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Abstract— Within the realm of network security, we inter-
pret the concept of trust as a relation among entities that
participate in various protocols. Trust relations are based on
evidence created by the previous interactions of entities within
a protocol. In this work, we are focusing on the evaluation of
trust evidence in Ad Hoc Networks. Because of the dynamic
nature of Ad Hoc Networks, trust evidence may be uncertain
and incomplete. Also, no pre-established infrastructure can
be assumed. The evaluation process is modelled as a path
problem on a directed graph, where nodes represent entities,
and edges represent trust relations. We develop a novel
formulation of trust computation as linear iterations on
ordered semirings. Using the theory of semirings, we analyze
several key problems on the performance of trust algorithms.
We also analyze the resilience to attacks of the resulting
schemes.

I. TRUST - DEFINITION - MOTIVATION

The notion of trust, in the realm of network security,
will for our purposes correspond to a set of relations
among entities that participate in a protocol. These rela-
tions are based on the evidence generated by the previous
interactions of entities within a protocol. In general, if
the interactions have been faithful to the protocol, then
trust will “accumulate” between these entities. Exactly how
trust is computed depends on the particular protocol (ap-
plication). The application determines the exact semantics
of trust, and the entity determines how the trust relation
will be used in the ensuing steps of the protocol. Trust
influences decisions like access control, choice of public
keys, etc. It could be useful as a complement to a Public
Key Infrastructure (PKI), where an entity would accept
or reject a public key according to the trustworthiness of
the entities that vouch for it (i.e. have signed a certificate
for it) – this is the idea behind PGP’s Web of Trust [3].
It can also be used for routing decisions: Instead of the
shortest path, we could be looking for the most trusted
path between two nodes (this has been already proposed
in P2P networks [4]).

In this work we model and analyze trust schemes
for mobile ad hoc networks (MANET). Ad Hoc net-
works are envisioned to have dynamic, sometimes rapidly-

changing, random, multihop topologies which are com-
posed of bandwidth-constrained wireless links. The nodes
themselves form the network routing infrastructure in an
ad hoc fashion [5]. Based on these characteristics, we are
imposing the following constraints on our schemes:

First, there is no preestablished infrastructure. The com-
putation process cannot rely on, e.g., a Trusted Third
Party. There is no centralized Public Key Infrastructure,
Certification Authorities, or Registration Authorities with
elevated privileges.

Second, evidence is uncertain and incomplete. Uncer-
tain, because it is generated by the users on the fly, without
lengthy processes. Incomplete, because in the presence
of adversaries we cannot assume that all friendly nodes
will be reachable: the malicious users may have rendered
a small or big part of the network unreachable. Despite
the above, we require that the results are as accurate as
possible, yet robust in the presence of attackers. It is
desirable to, for instance, identify all allied nodes, but it is
even more desirable that no adversary is misidentified as
good.

In this work we do not assume the existence of any
globally trusted entity: on the contrary, everything is up
to the individual nodes of the network. They themselves
sign certificates for each other’s keys, and they themselves
have to judge how much to trust these certificates and,
essentially, their issuers.

The specification of admissible types of evidence, the
generation, distribution, discovery and evaluation of trust
evidence are collectively called Trust Establishment. In this
work, we are focusing on the evaluation process of trust
evidence in Ad-Hoc Networks, i.e. we are focusing on the
trust metric itself. In particular, we are not dealing with
the collection of evidence from the network, and the ac-
companying communication and signaling overhead. This
issue is important, and obviously needs to be addressed in
a complete system.

Trust computation is the application of a metric to a
body of evidence. This evidence is based on interactions
of users within a network, and the result of the computation
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(“trust”) is a quantitative belief of Useri about Userj’s
behavior (i.e. is Userj trustworthy according to Useri?).

For example, assume we have a wireless network where
users are supposed to forward data they receive. An
interaction in this setting would play out as follows: Useri
sends a packet to his neighbor. The neighbor has the choice
to either forward the packet (as he is supposed to), or drop
it (since he may not want to waste his energy). This choice
is observed by Useri, and counts either as a Good or as a
Bad interaction, respectively. Repeated interactions of this
type build up the previously mentioned evidence, which
will be calleddirect opinions.

The trust computation will computeindirect opinions,
that is, opinions of a user for others with which he has
had no previous direct interaction. The idea is to take
advantage of the interactions (and thus the direct opinions)
that intermediate users have had with each other.

