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Slyé:ér'ns THE NEXT FRONTIER IN P

ENGINEERING RESEARCH AND EDUCATION

* First 25 years of the 21st century will be dominated by advances in methods and tools
for the synthesis of complex engineered systems to meet specifications in an adaptive
manner

* Evident from the areas emphasized by governments, industry and funding agencies
world-wide:

— energy and smart grids — environment and sustainability

— biotechnology — intelligent buildings and cars

— systems biology — customizable health care

— nanotechnology — pharmaceutical manufacturing
innovation

— the new Internet — broadband wireless networks

— collaborative robotics — sensor networks

— software critical systems — transportation systems

— homeland security — security-privacy-authentication
in wireless networks

— materials design at sub-molecular — cyber-physical systems

level

— network science — web-based social and economic

networks

Copyright © John S. Baras 2011



Systems THE NEXT FRONTIER IN @
ENGINEERING RESEARCH AND EDUCATION (CONT.)

* Encounter frequently system of systems

* Complexity manifests itself through heterogeneity of
subsystems and components

* The synthesis of complex engineered and other systems from
components so as to meet specifications and the associated
education represent the next frontier in engineering research
and education

* |tis the frontier that will determine the next generation
leaders among Universities and industry

Copyright © John S. Baras 2011 5
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THE CRITICAL ROLE OF IT

* Possible to undertake a successful research and education
program to accomplish this vision is IT -- namely networked
embedded systems

 Through embedded systems the heterogeneity of the various
physical components is translated into a common language
where design can be integrated

* Networked embedded systems have revolutionized cars,
networks, energy, biology and many other fields; at scales
from nano to macro

* |Implied programmability and re-programmability has
immense consequences

Copyright © John S. Baras 2011
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Aeronautics

AND CPS SEI

Building
Elevators automation
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Research TRYLAS

With the exception of VLSI and (partly) embedded systems design,
design and synthesis methodologies at the system level emphasize in
an unbalanced way System Behavior (dynamics, functionality)

What is missing is System Structure! 7 system Syatera
Namely, the system components and their Behavior Architecture

physical realizations; “the platform”

Behavior

. . . . . Mapping
“Platform-Based design” is a simple example Rkl i

€
Py . . . Performance
Systems Engineering is much harder than Simulation
Software Engineering, because the design Communication
rules predicated by the physics of RIS y
implementation (electrical, chemical, Flow To Implementation

mechanical, hybrid, etc.) must be satisfied.

Physics of implementation must be also selected: Multi-physics models
and design

Copyright © John S. Baras 2011 8
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Helping over 30 different teams and skills in
the company work together

Linking over 40 different EE design
representations throughout the entire
development process

Ensuring that the EE design flow is integrated
at the same level of quality and
performance as the 3D CAD system

Model based design and executable
specification in the OEM/supplier chain

Albert Benveniste -- INRIA
Copyright © John S. Baras 2011 9
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CAD models

Helping over 30 different teams and skills in
the company work together

ol [=x]
Linking over 40 different EE design -
representations throughout the entire e — ,
development process i T o e :
o ] [, Lo
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Ensuring that the EE design flow is integrated e 7 oo
at the same level of quality and

performance as the 3D CAD system - . ]
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Model based design and executable ] Sl H
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specification in the OEM/supplier chain — e

Albert Benveniste -- INRIA
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Multi-Physics models

Helping over 30 different teams and skills in
the company work together

Linking over 40 different EE design
representations throughout the entire
development process

Ensuring that the EE design flow is integrated
at the same level of quality and
performance as the 3D CAD system

Model based design and executable
specification in the OEM/supplier chain

Albert Benveniste -- INRIA
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Sysems Virtual Engineering Everywhere
Embedded Software

Helping over 30 different teams and skills in
the company work together

o PloLvsw - SCADE - [[FightSimadations:Fightsien (FightSemdation: Fighisin)]]

