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Abstract—Fast anomaly detection and localization is critical to
ensure effective functioning of wireless sensor networks. The low
bandwidth and power constraints in wireless sensor networks
are the main challenges for achieving this task, especially for
large scale networks. In this paper, we propose a trust-assisted
framework for detecting and localizing network anomalies in
a hierarchical sensor network. The proposed method makes
inference based on end-to-end measurements collected by a set
of measurement nodes. Network heterogeneity is exploited for
better bandwidth and energy efficiency. The trustworthiness of
network links is utilized to design an efficient two-phase probing
strategy that can achieve a flexible tradeoff between inference
accuracy and probing overhead. We performed experiments with
different network settings and demonstrated the effectiveness of
our proposed algorithms.

I. INTRODUCTION

Wireless sensor networks have been widely employed for
many real-world applications such as critical infrastructure
monitoring, scientific data gathering, smart building, and per-
sonal medical systems, etc. Due to the possibly unattended
and hostile operating environment, a sensor network may
suffer from system failures due to loss of links and nodes, or
malicious intrusions. Therefore, it is critical to continuously
monitor the overall state of the sensor network to ensure its
correct and efficient functioning. Compared to the diagnosis
protocols for the Internet, monitoring and diagnosing wire-
less sensor networks have unique challenges due to the low
communication bandwidth and the limited resources such as
energy, memory and computational power.

Existing work on anomaly detection and localization in
wireless sensor networks can be roughly divided into two cat-
egories: centralized and distributed. In centralized approaches,
a central controller takes responsibility of monitoring and
tracing anomalous behaviors in the network [1]. However,
resource constrained sensor networks can not always afford
to periodically collect all the measurements in a centralized
manner. Distributed approaches address this issue by encour-
aging local decision making: for example, nodes can rely
on neighbor coordination such as Watchdog [2] to detect
misbehaving nodes. However, in a hostile environment, a node
may not report its status or its neighbors’ status honestly,
and an intermediate node can intentionally alter its forwarded
messages. One possible solution would be to use only end-to-
end measurements if the end nodes can be trusted. Moreover,
for large scale sensor networks where it may be difficult to
access individual nodes, end-to-end data provides valuable
information for inferring the internal status of the networks.

Making inference using end-to-end measurements has been
extensively studied for wired networks such as the Internet
[3], [4]. However, these techniques cannot be directly applied
to sensor networks due to the resource constraints. In this
paper, we present a trust-assisted framework for anomaly

detection and localization in a hierarchical sensor network,
where network heterogeneity is exploited for better bandwidth
and energy efficiency. End-to-end measurements are collected
through a two-phase probing. The goal of the first phase
probing is to select probes that can cover as many anomalous
links as possible and narrow down suspicious areas to be
examined in the second phase. The probe selection problem
in this phase is formulated as a budgeted maximum coverage
problem, and we propose an efficient approximation algorithm
to solve it based on linear programming duality. Experimental
results show that our algorithm is much faster than the exact
solution at the cost of a slight performance degradation. The
second phase probing is aimed at locating individual links
that are responsible for the observed end-to-end anomalies
with minimum communication cost. In this phase, the probe
selection problem is formulated as a Markov Decision process,
where the probes are sequentially selected according to the
previous observations and the predicted diagnosis quality. The
prediction of diagnosis quality is carried out using the Loopy
Belief Propagation (LBP) algorithm. Since the probe selection
in this phase is sequential, it would require repeated executions
of the LBP algorithm, which can be extremely redundant. We
propose a heuristic method to improve algorithm efficiency
based on the observation that adding one probing result
at a time will affect only a small region in the graphical
model for the inference problem. In both phases, the historic
information on link trustworthiness is exploited to achieve a
good tradeoff between the communication overhead and the
inference accuracy. In summary, our key contributions in this
paper include

• A two-phase probing strategy that enables a flexible
tradeoff between communication overhead and inference
accuracy for anomaly detection and localization in re-
source constrained wireless sensor networks.

• An approximation algorithm that utilizes link trustwor-
thiness to effectively select the first-phase probe set and
achieves good early detection of anomalous end-to-end
behaviors within communication overhead constraints.

• An efficient second-phase probe selection strategy to
locate individual anomalous links based on end-to-end
measurements with minimum communication cost.

• Thorough validations through simulations under differ-
ent network settings and performance comparisons with
existing algorithms.

The paper is organized as follows. In Section II, we review
literature work. Problem formulation is presented in Section
III and the proposed approaches are described in Section IV.
Section V shows the experimental results and Section VI
concludes the paper and presents future work.
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II. RELATED WORK

A. Network Tomography
Anomaly inference from end-to-end measurements can be

generally categorized as a problem of network tomography,
i.e., inferring a network’s internal properties using information
derived from end point data. It requires solving a system
of equations that relate the end-to-end measurements to the
link properties such as packet loss rate, link delay, etc. Most
of the network tomography techniques are developed for
wired networks such as the Internet [3], [4], [5]. Duffield
et al. [3] formulated the tomography problem as a set-cover
problem and solves it on a tree topology to identify the
most unreliable links of the network. In [4], Nguyen et
al. proposed a Boolean algebra based approach to improve
inference accuracy by an order of magnitude over previous
algorithms. Gu et al. [5] presented an optimal probing scheme
for unicast network delay tomography that can provide the
most accurate estimation. However, these techniques can not
be directly applied to wireless sensor networks as they incur
high probing overhead and computational complexity, while
the sensor networks usually have severe resource constraints.

