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Abstract— We investigate the design of scalable and dis-
tributed control laws for flow control in a large network
– equivalently an optimization problem. We identify the
implications of the desired “plug-and-play” property of such
protocols and propose design principles upon which our
algorithm should be built: the class of our algorithms must
achieve little extra communication cost and global asymptotic
stability. General structural properties of such algorithms are
presented and we finally provide an algorithm which satisfies
our design principles for a network with heterogeneous
delays.

I. I NTRODUCTION

The design objective of congestion control algorithms
of TCP type over the Internet [1] is to achieve efficient
and fair usage of bandwidth for each user with limited
information on the user’s network environment. The neces-
sity of the requirement for limited (or local) information
is a natural consequence of the size of the system we deal
with. By limited information we mean only information
which can be measured or obtained by each user directly
through her interaction only with the part of the network
relevant to her flow. For example TCP operates explicitly
on the knowledge of the losses of user’s packets, which can
be seen as a congestion message sent by the intermediate
routers, and implicitly on the round-trip delay of each
user’s flow through a self-clock mechanism, which is a
direct measurement by the end user. On the other hand
efficiency and fairness are design goals which depend on
various combinations of different flows, which are defi-
nitely non-local to each user per se. However, by adopting
an optimization framework to interpret the efficient and
fair bandwidth allocation [2]–[4], one can immediately
reformulate the original large coupled problem into smaller
decoupled problems via duality. In essence, each user
tries to maximize her own utility function (induced by
the fairness requirement) which is a function of her flow
rate (primal variables of the optimization problem). At the
same time congestion messages generated at each router
by Active Queue Management (AQM) can be seen as
dual variables (or Lagrange multipliers for the bandwidth
constraints). Then the distributed algorithm is executed
between all users and routers in the network through
the exchange of primal and dual variables. The original

design goal is translated into the ability of the distributed
algorithm to reach the global optimal point eventually.

Given the separable nature of the network optimization
problem in our context, an immediate candidate for dis-
tributed algorithms comes from dual gradient methods [3],
[5], in which the dual variables are updated based on a
gradient approach and the primal variables are obtained
directly by solving the first-order optimality condition.
This is generally termed “dual law” since only the cal-
culation of the dual variables has dynamics. A variant
of the dual law algorithm, in which primal variables are
also updated according to a certain kind of dynamics, is
called “primal/dual law” and this actually corresponds to
the Lagrangian method in the theory of optimization [5].
The only equilibrium point of these two algorithms is
the solution of the global optimization problem. In reality
TCP with AQM, which has a pure integrator term, can
be modelled as a primal/dual law algorithm. Furthermore,
there is a class of “primal law” algorithms, which can
model AQM with arbitrary random dropping functions, but
in a strict sense those algorithms do not solve the network
optimization problem, since their equilibrium points are
not guaranteed to be the optimal solution, although they
can be arbitrarily close to the optima [2].

A major cause of problems in the aforementioned
distributed algorithms is the existence of delays in the
network. Information obtained from the network in order
to update primal or dual variables is usually subject to
delays due to the time spent on computation, propagation,
and queues. This information staleness is one of the major
destabilizing factors for the algorithm dynamics and it
is well known that TCP/AQM algorithms do not scale
with large delay and bandwidth: they either result in low
utilization of the network resources or display perpetual
fluctuations of flow rates. Many research efforts have been
devoted to this issue. First results on a scalable control law
were proposed by Low and Paganini et al for a particular
utility function [6], and subsequently they extended their
result for general utility functions [7]. But both protocols
are only verified (validated) for a linearized situation by
Vinnicombe’s results on TCP/AQM network control with
heterogeneous delays [8]; however the global behavior
results of their scalable control law are restricted to a single
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source/link network [9]. General approaches of global
stability analysis include Lyapunov-Krasovskii methods,
Lyapunov-Razumikhin methods [10], and contraction map-
ping methods. Stability conditions for the primal law and
dual law algorithms are obtained by Fan et al [11] by
employing a Razumikhin equivalent method, but their
condition requires global information about the network.
A contraction mapping method is used by Ranjan et al
[12] to analyze a class of congestion control algorithms
which enjoys stability with arbitrary large delays.