Linking over 40 different EE design
representations throughout the entire
development process

Ensuring that the EE design flow is integrated
at the same level of quality and
performance as the 3D CAD system

Model based design and executable
specification in the OEM/supplier chain

Albert Benveniste -- INRIA
Copyright © John S. Baras 2011 12
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Model Integration Challenge: Physics "

Heterogeneity of Physics

(S HOBBYIWERL

Electrical Mechanical Hydraulic Thermal
Domain Domain Domain Domain

Theories, Theories, Theories, Theories,
Dynamics, Dynamics, Dynamics, Dynamics,
Tools Tools Tools Tools

Physical components are involved in multiple physical interactions (multi-physics)
Challenge: How to compose multi-models for heterogeneous physical components

Janos Sztipanovits — Vanderbilt Un.
Copyright © John S. Baras 2011 13



Model Integration Challenge:
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tescarch Abstraction Layers i

Dynamics: B(t) =, (B, (1),..., B; (1))

 Properties: stability, safety, performance

» Abstractions: continuous time, functions,
signals, flows,...

Plant Dynamics Controller
Models - Models

Physical desidn

Software Software Software :  B(i) =x.(B, (i),.... B ()
Architecture K= Component * Properties: deadlock, invariants,
Models Code security,...

 Abstractions: logical-time, concurrency,

Software design atomicity, ideal communication,..

I
®
~
o
=
o
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o
>
o
=
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*
>
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System Resource Systems : B(t;) =x,(B, t),..., B, (1))
Architecture (=1 Management * Properties: timing, power, security, fault
Models Models tolerance

System/Platform Design - Abstractions: discrete-time, delays,

resources, scheduling,

Cyber-physical components are modeled using multiple abstraction layers
Challenge: How to compose abstraction layers in heterogeneous CPS components?

Janos Sztipanovits — Vanderbilt Un. Copyright © John S. Baras 2011 14
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Available

Information
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COMPONENT- BASED SYSTEM SYNTHESIS B A
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Integrated System Synthesis - Tools Model - based
UML - SysML
Rapsody
Iterate to Find a Feasible Solution / Change as needed UPI_DAAL SORE BE TeRleE
Artist Tools _ _
Change structure/behavior model as needed MATLAB, MAPLE : ObJeCt Orlented
DOORS, etc beyond
pDefine OPCAD * Automata, _
Effectivencss CPLEX, SOLVER, languages, design
Measures ILOG rules
» Trade-off analysis
i A S v S e and multi-objective
Behavior /iuc_)tcatetu TPradfOf_f > ik optimization
Requirements Analysis Test Plan
» Testing, validation,
behaviors
Sreate * Logic _
Model Eenerate programming and
derivative Model-Based optimization

Integrated Multiple
Views is Hard !

metric

requirements

Information - Centric
Abstractions

Copyright © John S. Baras 2011

* Performance over
time, hybrid
systems

* Simulation and
performance
analysis
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System-of-System Level Trade Studies
= 1st Level Of Decompositions - : Si |ati !
= How Ouwr fributes to 'mu_a_ 'm:"! .
Specification Reviews,
etc.

System Level

= Derives Subsystems .

= Allocates Requiremen — ;faﬁf: St'FUdIES,
— imulation,

Element Level Behavior,

. : Components Structure &

- honents — Trade Studies,
Simulation,

Carn ol
SDEn

Component Design ' T
& Implementation Level Structure &

(Watson 2008, Lockheed Martin)

Copyright © John S. Baras 2011 16
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SysML is a general purpose modeling language for
systems engineering applications.

SysML supports the analysis, specification, design,
verification and validation of complex systems .

SysML is intended to specify and architect systems
and its components that can then be designed using
other domain specific languages.

SysML is an open source modeling standard
supported by OMG .

SysML can be used as an integration framework for
multiple heterogeneous systems, subsystems and
components modeling and analysis tools .