B. Monitoring Wireless Sensor Networks
Monitoring wireless sensor networks has recently generated

a surge of interest from the research community [1], [6],
[7]. Ramanathan et al.[1] proposed Sympathy, which carefully
selects a minimal set of metrics at a centralized sink and
uses an empirically developed decision tree to determine the
most likely causes of detected failures. Nguyen et al. [6]
proposed inference schemes based on maximum likelihood
and Bayesian principles, which can isolate links with high
loss rates even with routing changes and noisy measurements.
Wang et al. [7] formulated the anomaly detection and localiza-
tion problem as an optimal sequential testing guided by end-to-
end data. They proposed a greedy algorithm that can determine
an optimal selection sequence of network measurements to
minimize testing cost, while the measurements are not limited
to end-to-end behaviors. All of the above mentioned work
assume the existence of a centralized sink node which is
responsible for collecting required measurements, and rarely
consider the strict constraint on communication overhead. In
our work, we do not use any centralized sink node but exploit
a hierarchical network structure to improve bandwidth and
energy efficiency. Furthermore, our work focus on achieving a
good tradeoff between communication overhead and inference
accuracy, which provides a more practical and flexible solution
for real-world applications.

C. Trust in Wireless Sensor Networks
In our work, we use link trust information to improve

inference efficiency. The notion of trust, as a network security
concept rather than a philosophical concept, corresponds to
a set of relations among network nodes that are participating
in certain protocols. With the knowledge of trust relations, it
could be easier for the nodes to take proper security measures
and make correct decisions.

There are various ways to numerically represent trust. For
example, in [8], trust opinion is represented by a triplet in
[0, 1]3, where the elements in the triplet represent belief,
disbelief, and uncertainty, respectively. Trust can also be
interpreted as probability, e.g., subjective probability is used in
[9], while objective probability is used in [10]. Trust has also
been used to secure wireless sensor networks. For instance,
Tanachaiwiwat et al. [11] utilized trust to address the non-
cooperative and malicious behavior in location-aware sensor

networks. In [12], Probst et al. presented a distributed approach
that establishes reputation-based trust among sensor nodes to
identify compromised and malicious nodes and minimize their
impacts. In our algorithm, the trustworthiness of a link is
computed according to the historic observations of anomaly
occurrences on the link. The information of link trustwor-
thiness enables us to achieve an effective tradeoff between
detection performance and communication overhead.

III. PROBLEM FORMULATION

In this section, we describe the network model and define
the problem of anomaly detection and localization. We use
a two-layer heterogeneous network as illustrated in Fig. 1.
The lower-layer network is the main network responsible for
environment sensing and task execution. It consists of regular
mote-type sensor nodes with severe energy and communica-
tion constraints. The upper-layer network is responsible for
monitoring the status of the lower-layer network by taking
end-to-end measurements. It consists of a set of measurement
nodes with much stronger computation and communication
capabilities. These measurement nodes are assumed to be
highly trusted, e.g., they may associate with tamper resistant
hardwares, so they would not give false information. We found
by experiments that a small number of the measurement nodes
would be enough to monitor a large network.

The main concern of using such hierarchical structure is
to concentrate resource intensive computation and communi-
cation tasks only in the upper-layer network, thus to prolong
the lifetime of the lower-level network. Heterogenous networks
have become popular recently, particular in real world deploy-
ments because of their potential to increase network lifetime
and throughput without significantly increasing the cost [13].
In this paper, the focus is not on quantitatively analyzing the
performance of heterogeneous networks , but to enable flexible
tradeoff between cost and network lifetime.

Fig. 1. A hierarchical network structure

To formulate the problem of anomaly detection and lo-
calization, we assume that the anomalies may occur on any
links in the monitored network. The occurrence of an anomaly
on one link is assumed to be independent of others. We
will consider coordinated attacks in our future work. These
network anomalies typically lead to deviations of the end-
to-end measurements from the normal case, which can be
explored for anomaly detection. Let P be the set of all end-
to-end paths from the measurement nodes to the lower-layer
network nodes. Denoting the set of links that appear in P
by E , we use a matrix A of dimension |P| × |E|, called the
routing matrix, to represent the information relating paths to
links. Each row of A represents a path in P , and each column
represents a link in E . The entry aij equal to 1 if path Pi
contains link ej . Let xi be the indicator for the anomaly in
path Pi, and yj be the indicator for the anomaly in link ej , i.e.,
xi = 1 indicates that Pi is anomalous, and yj = 1 indicates
that link ej is anomalous. Assuming that |P| = np and
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|E| = ne, if the network has no noise, a path Pi is anomalous
if any of its links is anomalous, i.e., xi = 1−Πne

j=1(1−aijyj),
so we have at most np constraints on ne variables. For a sensor
network with severe communication constraints, the number of
observations on path behaviors may not be sufficient to achieve
a unique solution for the yjs. More generally, a practical
network usually has some noise and follows the noisy-OR
model [14], i.e., P (xi = 0|y) = (1− ρj)

∏
j(aijρij)

yj where
ρj is a leak probability representing the probability that path
Pj performs as anomalous even if all its links are normal,
and ρij is an inhibition probability representing the probability
that link ej in path Pi is anomalous but performs as normal.
Therefore, exact inference for the locations of the anomalous
links may not be possible and we focus on the maximum a
posterior estimation. The anomaly detection and localization
problem can then be summarized as follows. We are given the
following information:
• The set of wireless links E = {e1, . . . , ene

};
• The set of all paths P = {P1, . . . , Pnp

};
• The routing matrix A = [aij ]np×ne ;
• Constraints on communication overhead.

