VOLUMET OF HI

ADVANCED EQUIPMENT CONTROL / ADVANCED PROCESS CONTROL PROCEEDINGS VOLUME I

AEC/APC SYMPOSIUM XII Volume I

September 23-28, 2000 Caesars, Lake Tahoe, Nevada

UNDERWRITERS

CONTRIBUTORS

HITACHI

STUDENT PAPER SPONSORS

The Set-Valued Run-to-Run Controller With Ellipsoid Approximation

... Chang Zhang, Hao Deng and John S. Baras

Department of Electrical and Computer Engineering, University of Maryland at College Park, College Park, MD, 20742

Motivations

- Robustness. Traditional run-to-run (RtR) control methods neglect the importance of robustness due to the estimation methods they use. We want to find a new RtR controller which can identify the process model in the feasible parameter set which is insensitive to noises, therefore the controller can be robust.
- Fast convergence. The new RtR controller should be able to track the changing process quickly.
- Noises discerning ability. It can discern different noises such as shifts (step disturbances) or drifts.

Introduction of the Set-valued Method

- Due to the existence of noises, it is difficult to accurately estimate the process models, what we can be sure is a set that the model parameters reside in.
- We want to find a "good" and "safe" estimate of the process model within this set.
 - "Good" means that the estimated model is close to the underlying real model in mean square sense;
 - "Safe" means that the estimated model is insensitive to noises.
- Applications: Optimal control, image processing, system identification, and spectral estimation, etc.

Why Ellipsoid

- The main difficulties of the set-valued method lie in:
 - The excessive computational time required to calculate the feasible sets. It is hard to describe these sets with explicit formulas, because they can be very irregular.
 - Solving the optimization problem within these sets.
- It is nature to use ellipsoids to approximate these sets.
- Advantages of the ellipsoid approximation:
 - An ellipsoid is characterized by a vector center and a matrix, which is easy to calculate;
 - For convex or almost convex regions, ellipsoids can be used to obtain a satisfactory approximation;
 - Linear transformations map ellipsoids into ellipsoids.

Find the Minimum Ellipsoid

- The minimum ellipsoid bounding the feasible parameter sets is desired.
- Two main ellipsoid schemes available:
 - The Optimal Volume Ellipsoid (OVE) algorithm by M. F. Cheung, etc in 1991 [1].
 - The Optimal Bounding Ellipsoid (OBE) algorithm by Fogel and Huang in 1982 [2].
- Differences between the two ellipsoid schemes:
 - The derivation of the OVE algorithm is based on a geometrical point of view.
 - The OBE algorithm uses a recursive least square type scheme to update the ellipsoid.

Estimate the Model within the Ellipsoid

- The center of the ellipsoid is a good and safe estimate of the process model in general (Shown in the figure).
- Point B is not a good estimate, since it can easily fall out of the feasible parameter set.
- There are some other schemes to estimate the process model parameters like the worst-case approach [3].

Modify the OVE Algorithm

- The OVE algorithm can not track fast changing processes.
- The Modified OVE (MOVE) algorithm works for fast changing processes. The procedure is shown by the following figure.
- The MOVE algorithm can deal with various disturbances including large step disturbance, drifts, etc.
- We will focus on the MOVE algorithm later on.

Formulation of the MOVE Algorithm

Given a linear-in-parameter system, we can rewrite it as:

$$y_k = X_k^T \theta_k + \eta_k \tag{1}$$

• For example:

$$y_k = c_{1,k} + c_{2,k}u_{1,k} + c_{3,k}u_{2,k} + c_{4,k}u_{3,k} + c_{5,k}u_{1,k}u_{2,k} + c_{6,k}u_{3,k}^2 + \eta_k$$

can be rewritten as the form of equation (1), with

$$X_{k} = \begin{bmatrix} 1, u_{1,k}, u_{2,k}, u_{3,k}, u_{1,k}u_{2,k}, u_{3,k} \end{bmatrix}^{T}, \quad \theta_{k} = \begin{bmatrix} c_{1,k}, c_{2,k}, c_{3,k}, c_{4,k}, c_{5,k}, c_{6,k} \end{bmatrix}^{T}$$

• Let the noise bound be γ , the feasible parameter set is:

$$F_k = \{\theta_k : \left| y_k - X_k^T \theta_k \right| < \gamma\}$$

The MOVE Algorithm

• The MOVE algorithm calculates the ellipsoid E_k:

$$E_k = \min\{vol(E)\}, \text{ s.t. } E \supset F_k$$

- If the disturbance exceeds certain threshold, then the ellipsoid center θ_k and size P_k are updated.
- For detail of the MOVE algorithm, please refer to [4].
- An expanding matrix F is added in the MOVE algorithm. It is used to track fast changing processes.

$$P_{k} := P_{k} + F = P_{k} + \begin{bmatrix} F(1,1) & 0 & 0 & \dots & 0 \\ 0 & F(2,2) & 0 & \dots & 0 \\ 0 & 0 & \ddots & 0 & \vdots \\ \vdots & \vdots & 0 & \ddots & 0 \\ 0 & \dots & \dots & 0 & F(n,n) \end{bmatrix}$$

Structure of a Set-valued RtR Controller with Ellipsoid Approximation

Procedures of the SVR-MOVE Controller

- The set-valued RtR controller using the MOVE algorithm will be called the SVR-MOVE controller.
- Procedures: *
 - Step 1: Initialize model, cost function & recipes;
 - Step 2: Setting targets & constraints;
 - Step 3: Setting the controller parameters;
 - Step 4: Generating recipes by the process model to minimize the cost function;
 - Step 5: Measure outputs, update process model if necessary;
 - Step 6: Go to Step 4.