Our work intends to design a scalable and distributed
control algorithm for the network flow optimization prob-
lem such that the algorithm has global stability and only
requires local information for both users and routers.
Specifically each user only needs to know the number of
bottlenecks his flow traverses, the round-trip delay, and
the aggregate congestion of his flow, and each router only
needs to know the number of flows and the aggregate flow
it has. In this way such a controller has a nice plug-and-
play property which is desirable for actual implementation.
The paper is organized as follows. In Section II we will
present the network model and problem formulation. We
will put forward our design principles there. In Section
III the general properties that valid controllers must have
are discussed based on some of our design principles. The
scalable controller is then designed in Section IV and its
global stability is proved. Final discussion and conclusions
are given in Section V.

II. PROBLEM FORMULATION

The network considered in this paper is similar to the
one in [7] and consists ofN users andL bottleneck links
(all those links whose bandwidths are fully utilized at
equilibrium). We use the notation[n] for the set{1, · · · , n}
and the operator| · | for set cardinality. Therefore we have
for the user set[N ] and for the bottleneck link set[L].
In reality network links other than bottleneck links may
have effects on the dynamics of network flows. But for
simplicity we only consider those bottleneck links, which
we abbreviate as “links” hereafter. Each useri has a fixed
flow path ri ⊂ [L] to send a file with infinite length. In
other words we only consider persistent flows. Also each
router at linkj has a setfj ⊂ [N ] of accessing flows. The
routing matrixR ∈ {0, 1}L×N is defined as

Rji ,

{

1, j ∈ ri,
0, j /∈ ri.

We denote byxi the flow rate of useri and by pj

the congestion information on linkj. Due to the packet
forward delay incurred during the transmission of flow
packets, the aggregate flow rate seen by the router at link
j at time t is

yj(t) =
∑

i∈fj

xi(t − τf
ij) = Rj·







x1(t − τf
1j)

...
xN (t − τf

Nj






(1)

whereτf
ij is the forward delay from useri on link j. Ac-

cordingly, the aggregate congestion information received
by each useri at time t is

qi(t) =
∑

j∈rj

pi(t− τb
ij) = [p1(t− τb

i1), · · · , pL(t− τb
iL)]R·i

(2)
where τb

ij is the backward delay from linkj to user i.
For reasons of fast computation and small communication
cost, routers cannot differentiate individual flows and users
cannot differentiate congestion levels of individual links.
All they have access to are aggregate information and we
will show that these are actually sufficient for our purposes.

An important assumption made now is that both forward
delays and backward delays are time invariant, which is
a valid approximation when routers have small buffers
compared to the product of bandwidth and propagation
delays. Then the observation thatτb

ij ≥ τf
ij usually holds

if the reverse route is symmetric with respect to the forward
route. We also use the following definition

τi , τf
ij + τb

ij , ∀j ∈ ri, (3)

which is the round-trip delay of flowi. Again it consumes
extra communication bits to accumulate information about
forward delays and backward delays separately, and in
contrast it is straightforward for each user to measure the
round-trip delay. Therefore it is much more desirable to
design algorithms whose parameters depend not on the
forward/backward delays separately but only on the round-
trip delays.

As mentioned in Section I the problem of efficient and
fair allocation of network bandwidths can be cast into
the problem of network optimization over flows. This
optimization problem is a classical convex programming
problem with linear constraints:

maxxi≥0

∑

i∈[N ] Ui(xi)

s.t. Rx ≤ c.
(4)

where each functionUi : R+ → R, which is understood
as the utility function associated with useri, is a strictly
concave, continuously differentiable nondecreasing func-
tion andc is aL-dimensional vector whosejth component
represents the bandwidth of linkj. As usual we assume
that U ′

i(x) → ∞ asx → 0. The relation between the role
of utility functions and fairness criteria has been clarified
by [2], [4]: it turns out that many practical concepts of
fairness are equivalent to the right selection of utility func-
tions. As a consequence of our assumptions the network
optimization problem (4) has a unique solution at which
all the constraints are satisfied with equality, i.e. we attain
efficient usage of network resources. We use the notation
·∗ to denote the equilibrium value from (or induced by)
the network optimization problem, for examplep∗j is the
equilibrium congestion information on linkj.