The objective is to select a subset of paths in P to collect end-
to-end measurements under communication constraints, and
find the most probable candidates of anomalous links.

IV. PROPOSED FRAMEWORK

In this section, we present a trust-assisted two-phase probing
strategy for solving the anomaly detection and localization
problem under communication constraints. In both phases,
link trustworthiness is utilized to achieve the best possible
performance under the given communication constraint. In
the first phase, the probes are selected to cover as many
anomalous links as possible and narrow down suspicious areas
to be explored. In the second phase, probes are sequentially
selected based on previous probing results and sent only to the
suspicious areas to locate individual links responsible for the
observed end-to-end anomalous behaviors. This incremental
probing strategy is particularly important for large scale sensor
networks, because collecting all the end-to-end measurements
in P at one time may congest the network.

A. First phase probing
Ideally, to monitor network status, probes should cover all

links in the network in order to detect all possible anomalies.
However, probing all links at a rate that is sufficiently fast
for the detection may cost high communication overhead and
cause serious network congestion. Our first-phase probing
scheme is motivated by the observation that different links
might be exposed to different levels of risks, e.g., the attacker
may be more likely to target some “important” links in the
network. Therefore, the links should be probed with different
frequencies and priorities. The priority of a link can be
computed based on its trustworthiness and the obsoleteness
of previously collected data of the link. The probes are then
selected to cover links of highest priorities and satisfy a given
communication constraint. The goal is to optimize the tradeoff
between detection performance and probing overhead.

1) Problem Formulation: For each link ei ∈ E at time
k, we assign a trust value ti(k) ∈ [0, 1) and an obsolete
value oi(k) ∈ [0, 1). The trust value represents the probability
of ei being normal, while the obsolete value indicates the
obsoleteness of previously collected information about ei. We
use the Beta Reputation System [9] to capture link trustwor-
thiness, which is based on using beta distribution to combine
feedback and derive trust values. In Bayesian statistics, the

beta distribution can be seen as the posterior probability of
the parameter p of a binomial distribution, where p is the
probability of success. In the Beta Reputation System, let pi(k)
be the probability that link ei is normal at time k, then pi(k)
is assumed to have a beta distribution with parameters αi(k)
and βi(k), i.e.,

f(pi(k)|αi(k), βi(k))

=
Γ(αi(k), βi(k))pi(k)αi(k)−1(1− pi(k))βi(k)−1

Γ(αi(k))Γ(βi(k))
,

where Γ(·) is the gamma function. Given previously observed
states of ei till time k, αi(k) and βi(k) can be represented by
αi(k) = ri(k) + 1 and βi(k) = si(k) + 1, where ri(k) is the
number of events that ei is normal, and si(k) is the number of
events that ei is anomalous. The trust value ti(k) is defined to
be the mean value of pi(k), i.e., ti(k) = E[pi(k)] = (ri(k) +
1)/(ri(k)+si(k)+2). Since links may change behaviors over
time, old observations are less relevant for the current trust
value. A forgetting factor can be introduced so that ri(k+1) =
κ1ri(k) + Ii(k+ 1) and si(k+ 1) = κ2si(k) + 1− Ii(k+ 1),
where Ii(k + 1) is the indicator function that equals to 1 if
the (k + 1)th observation of link ei is normal. The forgetting
factors κ1 and κ2 are positive and can be set differently, e.g.,
if we want to punish more on the occurrence of an anomalous
event, we can set κ2 > κ1. More details on the Beta reputation
system can be found in [9].

The obsoleteness of a link is set to 0 initially and updated
according to the following rule. Let Ai(k) be the event that
ei is not probed in the kth interval and ACi (k) be the event
that ei is probed in the kth interval, then

oi(k + 1) =
{

1− (1− oi(k))e−τ , if Ai(k),
0, if ACi (k).

where τ > 0 is a parameter controlling the fading speed
of the information. In other words, the more recent a link
is probed, the smaller its obsolete value is. Let wi(k) =
ρ · (1 − ti(k)) + (1 − ρ) · oi(k), with ρ being a parameter
that adjusts the relative importance of the trust value and
the obsolete value, then wi(k) can be used as a weight that
indicates the urgency of probing link ei.

The first-phase probing selection can be formulated as an
optimization problem. Let hi be the length of path Pi, and h0

be the communication constraint such that the number of links
traversed by the probes can not be larger than h0. Let ui be
the indicator function for selecting path Pi, i.e., ui = 1 means
that path Pi is selected, and vj be the indicator function for
selecting link ej , the optimization problem can be defined as

max z =
∑
j∈E

wj · vj , (1)

s.t. ∀ i ∈ P, ui ∈ {0, 1},
∑
i∈P

hiui ≤ h0, (2)

∀ j ∈ E , vj ∈ {0, 1}
∑
i∈P

aijui − vj ≥ 0. (3)

Constraint (2) represents the communication constraint and
constraint (3) is due to the fact that one link may belong to
multiple paths. The above optimization problem belongs to the
class of the budgeted maximum coverage problem [15], which
is NP-hard. Khuller et al. [15] proposed a (1− 1/e) approxi-
mation algorithm that achieves a best possible approximation
ratio. However, their method involves an enumeration of all
subsets of P that have cardinality k, where k ≥ 3, which is
too computationally expensive in our settings.
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We propose an efficient approximation algorithm that has
very low computational complexity to solve the problem and
prove a performance bound. Experimental results in Section
V show that our approximation algorithm achieves not only
low computation overhead but also high approximation factor.