Parameter Selection of the SVR-MOVE Controller

- The threshold for judging drifts and shifts. It is usually equal to 3 times of the estimate of the noise variance.
- The expanding matrix F. The most important parameter of F is F(1,1). It is related to the drift disturbance directly.
- The noise bound γ . It should be set a small value. Usually the range [0.01-0.05] is good.

Mean Square Errors (MSEs) with Respect to F(1,1)s

- The figures are based on simulation of low pressure chemical vapor deposition (LPCVD) furnace process.
- Two targets R_1 and R_2 are controlled.
- No other noises.
- Small F(1,1)s will have large MSEs.

MSEs When F(1,1)s are Fixed, White Noises are Added

$$F1(1,1)=F2(1,1)=10^{-6}$$

Comments about Value Selection of the Expanding Matrix F

- Trade-off in the selection of values of F(1,1).
 - The larger the F(1,1), the stronger the ability to compensate the drift disturbance.
 - However, since F expands the ellipsoid at each run, it increases the size of the ellipsoid, which affects the estimation quality.
- It is safe to let the other parameters F(i,i), i=2,..., in F to be infinite small compared to F(1,1), since they are related to higher order terms.
- When no drifts exist, it is nature to let F=0.

Simulation 1. An Almost Linear Photoresist Process I

The process model [5] is:

$$T = -13814 + \frac{2.54 \cdot 10^6}{\sqrt{SPS}} + \frac{1.95 \cdot 10^7}{BTE\sqrt{SPS}} - 3.78BTI - 0.28SPT - \frac{6.16 \cdot 10^7}{SPS} + d \cdot k + w$$

- Inputs: SPS is the spin speed, SPT the spin time, BTI the baking time, and BTE the baking temperature. They are constrained to: 4500<SPS<4700; 15<SPT<90; 105<BTE<135; 20<BTI<100 respectively.
- Output: T, the resist thickness.
- Noises: d is equal to -0.3, w is Gaussian with variance 9.
- K: Run number

Photoresist Process I Controlled by the SVR-MOVE Controller

- The target is 12373.621.
- The three straight dashed lines in the figure are the +3σ, target and -3σ lines respectively.
- The uncontrolled process diverges
- The controlled process stays in the 3 σ region satisfactorily.

Photoresist Process I without White Noises

- · Only drift noise exists.
- The uncontrolled process diverges as a straight line.
- The controlled stays very close to the target.
- It proves the effectiveness of the controller to deal with drift.

Simulation 2. A full Second-order Nonlinear Photoresist Process II

The process model [5] is:

 $R = 1344 - 0.046SPS + 0.32SPT - 0.17BTE + 0.023BTI - 4.34 \cdot 10^{-5} \cdot SPS \cdot SPT + 5.19 \cdot 10^{-5} \cdot SPS \cdot BTE - 1.07 \cdot 10^{-3} SPT \cdot BTE + 5.15 \cdot 10^{-6} \cdot (SPS)^{2} - 4.11 \cdot 10^{-4} \cdot SPT \cdot BTI + d \cdot k + w$

- Inputs: Same as in photoresist process I.
- Output: R, the reflectance in percentage.
- · Noises: Same as in photoresist process I.
- The target is fixed at 39.4967%.

Photoresist Process II Controlled by the SVR-MOVE Controller

- The uncontrolled process diverges.
- Most of the time the controlled process stays in the ±3σ area.
- It shows the ability of the SVR-MOVE controller to control non-linear processes.

Simulation 3. Photoresist Process I with Large Model Error

• The process model is:

The process model is:

$$y_k = -13814 + \frac{2.54 \cdot 10^6}{\sqrt{SPS}} + \frac{1.95 \cdot 10^7}{BTE\sqrt{SPS}} - 3.78BTI - 0.28SPT - \frac{6.16 \cdot 10^7}{SPS} + d \cdot k + v_2 + v_3 + v_3 \times v_4$$

- Inputs: Same as before.
- Output: yk.
- Noises.
 - d is defined the same as before.
 - $-v_2$ is the product of two Gaussian random variables.
 - $-v_3$ is a random variable with uniform distribution.
 - $-v_4$ is a Gaussian variable too.

Photoresist Process I with Large Model Error

- There is a large model error at the beginning.
- A large step disturbance occurs at run 30.
- The output still stays close to the target.
- It shows the ability of the controller to deal with large model errors, large disturbance and multiple noises.

Summary

- The set-valued RtR controller with ellipsoid approximation gives a safe and good estimate of the process model in a minimum volume ellipsoid, which bounds the feasible parameter set.
- The SVR-MOVE controller is easily applicable to various semiconductor processes.
- The SVR-MOVE controller is robust, and it can deal with large model errors, large disturbance and multiple noises.
- In the parameter selection of the SVR-MOVE controller, further theoretical analysis is still needed.

References

- [1] M. F. Cheung, etc, "An optimal volume ellipsoid algorithm for parameter set estimation", Proc. 30th Conference on Decision & Control, 1991.
- [2] E. Fogel, etc, "On the value of information in system identification-bounded noise case", Automatica, 1982.
- [3] J. S. Baras, etc, "Designing response surface model-based run-by-run Controllers: A worst case approach", IEEE Trans. Components, Packaging & Manu. Tech., 1996.
- [4] C. Zhang, etc, "The set-valued RtR controller with ellipsoid approximation", technical report, UMCP, 2000.
- [5] S. Leang, etc, "Statistically based feedback control of photoresist Application", IEEE/SEMI Advanced Semi. Manu. Conference, 1991.