The standard approach to solve this global optimization
problem (4) in a distributed manner is to solve the dual
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problem instead:

min
pj≥0

∑

i∈[N ]

max
xi≥0

(Ui(xi) − xiR·ip) + pT c. (5)

This process decouples the coupling of the primal variables
through the constraints of the original optimization prob-
lem and turns it into many small maximization problems,
each of which can be handled by users with local infor-
mation. The main algorithms derived from the gradient
method and the Lagrangian method can be written in
general form as shown below,

Dual Law:

{

xi(t) = U ′−1
i (qi(t)),

ṗj(t) = Γj(yj(t) − cj).
(6)

Primal/Dual Law:

{

ẋi(t) = Ki(U
′
i(x(t)) − qi(t)),

ṗj(t) = Γj(yj(t) − cj).
(7)

It is known that without delays both algorithms (6) and
(7) converge to the optimal solution with any positive
coefficients Kis and Γjs [3]. When there are delays
involved, global stability analysis of both algorithms in
a heterogeneous network reveals that the stability condi-
tion depends on those coefficients in a complicated way.
Although decentralized protocols exist in order to satisfy
these stability conditions, they require extra communica-
tion costs and most importantly users have to reveal their
own utility functions. This is illustrated by the following
simple example:

Example 1: A single source/link network uses the fol-
lowing primal/dual algorithm for its flow control

ẋ(t) = K(U ′(x) − p(t − τ)),
ṗ(t) = Γ(x − c).

By simple analysis it is required that−U ′′(c) > 2τΓ/π for
the existence of a coefficientK so that the system is locally
stable. In order to set the rightΓ the router has to know
the user’s utility function. But it is clearly undesirable to
transmit a function across the communication links, not to
mention security reasons. When the user knows only her
U(·) and the link knows itsc, no one can calculateU ′′(c).

Therefore we propose the following necessary design
principles for our algorithms in order to meet the needs of
real-world networks

1) Equilibrium of the algorithm should solve the opti-
mization problem (4);

2) The input and the parameters of user and link con-
trollers should be obtained from local information
only. For an individual user the local information is
that which is accrued along the path of his flow,
and for an individual link the local information is
that which is aggregated from its accessing flows.
Additionally each user’s utility function should be
only known to himself and each link’s bandwidth
should also be kept to itself.

3) The dynamics of the algorithm are globally asymp-
totically stable given heterogeneous delays.

The scalable control laws by Paganini et al [7] satisfy
Principles 1)-2) and partially 3) since only linear stability

is verified for their algorithm. Their algorithm takes the
following form in which ζi is an auxilary state variable at
the useri’s side:

τiζ̇i = βi(U
′
i(xi) − qi),

xi = x̄ie
ζi−

αiqi
|ri|τi ,

ṗj = c−1
j (yj − cj).

(8)

Strictly speaking their protocol is not completely decen-
tralized as defined in Principle 2), because their controller
parameters depend on a global variableτ̄ , which is the
delay upper-bound of the whole network. Specifically in
order to achieve linear stability, the following condition
has to be satisfied,

βi|ri|

αi
τ̄ < η

for some constantη. Although this restriction might not
seem to be significant, the future growth of the network
may potentially require a global reset of user control coef-
ficients and furthermore the existence of this condition on a
global variable may intuitively result in slow performance
due to its conservativeness. Therefore we aim at designing
algorithms strictly satisfying the proposed Principles 1)-3).

III. G ENERAL PROPERTIES OFCONTROLLERS

Before we start to design a specific distributed algorithm
which satisfies all the principles introduced in the previous
section, we first want to understand the structural impli-
cations of controllers based on Principles 1) and 2. The
reason for investigating these principles first is that to some
extent they reflect the “static” characteristics our controller
must possess, while Principle 3) is more relevant to its
“dynamical” characteristics. It is quite difficult to make a
statement about the general properties of such controllers
since the controller space is a very large functional space.
Therefore we resort to focus on the linearized version of
both user and link controllers and the results from the
linearized controllers will give us necessary conditions
as well as design guidance for the full-blown nonlinear
controllers in the next section. For our purpose we only
consider controllers which allow a unique euilibrium state
in this section.

Again consider a single user/link network with the
round-trip delayτ and letF (s)(G(s)) be the transfer func-
tion of the user (link) controller with congestion message
as the input (output) signal and flow rate as the output
(input) signal. Suppose bothF (s) and G(s) are proper
rational functions. Here we made another assumption that
the user (link) dynamics do not explicitly depend on her
delayed value of flow rate (congestion message). This is a
valid assumption since in our problem formulation delays
do not bring any benefits to our goals. Then the open loop
gain of the system ise−τsG(s)F (s). First we give the
condition for the user controller:

Proposition 1: Assume that the user dynamics (by
themselves) do not involve any delays. Then the transfer
function F (s) of the linearized user controller is a valid
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TABLE I

USERCONTROLLERS ANDTHEIR TRANSFERFUNCTIONS

User Controller Transfer Function

x = U ′−1(q) 1/ξ

ẋ = K(U ′(x) − q) K/(s + Kξ)

user controller by Paganini et al (8) K(s + v)/(s + Kvξ)

user controller for the optimization problem if and only if
it is stable andF (0) = ξ−1 whereξ = −U ′′(x∗).