2) The approximation algorithm: The approximation al-
gorithm and its analysis are based on linear programming
duality. To solve the optimization problem, we first relax the
integer constraints in (2) and (3) to pairs of linear constraints
0 ≤ ui ≤ 1 and 0 ≤ vj ≤ 1. It can be further shown that
0 ≤ ui ≤ 1 and 0 ≤ vj ≤ 1 can be equivalently changed to
ui ≥ 0 and vj ≤ 1. Then the dual problem of the original
optimization problem can be written as

minλ,γ λh0 +
∑
j∈E

γj (4)

s.t. ∀ i ∈ P, λhi +
∑
j∈E

aijγj ≥
∑
j∈E

aijwj = w̃i, (5)

where λ, γj for j = 1, . . . , ne, are Lagrange multipliers, and
w̃i is the sum of link weights for path Pi.

We denote the set of selected paths as X , the set of
links covered by X as E(X ), and the total hop counts of
the paths in X as hops(X ). Note that hops(X ) is usually
larger than |E(X )| as paths can have overlapping links. Let
q0 = arg maxi∈P w̃i/hi, the algorithm starts with the feasible
dual solution X = {Pq0}, hops(X ) = hq0 , λ = w̃q0/hq0
and γj = 0 for j ∈ E(X ). Then in each iteration, the basic
idea is to reduce the dual objective value while improving
the primal objective value. Initially, the objective value of
the dual problem is λh0 and only the qth0 constraint in
(5) is active. To reduce the dual objective value in each
iteration, we choose one inactive constraint in (5), say, the
ith constraint and make it active. We reduce the value of
λ by a constant β and raise the value of γj by the same
amount β. Let overlap = |E({Pi}) ∩ E(X )| be the number of
overlapping links between Pi and X , the change to the left
side of the ith constraint will be −hi · β + overlap · β < 0
as hi = |E({Pi})| ≥ overlap. Therefore, the ith constraint
can be made active with a properly selected positive value
of β. In order to keep the dual solution feasible, all other
constraints should not be violated, so the chosen constraint
must be associated with the smallest β among all the inactive
constraints. For the already active constraints, the change of
their left side equations will be −hi · β +

∑
j aij · β = 0, so

they are still active and not violated. After each iteration, the
change of the dual objective value is β · (|E(X )| − h0). Since
|E(X )| < hops(X ), the dual objective value will be reduced as
long as the primal solution is feasible, i.e., hops(X ) <= h0.
The algorithm will terminate as soon as the communication
constraint is violated, i.e., hops(X ) > h0. Table I is a summary
of the algorithm for first-phase probe selection.

The probe selection algorithm is performed among the
measurement nodes only. Each measurement node maintains
a partial view of the network, i.e., the information of the links
that constitute its monitored paths, which can be extracted
from the routing protocol running in the lower-layer network,
and the corresponding link weights, which are updated locally
by the Beta reputation system. In the algorithm described in
Table I, except the computation of (max w̃i/hi) in the 1st
line and the computation of (minβi) through line 4-10 , other
computations are local, i.e., they can be executed by individual
measurement node without exchange of information. The
distributed computation of minimum can be achieved easily
by maintaining a spanning tree among the measurement nodes
[16]. Furthermore, the iterations in the ‘While-end’ statement

TABLE I
A SEQUENTIAL ALGORITHM FOR FIRST-PHASE PROBE SELECTION

1 Initialization: q0 = arg maxi∈P w̃i/hi,
X = {Pq0}, hops(X ) = hq0 , λ = w̃q0/hq0 , γj = 0.

2 While hops(X ) < h0,
3 β = inf, idx = 0
4 for each i /∈ X
5 overlap = |E({Pi}) ∩ E(X )|

6 βi =
λ·hi+

P
j∈E aijγj−w̃i

hi−overlap
7 if β > βi
8 β = βi, idx = i;
9 end
10 end
11 if hops(X ) + hidx <= h0

12 λ = λ− β,
13 ∀ i ∈ E(X ), γi = γi + β,
14 ∀ i /∈ E(X ), γi = γi,
15 X = X ∪ Pidx,
16 else
17 terminate
18 end
19 end

through line 2-19 can be finished in less than h0/hmin rounds,
with hmin being the length of the shortest path in P . Since
the number of measurement nodes is small, the communication
cost for this algorithm can be kept low.

Next, we derive the performance bound for the proposed
approximation algorithm.

Theorem 1: Assuming that the algorithm in Table I ter-
minates after l1 iterations and the primal solution is X =
{Ps1 , . . . , Psl1

} with objective value zp. Denote the optimal
objective value for the primal problem by z∗, then zp can be
lower bounded by zp > z∗

δ(1+r/l1)
, where δ is the maximum

number of paths in X that intersect at a same link, and
r = hmax/hmin, where hmax and hmin are the maximum
and minimum path lengths.

Proof: The primal objective value zp can be written as
zp =

∑
j∈E(X ) wj according to (1), which is lower bounded by

1
δ

∑
i∈X w̃i. Since the paths in X have active constraints in the

dual problem, we have [
∑
i∈X w̃i =

∑
i∈X (λhi+

∑
j aijγj) <

δ · zp. On the other hand, the dual objective value zd can be
written as zd = λh0 +

∑
j∈E γj . Since γj = 0 for j /∈ E(X ),

we have

zd = λ(h0 −
∑
i∈X

hi) +
∑
i∈X

(λhi +
∑
j

aijγj)

< λhmax + δ · zp.
Since λ

∑
i∈X hi < δ · zp and |X | = l1, we have

λhmax <
δ · zp

l1 · hmin
hmax.

