x) = U(x) + e(x), (9)

where e(x) is a finite constant. We assume e ≤ e(x) ≤ e,
where e and e are the upper bound and lower bound of range
error respectively. The observed potential Û(x) satisfies

U(x) + e ≤ Û(x) ≤ U(x) + e, (10)

Since the range-error is time-invariant, the Gibbs sampler
defines a homogeneous Markov chain at a fixed temperature
T . By directly applying Theorem 2.1, one could conclude
that there exist a unique equilibrium distribution π̂T at
temperature T ,

Π̂T (x) =
e−

Û(x)
T

∑
s∈S

∑
z∈Nx

m(s) e−
Û(z)

T

ZT
. (11)

Proposition 3.1: Let ΠT (x) denote the equilibrium dis-
tribution in (6). Let the maximum oscillation of range errors
be ∆e = e − e. Then,

e−
2∆e

T ΠT (x) ≤ Π̂T (x) ≤ e
2∆e

T ΠT (x) (12)

Moreover,
‖Π̂T − ΠT ‖ ≤ e

2∆e
T − 1, (13)

where ‖ · ‖ stands for L1 norm.
Proof. Pick any configuration x ∈ X . For each configuration
y ∈ {x ∪ Nm(x)}, let U(y) = U(y) + e. For any other
configuration (x′ ∈ {x∪Nm(x)}c), let Û(x′) = U(x′)+e.
Then, we have

Π̂T (x) ≤ e−
U(x)+e

T

∑
s∈S

∑
y∈Nm(x) e−

U(y)+e
T

ZT (Û)
,

where ZT (Û) denotes the partition function for the Gibbs
potential Û(x). Clearly,

ZT (Û) > ZT (U + e).

Then,

Π̂T (x) ≤ e−
2e
T e−

U(x)
T

∑
s∈S

∑
y∈Nm(x) e−

U(y)
T

ZT (U + e)

=
e−

2e
T e−

U(x)
T

∑
s∈S

∑
y∈Nm(x) e−

U(y)
T

e−
2e
T ZT (U)

= e
2(e−e)

T πT (x) = e
2∆e

T πT (x).

The converse argument supplies the lower bound. Then, By
inequality (12)

‖Π̂T − ΠT ‖ ≤ max{‖e 2∆e
T ΠT − ΠT ‖ ,

‖e− 2∆e
T ΠT − ΠT ‖} = e

2∆e
T − 1.

The last equality holds because e
2∆e

T − 1 > 1 − e−
2∆e

T . �
Proposition 3.1 unveils the basic impact of range-error

on the equilibrium distribution for a fixed temperature T .
Moreover, by picking an appropriate cooling schedule as in
Theorem 2.2, i.e., logarithmic cooling rate, it can be shown
that the SA algorithm leads to limiting configurations with
minimum energy Û(x). If the global minimizer of Û(x)
minimizes the nominal Gibbs potential U(x), the range-
error does not affect limiting configurations. A sufficient
condition is formally stated in the following proposition.

Proposition 3.2: For the Gibbs potential with range-
error, the simulated annealing algorithm leads to the global
minimizer x∗ of the nominal Gibbs potential U(x), if the
following condition is satisfied:

∆e ≤ 1
2
∆U , (14)

where ∆U is the minimum potential difference with global
minimizer, i.e.,

∆U = min
x∈X ,x �=x∗

|U(x) − U(x∗)|.
Proof. Let x be any configuration other than the global
minimizer x∗, i.e., x 
= x∗ ∈ X . By equation (10), we
have

Û(x∗) ≤ U(x∗) + ∆e ≤ U(x) − ∆U + ∆e

≤ U(x) − ∆e ≤ Û(x).

One then concludes that x∗ minimizes the potential function
Û(x) �

If the maximum oscillation of range-error is too large,
the simulated annealing algorithm may not be able to lead
the limiting configurations to the global minimizer.