II. T RUST AS A PATH PROBLEM

We treat the trust computation problem as a general-
ized shortest path problem on a weighted directed graph
G(V,E) (trust graph). The vertices of the graph are the
users/entities in the network. A weighted edge from vertex
i to vertexj corresponds to theopinion that entity i has
about entityj. The weight function isw(i, j) : V ×V −→
S, whereS is the opinion space. The setS and the precise
semantics of opinions are parameters of the model and can
differ according to the application.

Assume that Users wants to compute the trustworthi-
ness of Userd. So,s will ask the people he knows (i.e. has
an opinion about) and they will tell him their opinion about
d, or they will ask the users they know, etc., until persons
with a direct interaction withd are found. Formally, all
the direct information that exists about the destinationd,
is contained in the weighted, directed edges that point to
d. On the other hand, all the direct information thats has
about the rest of the network is contained ins’s outgoing
edges. In effect,s knows about the rest of the network
only through his one-hop trust neighbors. Therefore,all
information aboutd that s can use is contained in the
paths froms to d. For example, edges pointing tod (or,
in general, directed paths tod) that are not reachable from
s are useless, and edges pointing out froms that are not
on directed paths froms to d are dead ends. This is the
starting observation of this work, and the reason why the
subsequent model was chosen: because it fits the path-
based nature of the problem.

Along each path, concatenation of opinions occurs: Ifs
has opinionws1 about 1, and 1 has opinionw12 about 2,
thens can form an indirect opinionws2 about 2 that is a
function of ws1 andw12 (denoted byws1 ⊗w12). If there
are multiple paths froms to d, then indirect opinions from
each path are aggregated to form the overall opinion ofs
for d (denoted bytsd = tp1

sd ⊕ tp2

sd ⊕ · · · ⊕ tpn

sd , where the
pi’s are the paths froms to d.).

We have mentioned two operations: one is thecon-
catenationof opinions along a path and the other is the

Fig. 1. Concatenation of opinions

Fig. 2. Aggregation of opinions

aggregationacross paths.
These operators, along with the carrier setS, form a

semiring(S,⊕,⊗):

• ⊕ is commutative, associative, with a neutral element
0© ∈ S.

• ⊗ is associative, with a neutral element1© ∈ S, and
0© as an absorbing element.

• ⊗ distributes over⊕.

In addition, the ordering relations described in Figures
1 and 2, regarding concatenation of trust along a path and
aggregation of trust across paths, above, introduce a partial
order over our semiring, and thus the semiring we are
considering isan ordered semiring[6].

The semiring property is very desirable because it fits
the path-based nature of the problem: many other path
problems can be expressed as semiring computations [6].
For example, suppose the edge weights are transmission
delays, and we want to compute the least delay path from
i to j. The semiring to use is (ℜ+ ∪ {∞},min,+), i.e.⊕
is min, and⊗ is +: The total delay of a path is equal to
the sum of all constituent edge delays, whereas the shortest
path is the one with minimum delay among all paths. Also,
0© is ∞, and 1© is 0. On the other hand, if edge weights
are link capacities, then the maximum bottleneck capacity
path is found by the semiring(ℜ+∪{∞},max,min), with
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0© ≡ 0, 1© ≡ ∞. Then, the resultdij is equal to the
maximum rate of traffic thati can send toj along a single
link. The transitive closure of a graph uses the Boolean
semiring:({0, 1},∨,∧), where all edge weights are equal
to 1. This answers the problem of path existence fromi to
j, i.e. dij = 1 if and only if there exists ani −→ j path.

We now look at the expected trust behavior of the
operators.

• First, we don’t want B to be able to increase A’s trust
in C beyond A’s trust in B. For instance, assume A
trusts B only moderately, and B trusts C a lot. Then
it makes sense that A’s trust in C is also moderate,
since A has only B’s word to count on. In general,
concatenation should not increase trust. Note that the
total opinion along a path is “limited” by the source’s
opinion for the first node in the path.

• Second, it is better to have multiple independent
opinion paths to the destination. In principle, the more
independent information there is, the better decision
the source can reach. For example, path independence
in Public Key Authentication has been argued in [2].
In order to quantify this case, we require the aggrega-
tion operator to increase something about the resulting
opinion. However, trust cannot increase. If, say, there
are multiple opinions all saying that the destination is
untrustworthy, then obviously the source’s aggregate
opinion should be along these lines. So, for our own
semiring we introduce an extra parameter (or better
metric) called confidencewhich is what increases
when we have multiple paths.