Proof: By definition we haveδx(s) = F (s)δq(s)
where δx = x − x∗ and δq = q − q∗. Since in equi-
librium U ′(x∗) = q∗, we haveU ′(x∗ + δx) = U ′(x∗) +
U ′′(x∗)δx = q∗−δq. Hence we conclude thatF (0) = ξ−1

is a necessary condition forF (s) to be valid. We shall
show that the condition is also sufficient. Without loss of
generality assume that the user controller is strictly proper
and has the following form

F (s) =
a1s

n−1 + a2s
n−2 + · · · + an−1s + an

sn + b1sn−1 + · · · + bn−1s + ξan
.

Herea1, · · · , an andb1, · · · , bn−1 can be functions ofξ. It
is well known that this transfer function can be realized in
a controller canonical form [13]







ż1

...
żn






=











−b1 · · · −bn−1 −ξan

1 0 · · · 0

0
. . . 0

...
0 · · · 1 0

















z1

...
zn







−[an, 0, · · · , 0]T δq
δx = a1

an
z1 + · · · + an−1

an
zn−1 + zn.

This is a local version of the following nonlinear dynamics:

ż1 = −b1(−U ′′(zn))z1 − · · · − bn−1(−U ′′(zn))zn−1

+an(−U ′′(zn))(U ′(zn) − q),
żk = zk−1, 2 ≤ k ≤ n,

x = a1(−U ′′(zn))
an(−U ′′(zn))z1 + · · · + an−1(−U ′′(zn))

an(−U ′′(zn)) zn−1 + zn

The result then can be easily verified from the fact that the
equilibrium of the system when the input isq∗ is indeed
yk = 0, 1 ≤ k ≤ n − 1 andx = yn = x∗.

As an illustration of this proposition we can observe
the correspondence between previously proposed valid user
controllers and their linearized forms in Table I.

Now we turn to the properties of valid link controllers.
Proposition 2: Assume that, like the user dynamics, the

link dynamics by themselves do not involve any delays.
Then the transfer functionG(s) of the linearized link
controller is a valid link controller for the optimization
problem if and only if it is stable andG(s) = H(s)/s in
an irreducible form whereH(s) is some rational transfer
function.

Proof: First we verify the sufficiency part. Suppose
the equilibrium point withF (s) in Proposition 1 andG(s)
given under the current form is the optimal solution of
the network optimization problem. From the definition we
have δp(s) = G(s)δy(s) where δp = p − p∗ and δy =

y−y∗. The link controller can be realized in the following
form,

u̇ = y − c
v̇ = Av + Bu
p = Cv + Du

where(A, B, C, D) is a realization of the transfer function
H(s). SinceG(s) contains a pure integrator, the only input
that achieves the internal stability isδy = 0, or in the
realized systemy∗ = c. Along with the source controller
we have the equations for the equilibrium state

U ′(x∗) = q∗ = p∗

y∗ = x∗ = c

By the KKT conditions this equilibrium point is the
optimal solution of the network optimization problem.

Next we show that this integrator form is also necessary.
First since only the link knows its own bandwidthc and
the equilibrium point has to bey∗ = c for optimality, only
the link controller can enforce the inputδy to be zero
at equilibrium. Suppose the link controller is realized as
shown below,

ż = Az + Bδy

δp = Cz + Dδy.

The previous argument is equivalent to the condition
rankA < rank[A, B]. It is sufficient to check the sit-
uation when(A, C) is observable (since(A, C) has to
be detectable for stabilization, therefore the unobservable
modes are asymptotically stable themselves regardless of
input, so we only focus on the observable part). By
a similarity transformation we can write the system in
canonical observer form [13] as follows

A =











0 0 · · · 0
1 · · · 0 a1

0
. . . 0 a2

0 · · · 1 an−1











,

B = [b1, · · · , bn]T ,

C = [0, · · · , 0, 1].

HereA1n = 0 andb1 6= 0 due to the rank condition. Then
it is straightforward to see thatG(s) must have a pure
integrator term.