B. Gibbs potential with random-error

In the previous section, the potential error e(x) is as-
sumed to be a fixed value for each configuration x. In prac-
tice, the potential error due to sensor noise usually varies
with time, i.e., the Gibbs potential has random-errors. For
ease of analysis, let the random-error Zx be an independent
random variable associated with each configuration x. The
observed Gibbs potential Ũ with random-error can then be
expressed as

Ũ(x, zx) = U(x) + Zx, (15)

where Zx follows a probability distribution fzx

Proposition 3.3: Let Z = {Zx : x ∈ X} be the vector
of random-errors. The Gibbs sampler with random-errors
defines a homogenous Markov chain at a fixed temperature
with kernel matrix satisfying

P̃T = EZ(PT (z)). (16)
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where PT (z) is the kernel matrix with fixed range-error
z. Moreover, there exist a unique equilibrium distribution
Π̃T at a fixed temperature T . Starting from any initial
distribution ν0

T ,

lim
n→∞ ‖ν0

T (P̃T )n − Π̃T ‖ = 0 (17)

Proof. For any two configurations x, y ∈ X , the transition
probability p̃(x, y) satisfies

p̃T (x, y) =
∫

pT (x, y|Z = z)f(z)dz. (18)

One could then conclude that (16) holds. Given any fixed
range-error z, we know that the kernel matrix PT (z) is
primitive, i.e., the Markov chain is irreducible and aperiodic.
Since P̃T is a superposition of PT (z), the primitivity of P̃T

is obvious. The uniqueness and existence of the equilibrium
distribution then follow accordingly. The final statement
follows from the ergodicity of the primitive Markov chain.
�

Unfortunately, the lack of an explicit form of the sta-
tionary distribution for the Markov chain P̃T presents
challenges for analyzing the robustness of the SA algo-
rithm under random-errors. To simplify the analysis, we
assume that the random-error has only limited support.
Similar ideas as those used for analyzing range-errors in
the previous subsection can then be applied.

Proposition 3.4: Assume that the random-error z is
bounded, i.e., z ≤ zx ≤ z, ∀x. Let ∆z = z − z. Let
C(PT ) be the contraction coefficient of a Markov kernel
PT (see [22]). The equilibrium distribution Π̃T satisfies the
following inequality:

‖Π̃T − ΠT ‖ ≤ e
2∆z

T − 1
1 − C(P̃T )

(19)

Proof. By assumption, since Z is bounded, given any z ∈
Z, it is easy to show that, for all x, y ∈ X , the matrix
PT (Z = z) satisfies

e−
2∆z

T PT (x, y) ≤ PT (x, y|Z = z) ≤ e
2∆z

T PT (x, y), (20)

where PT = PT (Z = 0) is the Markov chain kernel matrix
with nominal Gibbs potential. Then

‖Π̃T − ΠT ‖ = ‖Π̃T P̃T − ΠT P̃T + ΠT P̃T − ΠT PT |
≤ ‖Π̃T − ΠT ‖C(P̃T ) + ‖ΠT P̃T − ΠT PT |
≤ ‖Π̃T − ΠT ‖C(P̃T ) + (e

2∆z
T − 1).

This is equivalent to

‖Π̃T − ΠT ‖(1 − C(P̃T )) ≤ e
2∆z

T − 1.

The inequality (19) then follows. �
Clearly, as the maximum oscillation of the random-errors

∆z tends to zero, the distribution νn
T = ν0

T (P̃T )n tends to
approach the nominal equilibrium distribution ΠT .

Proposition 3.5: Pick an appropriate cooling schedule
T (n) such that limn→∞ T (n) = 0 and the Markov chain

P̃T converges as temperature tends to zero. Assume ∆z ≤
1
2∆U . Then, From any initial distribution ν

lim
n→∞ ν

n∏
i=1

P̃T (i) = Π∞, (21)

i.e., the limiting configurations tends to global minimizers
of the nominal potential U(x).