Thus the setting and formalism we have introduced for
trust computation is more along the lines of multicriteria
(or multi metrics) computation within an ordered semiring
[6].

A. Our Semiring

Each opinion consists of two numbers: thetrust value,
and theconfidencevalue. The former corresponds to the
issuer’s estimate of the target’s trustworthiness. For ex-
ample, a high trust value may mean that the target is an
ally (in a military setting), or that the target has been
honest in his past business transactions, or that a digital
certificate issued for the target’s public key is believed
to be correct. On the other hand, the confidence value
corresponds to the accuracy of the trust value assignment.
A high confidence value means that the target has passed
a large number of tests that the issuer has set, or that the
issuer has interacted with the target for a long time, and
no evidence for malicious behavior has appeared. Since
opinions with a high confidence value are more useful in
making trust decisions, the confidence value is also referred
to as thequality of the opinion.

In our semiring, the opinion space isS = [0, 1] × [0, 1]
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Fig. 3. ⊗ and⊕ operators

Our choice for the⊗ and⊕ operators is as follows (Fig. 3):

(tik, cik) ⊗ (tkj , ckj) = (tiktkj , cikckj) (1)

(tp1

ij , cp1

ij ) ⊕ (tp2

ij , cp2

ij ) =







(tp1

ij , cp1

ij ) if cp1

ij > cp2

ij

(tp2

ij , cp2

ij ) if cp1

ij < cp2

ij

(t∗ij , c
p1

ij ) if cp1

ij = cp2

ij

,(2)

where(tp1

ij , cp1

ij ) is the opinion thati has formed aboutj
along the pathp1, andt∗ij = max(tp1

ij , tp2

ij ).
We can verify by direct substitution that the neutral

elements for this semiring are:0© = (t, 0), for any t, and
1© = (1, 1).

III. T RUST AS A SYSTEM OF EQUATIONS- ATTACKER

GAME

We have seen that what we want to compute is the
following semiring-summation over all the pathsp from
s to d.

tsd =
⊕

p

tpsd
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We can break up these paths according to their last link,
and so we get:

tsd =
⊕

k∈Nd

tsk ⊗ w(k, d)

whereNd are the in-neighbors ofd: the users that have a
direct opinion aboutd. If we now letd vary over the set of
all users,tsd becomes a vector, and we can write a vector
equation:

~t = ~tW (3)

whereW is the matrix of direct opinions. So, the result
of the trust computation for Users (s’s indirect opinions
about everybody else), is the eigenvector ofW associated
with 1© (the neutral element for⊗, which in our semiring
is also the maximum element).

It is natural to expect that each user will have the
maximum direct opinion about himself, i.e.∀i, w(i, i) =
(1, 1) = 1©. Notice that the vector~t also includes the
indirect opinion of Users about himself, which we intu-
itively expect to be 1© . This is guaranteed through setting
w(i, i) = 1©.

So, we have formulated the problem of computing indi-
rect opinions as an eigenvector problem. Perron-Frobenius
theory for semirings (see e.g. Baccelli, Cohen, Olsder, and
Quadrat [1, Thm 3.23]) tells us that ifW is irreducible (i.e.
the graph is strongly connected, which we assume here),
then there exists exactly one eigenvalue, but possibly many
eigenvectors. This eigenvalueλ is equal to the maximum
mean circuit weight of the graph. Using semiring operators
this is written as

λ =

n
⊕

j=1

(trace(Aj))
1

j

and in our semiring it would correspond to the geometric
mean of a path’s weights.

Using Theorem 3.101 from [1]:
Theorem 1:Given a matrix A with maximum circuit

weight 1© , any eigenvector associated with the eigenvalue
1© is obtained by a linear combination ofN c

A columns of
A+, whereN c

A denotes the number of strongly connected
components ofGc(A) (the critical graph ofA, equal
to the union of the critical circuits). In particular, each
column corresponding to a node in the critical graph is
an eigenvector, and columns corresponding to nodes in
separate components are “linearly independent”.
we have a characterization of the set of eigenvectors
associated with the eigenvalue1© . The critical circuits
are the circuits ofW that have maximum mean weight
(equal toλ), and the matrixW+ = W ⊕W 2 ⊕ . . .. Since
Wii = w(i, i) = 1©, and 1© is the maximum opinion
value, the self loopsi  i are critical circuits. Other
critical circuits would have to consist exclusively of direct
opinions equal to 1© , i.e. a cycle of userscompletely
trusting each other, which we assume is not the case. The
union of the critical circuits is a graph with one strongly

connected component per user, so using the theorem above
we see that there is one independent eigenvector per user.