Remark 1: The structural properties of valid user and
link controllers indicated in the previous two propositions
suggest that delay independent stability [12] may not be
achievable given our design principles. To see this let us
observe now that the open loop gain of a single user/link
network can be written ase−τsH(s)F (s)/s whereF (0) =
ξ−1 and H(0) = h for some nonzeroh. If the system
is delay independent stable, then the Nyquist curve of its
open loop gain should intersect thex-axis at points greater
than -1 regardless of the value ofτ . But it is easy to see
that for sufficiently largeτ , the Nyquist curve intersects
the x-axis at the frequencyω ≈ π

2τ and the intersection
point is approximatedly− 2h

πξ τ which can be made arbitrary
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smaller than -1. Therefore in order to achieve stability one
must design the controllers based on the size of delays.

IV. D ESIGN OFSCALABLE CONTROLLER

We first focus on the design of scalable controllers for
a single user/link network based on previous discussions
and then extend the design to arbitrary networks with
heterogeneous delays.

A. The Case of Single User/Link Network

As in previous sections we denote byc the link band-
width and byτ = τf + τb the round-trip delay. Similar
to the user controller in Paganini et al’s algorithm (8), we
can choose the transfer function of our user controller to
be

F (s) =
s + k/τ

τs + ξk/τ
(9)

and our link controller to be

G(s) =
1

s
. (10)

Hereξ is defined as−U ′′(c) as in Proposition 1 andk is
some constant. First by direct calculation we have

Lemma 1: The single user/link network with the user
controller given by (9) and the link controller (10) is
linearly asymptotically stable for arbitraryτ and c if
0 < k ≤ k0 ≈ 0.5474. Here k0 , ω0/ tanω0 where
ω0 ∈ (0, π/2) is the solution of the equationω sinω = 1.

From the proof of Proposition 1 we can realize our
algorithm from its linearized form as follows:

ż = k
τ2 (U ′(x) − p(t − τb)),

x = z − p(t−τb)
τ ,

ṗ = x(t − τf ) − c.

(11)

Remark 2: It is worth discussing the initial dynamics
of the above system. Since there is no guarantee at the
beginning fromx = z − p(t − τ b)/τ such thatx is kept
positive, we have to resort to other means. A feasible
solution to the initial dynamics is as follows,
{

x(t) = z − p(t − τ b)/τ, if z > p(t − τ b)/τ,
ẋ(t) = −αx(t), otherwise,

for any positive constantα. Since from our dynamics (11)
p(t) is a continuous function of time, it is easy to see
that oncex(t) > 0, it stays positive thereafter. So the
dynamics ofx will be of the formẋ = −αx for at most a
finite time duration at the beginning of the algorithm. This
period can be regarded as a “probing” phase of the flow
dynamics. Therefore it is sufficient for us to consider only
the dynamics (11) thereafter.

The global stability of the system (11) can be studied
from the observation that the system is actually of Lur’e
type [14] by rewriting it into an equivalent form as follows

ẋ = − k
τ2 (p(t − τb) − p∗) − 1

τ (x(t − τ) − x∗) + k
τ2 u,

ṗ = x(t − τf ) − c,
u = U ′(x) − p∗.

Taking u as the input signal andx as the output signal,
the transfer function fromu to x is

L(s) =
k

τ2

(

s +
k + τs

τ2s
e−τs

)−1

,

while the mapping fromx to u is a(0,∞)-sector nonlinear
mapping. In order to obtain nonlinear stability of (11) by
Popov’s criterion [15], [16] it remains to show that there
existsη ∈ R such that(1 + ηs)L(s) is positive real.

Lemma 2: (1 + τs/2)L(s) is positive real when0 <
k ≤ 1/2.

Proof: By Lemma 1 we only need to check whether
Re(1 + τiω/2)L(iω) ≥ 0 and this in turn is equivalent to
whether Re(1 + τiω/2)−1L(iω)−1 ≥ 0. Hence the proof
reduces to showing that

1

2
θ(θ2 − k cos θ − θ sin θ) − k sin θ + θ cos θ ≥ 0 (12)

whereθ , ωτ .
Whenk = 1/2 the above inequality (12) becomes

1

2
θ(θ2 −

1

2
cos θ − θ sin θ) −

1

2
sin θ + θ cos θ ≥ 0 (13)

which is correct by checking it with numerical means.
If 0 ≤ θ ≤ θ0 ≈ 2.2889, in which θ0 is the smallest

positive solution of the equationθ cos θ + 2 sin θ = 0, we
have

1

2
θ cos θ + sin θ ≥ 0.