Proof. Since the Markov chain kernel matrix {P̃T (i)}
is primitive, by picking an appropriate logarithmic cooling
schedule (e.g., T (n) = c/log(n)), the simulated annealing
algorithm converges to a limiting distribution Π̃∞, i.e.,
limn→∞ ν

∏n
i=1 P̃T (i) = Π̃∞, where Π̃∞ = limT→0 Π̃T .

Next, we will show that the limiting distribution Π̃∞
actually equals Π∞.

Let ΠT (z) denote the equilibrium distribution of the
Markov chain kernel PT (z). For any w ∈ Z, one has

ΠT (w)P̃T = ΠT (w)
∫

z

PT (z)f(z)dz

=
∫

z

(ΠT (w) − ΠT (z))PT (z)f(z)dz +
∫

z

ΠT (z)f(z)dz.

Let Π̄ be the mean of Π(z) with respect to the probability
distribution f(z), Π̄ =

∫
z
ΠT (z)f(z)dz. Let ∆ΠT

=∫
w

∫
z
(ΠT (w)−ΠT (z))(PT (z)−PT (w))f(z)dz. Integrating

both sides of (22) with respect to w, one then has

Π̄T P̃ =
∫

w

ΠT (w)P̃T dw

=
∫

w

f(w)
∫

z

PT (z)(ΠT (w) − ΠT (z))f(z)dzdw

+
∫

w

f(w)
∫

z

ΠT (z)f(z)dzdw

=
1
2
{
∫

w

∫
z

(ΠT (w) − ΠT (z))PT (z)f(z)f(w)dzdw

−
∫

w

∫
z

(ΠT (w) − ΠT (z))PT (w)f(z)f(w)dzdw}

+
∫

w

f(w)Π̄T dw

=
1
2
∆ΠT + Π̄T (22)

The primitivity of P̃ implies that limn→∞ Π̄T P̃n = Π̃T .
Assuming (I − P̃T )−1 exists, with (22), the left hand side
of the above equation can be rewritten as

Π̄T P̃n =
n∑

i=1

1
2
∆ΠT

P̃ i−1
T + Π̄T

=
1
2
∆ΠT

(I − P̃n
T )(I − P̃T )−1 + Π̄T

As n tends to ∞, the equilibrium distribution can then
be explicitly expressed as

Π̃T =
1
2
∆ΠT

(I − P̃∞
T )(I − P̃T )−1 + Π̄T (23)

By proposition 3.2, one has limT→0 ΠT (z) = Π∞ , ∀z,
since ∆z ≤ 1

2∆U . Then, we have

lim
T→0

∆ΠT
= 0, and lim

T→0
Π̄T = Π∞.
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Take the limit of T for equation (23), and plug in the above
equations. The final conclusion then follows:

Π̃∞ = lim
T→0

(
1
2
∆ΠT

(I − P̃∞
T )(I − P̃T )−1 + Π̄T

)

= Π∞.�
The result shows that if the bound of the random-error is

constrained by ∆U

2 , an appropriate cooling schedule leads
to global minimizers.

IV. SIMULATION RESULTS

Simulations were conducted to verify the robustness anal-
ysis of the previous section. A formation control example
involving inter-vehicle interactions was used to demonstrate
the impact of the sensor error on the convergence of the
Gibbs sampler based approach. Other objectives or con-
straints, such as target-approaching and obstacle avoidance,
can be similarly analyzed.

The goal of the simulations is to have the nodes to
form (square) lattice structures with a desired inter-vehicle
distance Rdes. The potential function used was:

U(x) =
∑

r �=s, ‖xr−xs‖≤Ri

c1(|‖xr − xs‖ − Rdes|α − c2),

where c1 > 0, c2 > 0, and α > 0. A proper choice of
c2 encourages nodes to have more neighbors. The power α
shapes the potential function. In particular, for |‖xr−xs‖−
Rdes| < 1, smaller α leads to larger potential difference
from the global minimum.

In these simulations, 9 nodes were initially randomly
placed on an 8 by 8 grid (see Fig. 3 (a)). Parameters used
were: Ri = 4

√
2 − ε, Rm = 2

√
2 + ε, Rdes = 2, c1 = 10,

c2 = 1.05, α = 0.02, T (n) = 1
0.01 ln n , and τ = 20.