Then zd can be upper bounded by zd < δ · zp · (1 + r/l1) and
we have the optimal objective value z∗ satisfying

z∗ < zd < δ(1 + r/l1)zp.

Experimental results in Section V show that this approxi-
mation algorithm achieves very good approximation ratio as
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compared to the optimal solution.
After the probes are selected and sent, the measurement

nodes will do hypothesis testings to detect anomalous paths
based on the collected end-to-end measurements. The detec-
tion is based on identifying significant measurement deviations
from the normal state. We have proposed to use either sequen-
tial probability ratio test (SPRT) or non-parametric change
detection method for the hypothesis testing depending on
whether a training data set is available. More details on the
detection algorithms and their performance analysis can be
found in our previous work [17].

B. Second phase probing

The goal of the second-phase probing is to find the individ-
ual links responsible for the observed path anomalies. In this
phase, additional probes are sequentially selected according
to previous observations and the predicted diagnosis quality.
This online selection is typically more efficient than its offline
counterpart [18], where the offline method attempts to select
the set of probes before any observation is made.

To measure the diagnosis quality, we use the conditional
entropy from the information-theoretic perspective. Assuming
that the observed path states from the first phase is represented
by x1. Denoting the second-phase probe selection strategy by
π and the link states in E by Y , then the diagnosis quality of
π can be represented by f(π) = H(Y|x1)−H(Y|x1, φ(π)),
where φ(π) is the collected end-to-end measurements by
implementing π. Let h(π) be the communication overhead by
implementing π, measured by the number of links traversed by
the selected probes, and h̃0 be the communication constraint
for the second phase, then the probe selection problem in this
phase can be formulated as to find a policy π∗ such that

π∗ = arg max
π

Eπ[H(Y|x1)−H(Y|x1, φ(π))], s.t. h(π) ≤ h̃0.

However, solving this problem is equal to solving a finite-
horizon Markov Decision Process that has exponential state
space [19], which is NP-hard. A widely used method for
solving this type of problem is to use a heuristic greedy
approach that iteratively selects the probe that provides the
largest reduction in uncertainty at each step [14], [20]. More
specifically, let XC represent the previously sent probes,
including the probes sent in the first phase, and assuming
that the observations are XC = xC and the communication
overhead is h(XC), then the next probe is selected to be
i = arg max

j:hj≤h̃0−h(XC)
H(Y|xC)−H(Y|xC , Xj), (6)

where Xj is a random variable representing the unknown state
of path Pj and hj is the hop count for path Pj . We now provide
performance bound for this greedy algorithm.

Theorem 2: Assuming that the obtained diagnosis quality,
i.e., the reduced uncertainty on link states, by the greedy
algorithm is ∆̃, and the optimal diagnosis quality is ∆∗, then
∆̃ can be lower bounded by ∆̃ ≥ (1 − e−l2·hmin/h̃0)∆∗,
where l2 is the number of probes selected by the greedy
algorithm, hmin is the minimum path length, and h̃0 is the
communication constraint in the second probing phase.

Proof: First, the diagnosis quality f(π), measured in
the reduction of estimation uncertainty, satisfies the adap-
tive monotonicity property defined in [19], i.e. getting more
probing observations can never decrease the diagnosis quality.
Second, it also satisfies the adaptive submodularity property,
i.e., when there are fewer probes that have been sent, probing
one additional path can provide the same or more information
than the case of probing the same additional path but there

are more probes that have been sent. In other words, for
XA ⊆ XB ⊂ X and Xi ∈ X\XB , we have

f(XA, Xi)− f(XA) = H(Y|XA)−H(Y|XA, Xi)
≥ f(XB , Xi)− f(XB) = H(Y|XB)−H(Y|XB , Xi),

which is due to the fact that

H(Y|XA)−H(Y|XA, Xi)− (H(Y|XB)−H(Y|XB , Xi))

=
∑
XB

∑
Xi

P (XB , Xi) log
P (XB , Xi)

P (XB)P (Xi|XA)

= DKL(P (XB , Xi)||P (XB)P (Xi|XA)) ≥ 0,

where DKL(·) represents the Kullback-Leibler divergence.
Following Theorem 3 in [19], we have ∆̃ ≥ (1− e−l2/k)∆∗,
where l2 is the number of steps for the greedy algorithm and
k is that of the optimal algorithm. In our case, the number of
steps in the greedy algorithm is equal to the number of probes
selected by the greedy algorithm, and the number of steps for
an optimal algorithm can be upper bounded by k ≤ h̃0/hmin,
so we have ∆̃ ≥ (1− e−l2·hmin/h̃0)∆∗.

Next, we discuss how to implement the greedy algorithm.
The graphical model for computing H(Y|xC , Xj) is illustrated
in Fig. 2, where Xj represents the state of path Pj and Yi rep-
resents the state of link ei. By simple algebraic manipulation,

Fig. 2. Graphical Model Fig. 3. Factor Graph for the Graphical Model

it is found that H(Y|xC , Xj) satisfies

H(Y|xC , Xj) = H(Y|xC)−H(Xj |xC) +H(Xj |Ypaj
,xC),

where Ypaj
is the set of the parent nodes of Xj in Fig. 2.