SysML models of system behavior and structure can
serve as the unifying system architecture model of a
complex system or system of systems (SoS).

Copyright © John S. Baras 2011 17
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System
Architecture

SysML Diagram

n.-:-qm(emem
Diagram

Behavior

-
'
'
Diagram :
L

THeoBuReBEaew

l

Block Definitio Internal Block 4
3 Package Diagram
Diagram Diagram

..‘..L-..O.

Parametric
Diagram

Activity Sequence State Machin
Ciagram Diagram Diagram

[ ] SameasuUML2

]  Modified from UML 2

Use Case
Diagram

.“_] New diagram type

OMG 2010

Tradeoff
Tools

Copyright © John S. Baras 2011 18
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 Formalizes the practice of
systems development
through use of models

« Broad in scope

— Integrates with multiple
modeling domains across life
cycle from system of systems
to component

« Results in quality/productivity
improvements & lower risk

— Rigor and precision

— Communications among
system/project stakeholders

— Management of complexity

Concept

K R\;LP\%Q
Life Cycle Support
System . Operations
Development Production & Support

Vertical Integration

Operational Models

System Models

Component Models

19

Copyright © John S. Baras 2011
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Start Shift Accelerate Brake Control () Pow_er Vehicl_e ()
Input Equations Dynamics

Engine Transmission Transaxle

Integrated System Model Must Address
Multiple Aspects of a

Copyright © John S. Baras 2011
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FOUR PILLARS OF SyYsML

2. Behavior

1' StrUCtu re sd ABS_ActivationSequence [Sequence Diagramy
bdd [Package] Structure [ AB= Structure Hierarchy ]J ) - ) . .
stm TireTraction [State Dlagramy interaction
==hlock== =zhlock== =z=hlocks= q —

Library:: Anti-Lock Library:: act PreventLockup [Activity Diagram] ) state
Electronic Contr[~ : - .
Processor ibd [Block] Anti-Lock Contraller [ Easic U machine

\ o — d1 : Traction R

; fetecion ¢ v — T - activity/
==hlock== TractLoss .
Traction c2: :DetectLossOf :Modulate function
Detector Traction BrakingForce

m1 : Brake Tractloss
Modulator _— T =
definition use
i I
J<___ par [Block] Straight Line “ehicle Dynamics [ Parameters U

req [Package] Yehicle Specifications [ Braking Requirement=s U
[

tfomM il % bt m: kg
Vehicle System Speciﬁcatiun| Braking Subsystemn Specification ( |_| |_| |_| i N | rf ‘M |_| 1
e1 : Braking Force’ e? : Acceleration
==reguirement=:= ==reguiremert=:= Equation [ :I Equation
Stopping Distance Anti-Lock Performance 1=t f (10} 5 misects  =mE}
ld="10.2" Id="33.7" L )L [ ] )
Text="The vehicle shall Text="The braking =system shall
; a: mizec™?
stop from 60 miles per hour prevent wheel [ockup under all - - — - .
within 150 ft on a clean dry braking conditions. " e4: Distance Equation |_| )
surface " . Tw=cl Sl e3 : Velocity Equation
x | ¥ mdsec ¥ misec {a=dwidt}
III. j . . .
Lo | xim t: seC :I t |£T|:
==deriveRedt== - s - J

3. Requirements

4. Parametrics

Copyright © John S. Baras 2011
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i USING System Architecture Model '
as an Integration Framework

Requirement®
Repository

Sys ems

Research

System
Archltecture Model

Verification Models

Analysis Models

u(s) %%% G(s)

Req’ts Allocation &
Design Integration

Hardware Models
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¢ Mocel Object
Modkl Depandency
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MODELICA MODEL WITH SIMULATION RESULTS
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Systems NETWORK SYNTHESIS B VA

How to synthesize resilient, robust, adaptive networks?
‘ Component-Based Network Analysis & Synthesis (CBN)