But the left hand side of the above inequality is exactly
the difference of the left hand sides of the inequalities (12)
and (13) times1

2 − k. Thus the inequality (12) holds for
0 ≤ θ ≤ θ0. Now consider the situation whenθ > θ0. In
this case the left hand side of (12) is lower bounded by

1

2
θ(θ2 −

1

2
− θ) − θ −

1

2
.

One can directly check that this cubic polynomial achieves
its minimum overθ ≥ θ0 at θ = θ0, and that the minimum
is positive. Therefore we conclude that the inequality (12)
holds for allθ and (1 + τs/2)L(s) is positive real.

Then from Lemma 2 and Popov’s criterion we immedi-
ately have:

Proposition 3: With the initial dynamics discussed in
Remark 2, the system (11) is globally asymptotically stable
for arbitrary values ofτ andc if k ∈ (0, 1/2].

So we obtain a scalable controller which satisfies all
the design principles in Section II for a single user/link
network.

B. The Case of General Network

A direct extension of the user and link controllers (9-10)
from the previous subsection to the situation of a general
network with heterogeneous delays is

Fi(s) =
s + k/τi

τi|ri|s + ξik/τi
(14)

for useri and
Gj(s) =

1

|fj |s
(15)
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for link j.
Define a L × N matrix-valued functionR̂(s) on the

frequency domain by

R̂ji(s) = Rjie
−τf

ij
s

then the relation between the flow rate vectorx and the
aggregate rate vectory (1) can be written as

y(s) = R̂(s)x(s).

From the definition of the round-trip delays (3), the
relation between the congestion message vectorp and
the aggregate congestion vectorq (2) can be equivalently
expressed by

q(s) = diag({e−τis})R̂H(s)p(s).

whereR̂H is the Hermitian ofR̂.
Therefore combining these equations the open loop gain

of the network system with tentative controllers (14-15) is
given as follows

L(s) = diag
({

s+k/τi

τi|ri|s+ξik/τi
e−τis

})

×R̂H(s)diag
({

1
|fj |s

})

R̂(s).

It would be desirable that this natural extension from the
single user/link network (14-15) simply gives us stabilizing
controllers for general networks. To examine this we
need to study the eigenloci of the matrixL(s), per the
Generalized Nyquist Theorem [17]. Recall an elegant result
by Vinnicombe [8]:

Lemma 3 (Vinnicombe): AssumeΛ = diag({λi}) and
M = MT ≥ 0 areN ×N matrices. Then the eigenvalues
of ΛM σ(ΛM) ∈ ρ(M)c̄o({0, λ1, · · · , λN}). Here ρ(·)
denotes the spectral radius and̄co(·) denotes the convex
hull.

Note that

σ(L(s)) = σ (diag({li(s)})M(s)) ,

where we define

li(s) ,
s + k/τi

s(τis + ξik/(τi|ri|))
e−τis,

M(s) , diag({|ri|
−1/2})R̂H(s)diag({|fj|

−1})

×R̂(s)diag({|ri|
−1/2}). (16)

We first calculate the upper bound of the spectral radius
ρ(M(iω)) of M(iω):

ρ(M(iω))

= ρ(diag({|ri|
−1})R̂H(iω)diag({|fj |

−1})R̂(iω))

≤ sup
i,ω

∑

j,n

|ri|
−1|R̂ji(iω)||fj |

−1|R̂jn(iω)|

= 1

from the definitions of|ri| and |fj |. Therefore a sufficient
condition for linear stability is

−1 /∈ c̄o({0, l1(iω), · · · , lN (iω)})

by Lemma 3 and the Generalized Nyquist Theorem. Since
the Nyquist curvesli(iω) with arbitrary τi and ξi are
bounded by a single curvel(θ) on the Nyquist plane:

l(θ) , −
iθ + k

θ2
e−iθ,

we only need to check whether

−1 /∈ c̄o(0 ∪ {l(θ), ∀θ ≥ 0}).

However since∠l(θ) → −180◦ with θ → 0 and part of
the curvel(θ) lies on the second quadrant of the Nyquist
plane, the convex hull of curvel(θ) contains -1. Therefore
we cannot obtain linear stability1 with controllers (14-15)
and this is the main reason why the controllers (8) proposed
by Paganini et al have to rely on a global variableτ̄ .

Therefore we propose our scalable user controller, which
is a modification of (14), as follows,

Ti(s) =
s + min{τi,1}

2τi

2τi max{τi, 1}|ri|s + ξi min{τi,1}
2τi

, (17)

and together with our original link controller (15), we
prove below that they are valid stabilizing linear controllers
for our optimization problem (4).