These eigenvectors all have eigenvalue equal to1© , so
in principle they could all fit (3). But for eachs, there is
only one eigenvector that gives an indirect opinion abouts
equal to 1© . That is the eigenvector equal to rows of the
matrix W+. It is a row and not a column ofW+, because
we definedWij = w(i, j) to be equal to the direct opinion
of i aboutj. In [1], Aij is the weight of the edgej → i.

The matrixW+ is in general an infinite sum, so there are
issues of convergence. In our case, convergence is not only
guaranteed, but it happens in a finite number of steps. The
reason is that there are no circuits with weights (see also
[1, Thm 3.20]) greater than1© , so by including cycles in
our path computations, we do not increase the computed
trust values. This situation is identical to a shortest path
problem with no cycles of negative length.

The number of steps required for convergence is at most
equal to the total number of users in the network. This is
the case because the partial sum up to thek-th power gives
the maximum path weights fromi to j among thek-link
paths. Since no maximum path contains a cycle (except
the trivial self-loops), no maximum path can have more
links than the number of users. This is independent of the
topology, assuming, of course, that the graph is strongly
connected.

Suppose now that there exists an Attacker who wants
to manipulate the trust computation, i.e. cause Users to
compute false opinions about others. The Attacker can
change the opinion on a single edge, which would amount
to tricking a user into issuing a false opinion, or creating
a forged opinion. We want to see what is the maximum
damage the Attacker can cause. This is equivalent to asking
what single entry change in the matrixW causes the
largest change in the eigenvector. The Attacker causesW
to becomeW ∗, so t becomest∗. The damage is equal to
||t− t∗||, where|| · || is a suitable (e.g. theL1 or theL∞)
norm.

In what follows we limit our attention to a particular pair
s-d. We will examine which edge the Attacker will attack,
and characterize the resilience of thes-d trust computation
to such single edge attacks.

The problem just described is very similar to computa-
tion of tolerances for edges of a network. In short, ifp∗ is
an optimal path froms to d, the upper (lower) tolerance of
an edgee with respect top∗ is the largest (smallest) weight
of edgee that preserves the optimality ofp∗. The most
vital edge is defined as the edge that, if deleted, causes
the greatest deterioration in the optimal path weight. Our
main reference is the work by Ramaswamy, Orlin, and
Chakravarti [13]. We will describe their results, and then
unify and generalize them.

For a concrete example, we will use (as in [13]) the
shortest path problem in an undirected graphG = (V,E)
with nonnegative weightscij ≥ 0, (i, j) ∈ E. Let p∗ be
a shortest path froms to d, s, d ∈ V , and upper/lower
tolerances also defined as above. Intuitively, an Attacker
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that wants to increase the shortest path weight will neces-
sarily delete an edge onp∗. Deleting is always worse than
merely increasing the weight of the edge, and deleting an
edge off the path has no effect on the optimal weight.
But it makes a difference which of the edges the Attacker
will delete, since the respective new shortest paths will in
general differ. The worst edge is the one that is, in a sense,
“harder” to replace; hence the name “most vital edge”. The
most vital edge turns out to be the edge with the largest
upper tolerance.

The results of [13] for the tolerances of edges in the
shortest path problem are summarized below (Corollary
1 in [13]), whereαe is the lower tolerance of edgee,
and βe the upper,de←x(s, d) is the shortests  d path
weight when the weight of edgee is x, andc(p∗), ce are
the weights of the pathp∗ and edgee, respectively.

Theorem 2 (Shortest Path Tolerances):Let p∗ be a
shortest path inG = (V,E).

1) If e ∈ p∗, then
• αe = 0, and
• βe = de←∞(s, d) − c(p∗) + ce.

2) If e /∈ p∗, then
• αe = c(p∗) − de←0(s, d), and
• βe = ∞.