The desired configuration (global minimizer of U ) is shown
in Fig. 3 (b) (modulo vehicle permutation and formation
translation on the grid). Simulated annealing was performed
for 104 steps.

The sensor error was modeled as additive noise Zx,
as in (15). A uniform distribution was selected for Zx.
Other distributions can be studied accordingly. The potential
difference of the example was calculated to be ∆U = 11. So
the potential error bound ∆z should be less than 5.5 in order
to guarantee convergence. In the simulations, we compared
three different cases: noise-free, ∆z = 5, and ∆z = 30.
Moreover, for comparison, we studied cases where the
sensor error is modeled as additive white Gaussian noise
(AWGN). Due to the lack of analytical results, numerical
studies are provided instead. Two different variances, σ = 1
and 5, were used in the simulations respectively.

To demonstrate the trend of convergence to the lowest
potential, one can calculate the error ‖νn−Π∞‖1 as metric,
where νn is the empirical distribution of configurations
(again modulo vehicle permutation and network transla-
tion), and

Π∞(x) =
{

1 if x is desired
0 otherwise

.

Therefore,

‖νn−Π∞‖1 = 1−νn(x∗)+|0−(1−νn(x∗)| = 2(1−νn(x∗)),

where x∗ denotes the desired formation. The evolution of
‖νn−Π∞‖1 for different potential error bounds is shown in
Fig. 4 , where νn(x∗) is calculated as the relative frequency
of sampling x∗ in 1000 annealing steps. The plot suggests
that when the potential error bound ∆z ≤ 1

2∆U , the
convergence trend is roughly the same as in the noise-free
case. On the other hand, when ∆z is relative large, the
convergence trend is barely observed.

With the sensor random-error being modeled as AWGN,
similar convergence properties were observed in simula-
tions. For a normal distribution, 99.7% samples lie in
[−3σ, +3σ], which is roughly comparable to the former
cases with ∆z = 6σ. Hence, the case σ = 1 should be
comparable with the case ∆z = 5, and the case σ = 5
corresponds to the case ∆z = 30. In the simulations, it was
observed that the convergence rate with σ = 1 is slightly
faster than the case ∆z = 5 with uniform distribution.
Similar results were observed by comparing cases σ = 5
and ∆z = 30. The reason is the bell shape of the normal
distribution, where probability densities concentrate at the
center.
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Fig. 3. The initial and desired configuration for 9 vehicles. (a) Initial
configuration; (b) Desired configuration
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Fig. 4. Comparation of the evolution of ‖νn−Π∞‖1 for different sensor
noise.
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V. SUMMARY AND CONCLUSIONS

In this paper, the impact of potential function inaccuracy
on the convergence of a stochastic path planning algorithm,
a simulated annealing algorithm based on Gibbs sampler,
was investigated. Two types of potential error, range-error
and random-error, were studied. It was shown that if the
bound of the range-errors is less than half of ∆U , the
annealing algorithm would yield the same limiting config-
uration(s) as original one(s).

By augmenting the state space, at a fixed temperature,
the Gibbs sampling with random-errors was formulated as
a Markov chain whose transition probability has the form
p̃T (x, y) =

∫
pT (x, y|Z = z)f(z)dz. By further assuming

that the random-errors have limited support, it was shown
that the annealing algorithm yields desired configuration(s)
if the error bound satisfies ∆z ≤ 1

2∆U . The results were
confirmed with simulations.

Furthermore, it is of interests to study cases where the
random-error lives on unlimited support. For simplicity,
AWGN was used to compare with the limited support cases.
Interestingly, we found that AWGN has similar convergence
properties as the limited support cases. Instead of using
∆z , simulations suggest that 6σ might be a good indicator
used for testing the convergence condition of proposition
3.5. For future work, it would also be interesting to extend
our convergence analysis to random-errors with unlimited
support.
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