Lemma 4: The flow dynamics of a network with het-
erogeneous delays where each user controller is given by
(17) and each link controller is given by (15) are linearly
asymptotically stable.

Proof: See Appendix.
By Proposition 1 one can realize the linear controllers

(17) and (15) by

żi = min{τi,1}
4τ2

i
|ri|max{τi,1}

(U ′
i(xi) − qi),

xi = z − qi

2τi|ri|max{τi,1}
,

ṗj =
yj−cj

|fj |
.

(18)

We also assume that for the above system we adopt initial
dynamics similar to that in Remark 2, so that after an initial
phase the system stays in the correct region ofxi > 0 with
the above dynamics forever.

Just like the case of single user/link network, we can
rewrite the system (18) into Lur’e form and the condition
for global asymptotic stability is equivalent to the positive
realness of the following matrix-valued function

W (s)

, (I + diag({ηis}))

×

(

sI + diag
({

e−τis

τ2

i |ri|s
τis+min{τi,1}/2

2 max{τi,1}

})

×R̂H(s)diag({|fj|
−1})R̂(s)

)−1

×diag
({

min{τi,1}
4τ2

i |ri|max{τi,1}

})

for some real-valued{ηi}.
Lemma 5: The matrix-valued functionW (s) defined

above is positive real forηi = τi/2.

1One may wonder whether the inability to prove the stability in our
analysis is due to some conservativeness of Lemma 3. In fact we are able
to construct a 7-user 5-link network with controllers (14-15) such that
the flow dynamics of the network is unstable.
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Proof: Since we already have linear stability from
Lemma 4 it suffices to show that the following matrix-
valued function is positive real

W̃ (s) , diag
({

τis
1+τis/2

})

I

+diag
({

e−τis

τis(1+τis/2)
τis+min{τi,1}/2

2max{τi,1}

})

M(s).

whereM(s) is defined in (16) and recall thatρ(M(iω)) ≤
1.

Since M(iω) is positive semidefinite Hermitian, there
exists a unitary matrixU(ω) such that

M(iω) = UH(ω)diag({λi(ω)})U

where{λi(ω)} are eigenvalues ofM(iω) which are real
and satisfyλi(ω) ≤ 1. Therefore we can rewritẽW as

W̃ (iω) = diag({wi(iω)})UHdiag({λi})U

+diag
({

iωτi

1+iωτi/2

})

UHdiag({1 − λi})U,

where

wi(s) ,
τis

1 + τis/2
+

e−τis

τis(1 + τis/2)

τis + min{τi, 1}/2

2 max{τi, 1}
.

In fact the proof of Lemma 2 implies thatwi(s) is
positive real. Also it is easy to see that the function
τs/(1+τs/2) is positive real. By positive semidefiniteness
of the matricesUHdiag({λi})U andUHdiag({1− λi})U
and Lemma 3 it is straightforward that the matrix function
W̃ (s) is positive real. Hence the proof is completed.

Now by Popov’s criterion [15], [16] we finally reach the
conclusion:

Theorem 1: Along with the initial dynamics introduced
in Remark 2, the network optimization algorithm given by
(18) is globally asymptotically stable and thus satisfies all
the design principles proposed in Section II.

V. CONCLUSIONS

We have succeeded in designing a scalable and dis-
tributed algorithm for the network optimization problem
as promised at the beginning of the paper. We believe that
our definition of the problem reflects the real meaning of
the plug-and-play property for the network flow control
problem and to the authors’ knowledge our algorithm is
the first to achieve this goal: to obtain efficient and fair
bandwidth allocation for a network with the presence of de-
lays and with minimum extra communication cost. We also
believe that our approach presents a design methodology
from which people can create various algorithms to meet
different performance requirements while still maintaining
the basic plug-and-play property, and our algorithm is just
the simplest one in this class. Still many basic questions
must be solved. For example we have not yet dealt with the
case of time-varying delay. Also our analysis is based on
fluid models of flow control mechanisms so it is interesting
to see how to design real communication protocols based
on our algorithm. We will address these questions in our
future research.
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APPENDIX

PROOF OFLEMMA 4

Following the discussion in Section IV-B it is sufficient
to check whether

−1 /∈ c̄o(0 ∪ {g(iω, τ), ∀τ ≥ 0})

holds for everyω ≥ 0. Here we define

g(s, τ) ,
e−τs

τ2s2

τs + 1
2 min{τ, 1}

2 max{τ, 1}
.