Components: modularity, cost reduction, re - usability, adaptability to goals,
new technology insertion, validation and verification

Interfaces: richer functionality- intelligent/cognitive networks

Theory and Practice of Component-Based Networks
— Heterogeneous components and compositionality
— Performance of components and of their compositions

— Back and forth from performance - optimization domain to correctness and timing
analysis domain and have composition theory preserving component properties as
you try to satisfy specs in both domains

From communication to social, from cellular to transportation, from nano to

macro networks

Critical theory and methodology for Networked Embedded Systems, Cyber-
Physical Systems, Systems Biology

27
Copyright © John S. Baras 2011
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ystems

Researce

Interoperability
* Broadband wireless nets capable for

multiple dynamic interface points

* Any node can serve as
interface/gateway

Fixed or
hybrid
broadband

Copyright © John S. Baras 2011
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Key challenge:
component - based
networking
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Networks:

— as distributed, asynchronous, feedback (many loops),
hybrid automata (dynamical systems)

— as distributed asynchronous active databases and
knowledge bases

— as distributed asynchronous computers

— Can we:

— Develop a taxonomy of network structure vs
network functionality?

— A theory of modularity and compositionality for
networks?

Copyright © John S. Baras 2011 29
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NETWORKED SYSTEMS SYNTHESIS
Executable Formal
Models Models
R
\
N\ — P e R -
=~ ~,>' Each Block has A
- = ~~ Lomponents _7

Performance
Models

~_——_—

Inspiration from Biology:
Why and how modules, motifs, etc
are created, developed and evolved?

Grand challenge: Develop this framework for distributed, partially
asynchronous systems, with heterogeneous components and time

semantics

Copyright © John S. Baras 2011
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Model Based Wireless Network Design

* Objective: design mobile ad hoc wireless networks with
predictable performance to meet specifications

« Approach: Combination of analytical and numerical
performance assessment, linked with sensitivity analysis and
design methodologies

« Challenges:

— Development of simple analytical/numerical performance
models that will achieve desired accuracy.

— ldentify metrics of component-level performance which are
strongly correlated to network-level performance.

— Development of design methodologies for components

Copyright © John S. Baras 2011 31
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Inputs, components, design parameters, sensitivity analysis, optimization

» Traffic Demands Fixed Inputs
« Mobility Patterns
* Path losses

Mission and Physical
Environment Fixed Inputs

Routing Scheduling

s Tunable Component Parameters L

* Configuration Parameters

+« Component Selection Indicators Design Parameters
« Automatic Differentiation
MAC PHY e Analytical Methods
« Perturbations Analysis
Performance Metrics I\
Sensitivity
analysis &
Topology subgradients
Control computations
Parametric and
component based
performance models
e Multi-criteria optimization
Updated Design Parameters « Robust design /] Metrics Sensitivities and derivatives
¢ Global optimization
e Gradient based methods \\]
« NUM Extensions

Design methods

Copyright © John S. Baras 2011
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* Objective
— Design MANET adaptable to missions with predictable performance

* Approach

— Break traditional layers to components! Develop component-based
models MANET that considers cross-layer dependency to improve the
performance

— Study the effect of each component on the overall MANET performance

* Routing Components — routing protocols like OLSR [Baras08]
— Neighbor Discovery Component (NDC)
— Selector of Topology Information to Disseminate Component (STIDC)
— Topology dissemination Component (TDC)
— Route Selection Component (RSC)
* MAC Components — based on CSMA-CA MAC protocols like IEEE
802.11 [Baras08], and on schedules based MAC (USAP) [Baras(09]
— Scheduler
— MAC

Copyright © John S. Baras 2011 33
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e STIDC selects a subset of links to be broadcasted

« STIDCis a local pruning method for link selection

e STIDC reduces the broadcast storm problem of TDC
* OLSR uses set cover methods for MPR selection

 There are metrics that capture the stability of the MANET
links

Stable Path Topology Control (SPTC) that accounts for stability
metrics in link selection

Copyright © John S. Baras 2011 34
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« Most local pruning algorithms proposed do
not guarantee QoS optimal paths for
routing.