In the same paper, the authors also address tolerances in
the context of, as they name it, problems with bottleneck
objectives. In these problems, as we have discussed in
Section II, the edge weights represent link capacities, and
we are looking for ans  d path whose bottleneck
(minimum capacity link) is the maximum. Their results
are summarized below (Corollary 2 in [13]), whereGe←x

is the graphG with the weight of edgee changed tox,
v(G) is the maximum capacity path weight inG, andc(p∗)
is now the bottleneck capacity ofp∗.

Theorem 3 (Maximum Capacity Tolerances):Let p∗ be
a maximum capacity path inG = (V,E).

1) If e ∈ p∗, then
• αe = v(Ge←−∞).
• If p∗ is a maximum capacity path inGe←∞,

thenβe = ∞.
• If p∗ is not a maximum capacity path inGe←∞,

thenβe is the minimum capacity of an edge of
p∗ \ e.

2) If e /∈ p∗, then
• αe = −∞.
• If p∗ is a maximum capacity path inGe←∞,

thenβe = ∞.
• If p∗ is not a maximum capacity path inGe←∞,

thenβe = c(p∗)
The authors treat these problems as different, but we

will now show that they can be described within the
same framework, as soon as we realize that they are both
semiring path problems. Our main result is the following:

Theorem 4 (Semiring Tolerances):Let OPT ∗ be the
set of ⊕-optimal paths inG = (V,E). Instead of lower
and upper tolerances,αe and βe now mean⊕-minimal

and⊕-maximal values of an edgee ∈ E that preserve the
⊕-optimality of some path inOPT ∗.

1) If ∃p∗ ∈ OPT ∗ : e ∈ p∗, then

• αe =









⊕

p:s d
w(e)← 0©

w(p)









⊘ w(p∗ \ e). Moreover,

if ∃p∗ ∈ OPT ∗ : e /∈ p∗, thenαe = 0©.
• βe = 1©.

2) If ∄p∗ ∈ OPT ∗ : e ∈ p∗, then

• αe = 0©. It suffices that∃p∗ ∈ OPT ∗ : e /∈ p∗.

• βe = w(p∗) ⊘









⊕

p:s d
w(e)← 1©

w(p)









The operator⊘ is the inverse of⊗. Since we are dealing
with semirings,⊘ may not always be defined, as in the case
of ⊗ = min. In these cases,a = b⊘ c means thata, b, and
c are such that the equalitya⊗ c = b holds. We can verify
by substitution that Theorem 4 holds for the two specific
problems mentioned above.

The benefit of this generalization is that we can directly
apply it to semirings where⊕ is max or min, i.e. where
there is some optimization involved. Our trust semiring is
(⊕,⊗, 0©, 1©) = (max, ·, 0, 1), so we can directly apply
Theorem 4. Lower tolerance isαe, upper tolerance isβe.

1) If ∃p∗ ∈ OPT ∗ : e ∈ p∗, then

• αe = w(e)
w(p∗) ·

(

maxw(e)←0 w(p)
)

. Moreover, if
∃p∗ ∈ OPT ∗ : e /∈ p∗, thenαe = 0.

• βe = 1.

2) If ∄p∗ ∈ OPT ∗ : e ∈ p∗, then

• αe = 0. It suffices that∃p∗ ∈ OPT ∗ : e /∈ p∗.

• βe =
w(p∗)

maxw(e)←1 w(p)

If the user d, for which s is computing the indirect
opinion, is a good user, then the Attacker will want to
reduce the computed opinion. In that case, the link to be
attacked is the one with the smallest lower toleranceαe.
The attack will consist of setting the weight of the edge at
0. If, on the other hand,d is a bad user, then the Attacker
will try to increase the computed indirect opinion. So, he
will attack the edge with the largest upper tolerance, and
set its weight to 1.

The mathematical techniques we use come from ex-
tensions of Perron Frobenius theory over semirings and
ordered semirings, eigenvectors of monotone functions,
and idempotent semirings, for which the interested reader
can consult the following references [6], [7], [8], [9], [10],
[11].

IV. CONCLUSION

We have presented a trust computation framework, and
linked its properties to properties of mobile ad-hoc net-
works. The mathematical foundation for the computation
is the theory of semirings and matrix iterations over them.
We have shown what the canonical issues of the theory
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(eigenvectors, convergence, speed of convergence) mean
for our application. We have also generalized previous
work on edge tolerance computation and used it to compute
the attack resilience of the trust computation.
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