The proof then breaks into the examination of the 3 parts
of the curveg(iω, τ) on the Nyquist plane for any fixed
ω. First we study the part of the curve after it crosses the
real axis for the first time. Then we study the situation of
the curve before it crosses the real axis, where the cases
whenτ ≤ 1 andτ > 1 are studied separately.

First by direct calculation we obtain that for fixedω the
first intersection ofg(iω, τ) with the real axis takes place at
τ0 = ω1/ω if ω < ω1, whereω1 ≈ 1.1656 is the solution
of the equation2ω = tanω, and τ0 = (arctan 2ω)/ω if
ω ≥ ω1. The location of the intersection is

−1/(2ωτ0 sin ωτ0 max{τ0, 1})
≥ −1/(2ω1 sin ω1) ≈ −0.4668.

The maximum value of imaginary part attained by the
curve g(iω, τ)max{τ, 1} with fixed ω is obtained by
maximizing

Img(iω, τ)max{τ, 1} =
sin ωτ

4ω2τ2
−

cosωτ

2ωτ
.

By numerical calculation the maximum value isvmax ≈
0.1824 whenωτ ≈ 2.5288. We can then show that the part
of the curveg(iω, τ) at whichτ ≥ τ0, or equivalently the
part after passing the real axis, lies below the affine lineL
defined by Imz = ω(Rez + 1), since the slope of the line
passing through -1 under which our curve lies is less than

vmax
“

1− 1

2ω1 sin ω1

”

max{τ,1}

< vmax
“

1− 1

2ω1 sin ω1

”

ω1

ω

≈ 0.2964ω.

Therefore the argument is valid.
Now let us inspect the part of the curve before passing

the real axis. There are 2 situations. Whenτ ≤ 1 the curve
can be written as

g(iω, τ) = −
e−iτω

τ2ω2

iτω + τ/2

2
= −

e−iτω

τω

(

i
1

2
+

1

4ω

)

.

We will show that in this situation the curve lies belowL.
By some manipulations this is equivalent to the following
inequality

2τω3 > (ω2 + 1) sin τω −
1

2
cos τω.
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One can verify that

h1(ω) , 2τω3 − (ω2 + 1) sin τω +
1

2
cos τω

is the integral of the following

h′
1(ω) = 6τω2 − τω2 cos τω − τ−1

2 cos τω
−(τ/2 + 2)ω sin τω

with respect toω. The above is greater than zero forτ ∈
[0, 1] since

h′
1(ω) > 5τω2−(τ/2+2)ω sin τω >

5

2
ω(τω−sin τω) > 0.

Sinceh1(0) = 1/2 > 0, h1(ω) = h1(0)+
∫ ω

0
h′

1(u)du > 0.
We then conclude that whenτ ∈ [0, 1] the curve lies below
the lineL.

In the other situation whenτ > 1 the curve can be
expressed as

g(iω, τ) = −
e−iτω

τ2ω2

iτω + 1/2

2τ
.

We will just consider the curve

g̃(iω, τ) = −
e−iτω

τ2ω2

iτω + 1/2

2
.

since the curvẽg lies above the curveg. Again by using
the simplifying notationθ = τω > ω and after some
algebraic manipulations, it suffices to show the validity
of the following inequality

4ωθ2 > ω(2θ sin θ + cos θ) + (sin θ − 2θ cos θ).

It is actually sufficient to check the above inequality when
θ = ω. So we will only need to show

4θ3 > (2θ2 + 1) sin θ − θ cos θ.

Similarly to the situation whenτ ≤ 1, we define a
function

h2(θ) , 4θ3 − (2θ2 + 1) sin θ + θ cos θ.

Its derivative is

h′
2(θ) = 12θ2 − 2θ2 cos θ − 5θ sin θ.

But

h′
2(θ) > 10θ2 − 5θ sin θ > 5θ(θ − sin θ) > 0,

and by h2(0) = 0, one obtainsh2(θ) = h2(0) +
∫ θ

0
h′

2(u)du > 0. Therefore we have shown that the curve
g̃ lies below the lineL whenτ > 1.

Combining all these results we have confirmed that for
any fixedω, the curveg(iω, τ) lies below the lineL for
all τ ≥ 0 and therefore the convex hull ofg(iω, τ) and 0
cannot contain the point -1 on the Nyquist plane.
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