Since H(Y|xC) is not related to Xj , only H(Xj |xC) and
H(Xj |Ypaj ,xC) need to be computed. The computations can
be carried out using the Loopy Belief Propagation algorithm
(LBP). We will first briefly review the LBP algorithm.

LBP [21] is a message passing algorithm for performing
inference on graphical models. It calculates the marginal
distribution for each unobserved node, conditioned on any
observed nodes. It usually operates on a factor graph, which is
a bipartite graph containing nodes corresponding to variables
and factors. In the factor graph, an undirected edge connects a
variable node c and a factor node s if and only if the variable
participates in the potential function fs of s. Let x denote a
set of n discrete variables and s a factor node, then the joint
mass function of x can be written as

P (x) =
1
Z

∏
s

fs(xs),

where Z is a normalization constant, xs is the set of neigh-
boring variable nodes of s, and the index s ranges over all
factor nodes in the graphical model. The factor graph for our
graphical model is shown in Fig. 3. More details on factor
graph can be found in [21]. In LBP, the probabilistic messages
are iterated among the variable nodes and the factor nodes. Let
N (xi) denote the neighboring factor nodes of a variable node
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xi, then the LBP message from xi to one of its neighboring
factor node s is defined as

µxi→s(xi) =
∏

s̃∈N (xi)\s

µs̃→xi(xi),

and the message from factor node s to xi is defined as

µs→xi(xi) =
∑
xs\xi

fs(xs)
∏

xj∈xs\xi

µxj→s(xj),

where xs is the set of neighboring variable nodes of s. Based
on these messages, the beliefs for each variable node and the
probability potential for each factor node can be computed as,

P (xi) ∝
∏

s∈N (i)

µs→xi
(xi),

P (xs) ∝
∏

xi∈N (s)

µxi→s(xi)

In our case, since xC are observed nodes, the origi-
nal LBP algorithm already provides the computation of the
marginal distribution P (Xj |xC). H(Xj |xC) can then be eas-
ily computed as

∑
xj
P (xj |xC) logP (xj |xC). To compute

H(Xj |Ypaj ,xC), we first write it as

H(Xj |Ypaj ,xC) = −
∑
Ypaj

P (ypaj , xj |xC) logP (xj |ypaj )

= −
∑
Ypaj

,xj

P (ypaj
, xj |xC) logP (ypaj

, xj |xC)

+
∑
Ypaj

P (ypaj
|xC) logP (ypaj

|xC), (7)

then consider the two terms in the right side of equation (7).
For the first term, ypaj and xj are variable nodes that are
neighbors of the factor node sne+j , which has the joint mass
function

P (ypaj , xj |xC) = f(xj |ypaj )·µxj→sne+j ·
∏

yk∈ypaj

µyk→sne+j .

The original LBP message from sne+j to xj is

µsne+j→xj
=
∑
ypaj

P (ypaj
, xj |xC).

Let µ̃sne+j→xj =
∑

ypaj
P (ypaj

, xj |xC) logP (ypaj
, xj |xC)

and piggyback it in the original LBP message, then the
first term can be obtained at node xj as

∑
xj
µ̃s→j(xj).

Similarly, the second term in the right side of equation
(7) can be obtained by first computing P (ypaj

|xC) =∑
xj
P (ypaj

, xj |xC) at node sne+j and then passing
µ̂sne+j→xj

=
∑

ypaj
P (ypaj

|xC) logP (ypaj
|xC) to node xj .

Therefore, H(Xj |Ypaj ,xC) can be obtained at xj .
To implement the above mentioned algorithm for second-

phase probe selection, there are two main concerns. First is the
mapping from the graphical model to the sensor network as
we should limit messaging across sensors whenever possible in
order to save resources. Second is that whenever an additional
probe is selected, the beliefs need to be updated, which
requires repeated executions of LBP and may lead to very high
computational complexity. We propose a heuristic algorithm to
reduce the computation overhead and improve algorithm speed
by utilizing the redundancy in each execution of LBP.

a) Mapping the graphical model to the sensor network:
The second-phase probe selection algorithm is also performed
among the measurement nodes. For the graphical model shown

in Fig. 2, we call the Xis evidence nodes as they represent
path states and can be observed, and call the Yjs latent nodes
as they represent the hidden link states. First, we assign each
evidence node to the measurement sensor that monitors the
corresponding path. Observing that in the graphical model
the evidence nodes are only coupled through the latent nodes,
we decouple them by making duplicated copies of the latent
nodes [22]. More specifically, assuming that the evidence
nodes Xp and Xq are coupled through a latent node Yr, while
the corresponding measurement sensors for the two evidence
nodes, denoted by Sp and Sq , are connected through a path
constituted of measurement sensors (Sr1 , . . . , Srn

). Then we
add new variables (Zr1 , . . . , Zrn) to the original graphical
model, remove the link from Yr to Xq , and add new links
for (Yr, Zr1), (Zr1 , Zr2), . . . , (Zrn−1 , Zrn

), (Zrn
, Xq) with

f(Zr1 |Yr) = I(Zr1 = Yr),
f(Zrk+1 |Zrk

) = I(Zrk+1=Zrk
), k = 1, . . . , n−1,

f(Xq|Zrn) = P (Xq|Yr),
where I(·) is the indicator function. The factor graph of the
modified graphical model can be derived accordingly. The
newly added variables (Zr1 , . . . , Zrn) are assigned to the
measurements sensors (Sr1 , . . . , Srn

) and the latent variable
Yr is assigned to the measurement sensor Sp.

b) Belief Updating: Belief updating is the most com-
putational intensive part in the second-phase probe selection
algorithm as the beliefs need to be updated each time when one
additional probe is collected. In [14], Zheng et al. also utilized
belief propagation for online probe selection, however, the
computation complexity is pretty high in their implementation
due to the repeated executions of belief propagation. In [20],
Cheng et al. proposed to improve algorithm efficiency based on
an observation of approximated conditional independence of
probes. However, their method does not hold true in the online
scenario where each probe is sequentially selected according
to previous observations.

We propose a heuristic algorithm that exploit the redun-
dancy in the repeated executions of LBP to reduce computa-
tional complexity. It is based on the observation that adding
one evidence at a time may only affect a small region in the
graphical model. Therefore, messages should be updated only
in that region. The similar principle is used for expanding
frontier belief propagation (EFBP) in [23]. However, EFBP
focus on the case where the choice of evidence variables is
fixed but the evidence changes, while in our case the choice of
evidence variable is not fixed, i.e., one more evidence is added
each time. Our algorithm starts with one run of the full LBP
algorithm to select the first probe given the observations from
the first-phase probing. Then for each time when an additional
probe is sent and the corresponding path state xi is observed,
the message from xi to its neighboring factor node s, i.e.,
µxi→s, will be updated and sent if and only if it differs by
ε from the previous one when xi last participated in belief
propagation. Similarly, if s receives a new message, it will
update and send messages to neighbors if and only if the
new message differs by ε from the last one s received. In
most cases, the effect of adding one evidence dies out very
quickly, so the number of message passing is greatly reduced
compared to the full LBP algorithm. It is found by experiments
that this heuristic approximation algorithm can achieve similar
performance as the repeated executions of full LBP, while
the speed is more than one order of magnitude faster. Table
II summaries the algorithm, where h̃0 is the communication
constraint for the second phase and h(xi) represents the hop
count of the path corresponding to xi.
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TABLE II
AN IMPROVED LBP BASED ALGORITHM FOR SECOND-PHASE PROBE

SELECTION

1 Initialization: perform LBP to select the first probe x1,
obtain initial belief messages µ[0]

·→·,
k = 1, hk = h(x1), converged = false, S [0] = {x1},

2. while hk <= h̃0

3 while converged == false
4 converged = true, S [1] = ∅
5 for s ∈ S [0]

6 for t ∈ N (s)
7 compute µ[1]

s→t based on new observed probing
result or new received message from neighbors

8 if |µ[1]
s→t − µ

[0]
s→t| > ε

9 converged = false, send µ[1]
s→t to t

10 µ
[0]
s→t = µ

[1]
s→t, S [1] = S [1] ∪ t

11 end if
12 end for
13 end for
14 S [0] = S [1]

15 end while
16 k = k + 1
17 select the kth probe xk, hk = hk−1 + h(xk)
18 S [0] = {xk}
19 end while

V. EVALUATION

To evaluate the performance of the proposed algorithm, we
generate a set of different networks. The sensor nodes are
assumed to be uniformly deployed. A small number of nodes
are randomly selected as the measurement nodes (M nodes) to
collect end-to-end measurements. The monitored paths from
measurement nodes to other regular sensor nodes follow the
shortest paths. Table III summarizes the parameters for the
evaluated networks with different sizes.

TABLE III
NETWORK PARAMETERS

Net Avg. node Num. of Num. of Num. of Avg. path
size degree M nodes links paths lengths
100 5.36 5 268 485 3.30
200 5.06 5 506 985 5.21
300 4.68 5 702 1779 5.30
400 5.09 5 1049 1985 6.39
500 6.27 7 1568 3472 7.83

In the experiments, the occurrence of an anomaly on each
link in the network is modeled as a Bernoulli process. The
probability associated with each Bernoulli process may be
adjusted for different anomaly densities. For simplicity, we
assume that once an anomaly occurs, it remains anomalous
until being detected. We report results for the two probing
phases under different experimental settings, including differ-
ent network sizes, communication constraints and anomaly
densities. Since existing work typically do not consider a
strict communication constraint, we design a simple baseline
algorithm that can work under communication constraints
and compare our trust-assisted algorithm with the baseline
algorithm. The baseline algorithm is assumed to be not aware

of the trust information. It follows the same procedures as the
trust-assisted algorithm but assumes that each link is equally
likely to be anomalous with probability 0.5.

1) First-phase probing: The goal of the first-phase probing
is to cover as many anomalous links as possible given the
communication constraint and at the same time, narrow down
the suspicious areas in the network. We propose to evaluate
the algorithm performance using two metrics. The first metric
is anomaly coverage rate, which is computed as the ratio of
the anomalous links covered by the candidate probes to all
anomalous links. The second metric is the suspicious area
measured by number of suspicious paths after the first-phase
probing. Since only end-to-end anomalous behaviors (path
anomalies) are identified in the first phase, the suspicious
paths represent those paths that intersect with the discovered
anomalous paths. They are also candidate paths for the second-
phase probing for locating individual anomalous links. Fig.
4(a) shows the anomaly coverage rate for our trust-aware
probe selection method and the baseline method in different
networks under given communication constraints. Fig. 4(b)
shows the number of suspicious paths after the first-phase
probing for these networks. The x-axis of the two figures show
network sizes while other network parameters are shown in
table III. The number above the bars are the corresponding
communication constraints used for the first phase. For larger
network sizes, we used larger communication constraints.
Anomaly densities in these network are around 20%, i.e., about
20% of the links in the networks are anomalous.
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Fig. 4. Comparison of the trust-aware method and baseline method

Fig. 4(a) shows that the trust-aware method can cover more
anomalous links than the baseline method given the same
communication constraints. Fig. 4(b) demonstrates that both
the trust-aware algorithm and the baseline algorithm have
scaled down the suspicious areas: the number of candidate
probes have been greatly reduced. We also note that the
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baseline method may achieve smaller suspicious areas, that
is because it identifies much fewer anomalous paths, which
will lead to fewer intersecting suspicious paths.

Another concern for the first-phase probe selection, as
mentioned before, is the computational complexity of the algo-
rithm. We compare our approximation method implemented in
MATLAB to the exact method provided by MATLAB integer
programming solver, in terms of both speed and performance.
The experimental settings are the same as the previous one.
Fig. 5(a) shows the running time of our method and the exact
solution for different networks. Fig. 5(b) shows the anomaly
coverage rate for the two methods.
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Fig. 5. Comparison of the approximation method and the exact solution

For small networks, since the communication constraint
is also small, the budgeted maximum coverage problem has
small scale, therefore, the exact solution is only about 3
times slower than the approximation method. However, the
approximation method starts to provide much superior perfor-
mance over the exact method when the network size becomes
larger, e.g., for network size larger than 300, the approximation
method is more than one order of magnitude faster than the
exact method, while reduction on the anomaly coverage rate is
less than 0.1. Considering the much larger running time of the
exact solution, e.g, in the scale of minutes, the performance
reduction of the approximation method is acceptable.

2) Second-phase probing: For the second-phase probing,
the goal is to find the individual links that are responsible for
the observed path anomalies. The performance is evaluated
in terms of the missed detection rate (MDR) and false alarm
rate (FAR). The missed detection rate is represented by the
percentage of anomalous links that are not found, and the false
alarm rate is represented by the percentage of normal links that
are recognized as anomalous. Denote E as the set of monitored
links, EA as the set of anomalous links, and ED as the set of
anomalous links that are correctly localized, then

MDR = 1− |EA ∩ ED|
|EA|

, FAR =
|ED ∩ (E − EA)|
|E − EA|

We have implemented our probe selection algorithm in
this phase on top of the belief propagation algorithm from

Kevin Murphy’s Bayes Net toolbox [24]. To demonstrate the
effectiveness of our heuristic method on improving algorithm
efficiency, we also implemented the BPEA algorithm proposed
by Zheng et al. [14]. BPEA applied a similar repeated LBP
algorithm for online probe selection, which, to the best of
our knowledge, provides the best inference accuracy in the
literature. However, BPEA did not fully exploited the redun-
dancy in the repeated executions of LBP and it has very high
computational complexity.

Fig. 6 shows the performance comparison of BPEA and
our algorithm in a network with 400 nodes. Other network
parameters are shown in the corresponding row in Table III.
In this experiment, anomaly density is around 30%. The com-
munication constraint is 50 for the first-phase probe selection.
Fig. 6(a) compares the running time of the two methods. Fig.
6(b) compares the information gain in bits for the two methods,
and Fig. 6(c) shows the missed detection rate. The false alarm
rate is very small in both cases, i.e., around 0.04, and sending
more probes did not change the false alarm rate much, so we
don’t show it here. The x-axis in the figures corresponds to
the communication constraint for the second phase.
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Fig. 6. Comparison of BPEA and our approach

We can see that our heuristic method indeed speeds up the
probe selection process a lot, i.e., more than one order of
magnitude than BPEA. In the case that the communication
constraint is 80 hop counts, BPEA need about 35 minutes,
which is not realistic for real time probe selection, while our
approach only need one and half minutes. The information
gain, in terms of the reduced uncertainty, obtained by the two
methods are almost the same for given communication con-
straints, while the missed detection rate is even a slightly lower
using our heuristic method. Over various experiments that we
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have run with different networks, our heuristic method and the
BPEA method can always achieve similar performances.

Next we change the anomaly densities in the network. It is
observed that when the anomaly density reduces, both MDR
and FAR become lower. Due to space limit, Fig. 7 only shows
the change of MDR.
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Since the inference accuracy is also affected by the noise
level in the network, i.e., the leakage probability and the
inhibition probability in the Noisy-OR model. We now in-
ject different levels of noise into the same network. Fig. 8
compares the MDR and FAR when the inhibition and leakage
probability varies. The anomaly density is around 17% for
this evaluation. Generally, the performance degrades when
more noise are injected, which is as expected. It is also found
that for low noise level, e.g., inhibit < 0.1, leak < 0.1, the
performance does not change much.
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Fig. 8. Performance under different levels of noise

VI. CONCLUSIONS

In this paper, we present a trust-assisted framework for
anomaly detection and localization in resource constrained

wireless sensor networks using end-to-end measurements. In
contrast to most of the prior work that focus on detection and
localization accuracy, our focus is on the tradeoff between
inference accuracy and the resource consumption in sensor
networks. Especially, we are interested in the case that there is
a strict constraint on the communication bandwidth for doing
anomaly detection and localization. We proposed a hierar-
chical network structure and exploited network heterogeneity
to improve energy and bandwidth efficiency. We designed
an efficient two-phase probing scheme that utilize link trust
information to achieve a good tradeoff between inference ac-
curacy and probing overhead. Simulation results demonstrate
the efficiency and effectiveness of our algorithms. In future
work, we plan to implement the proposed algorithms in a real
sensor network testbed to further evaluate performances.
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