* In most cases, they only guarantee connectivity

* Non-triviality for preserving QoS optimal
paths in local pruning algorithms:

* Preserving global properties from only local
observations

Copyright © John S. Baras 2011 35
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ID 6

| OLSRETX | SPTCETX

Saturation ~ 2 Mbps ~ 2 Mbps
CL

TC message 923 kbps 890 kbps
rate

3 Platoon Mobility Scenario &

Long connection from 20 to O (platoon
heads) ™

G300 -
GOO0 -

5500+

Carried lad inbps

Type Connection Offered-load
Intra- (1,3),(2,9),(4,6),(7,5),(20, 12 kpbs
platoon 29),

(14,17),(16,11),(17,18),(1

9,12),

(21,22),(23,27),(23,28)
Inter- (1,18) 2.4 kbps
platoon (20,11),(20,0) 6 kbps

(10,1),(21,10) 12 kbps
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* We have developed a local pruning mechanism that
ensures that globally optimal routing paths are
preserved in the pruned graph

e SPTC-ETX, when compared to OLSR-ETX

 Carries more traffic — stable paths are long-lived = long-
lived sessions

* Fewer topology changes — stable links are long-lived =»
stable routing graph

Copyright © John S. Baras 2011 37
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s Component Based Networking: Network MBSE for MANET

“o s J. Baras UMD), V. Tabatabaee (Broadcom), K. Somasundaram (Qualcomm) and M. Austin (UMD)

The Challenge & Need: Fig.2: Component Based Networking BENEFITS
Design DoD and Commercial Component-Based Network Synthesis . Reduced MANET
MANET Adaptive to Dynamic cost and fielding
Mission Requirements Executable | Formal time
s s S X Wi R * Modularity and
' L - b e i re-use
/7/ "~~~ >Each Block has\‘, + Increased agility
_.==""Lomponents _~ in designing,
Bl-- - —_—— modifying and
e fielding new
MANET

« Broad design
space
exploration

Tradeoff

Dynamic Interconnection and Interoperability Anslysis Tools;

ILOG Solver,

« Broadband wireless nets capable for
multiple dynamic interface points

+ Any node can serve as

interface/gateway

ANETY Emulation,
Simulation Tools:
EMANE, OPNET,
QUALNET,
OMNeT++

Network
Components
& Models

Fig. 3: Network MBSE Toolset : integrating SysML Architecture Model

£z InteligenyVircless Mulik-Nets with DB of network models, emulation-simulation models, tradeoff tools -
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Integrated Product and Process
Design of T/R Modules

1

< ERS,ITJ'
N3

Y,

KRS N

PROBLEM

Integrate Electronic and Mechanical Design
information interchange among tools used by designers
Identify alternative components
integration with part catalogs, corporate databases
Help generate and evaluate alternative designs

estimate cost, manufacturing time, reliability, etc.evaluate tradeoffs

Help generate process plans
process parameters, time estimates, etc.

7
Assembly Data Model BLOCK DETAILS
LProcess Designer View

[ seenario o [Seenario

Name: [Pwr od 3D56076G01

BLOCK
TABLE
PROCESS
TABLE

BLOCKS IN ASSENBLY FBILL OF MATERIALS
. Assembly m Glock

MATERIAL
TABLE

[Blockitem | [ Material No.

["BlockiD | Block Name

DETAILS

- 1| 3D57504H01

GG, Power Module (305607€| [ 2| RLRDEC1500GR
Preamp, RE@D Il | 3|RLRDSCEE0OGR
581RS07H10
Amp (Q2)

new
&
5
2
I
3

Amp (03)
6 amp@y || | 7|1az1089H01

rrrrr

:::::

MATERIAL
DETAILS

sssssss
DETAILS

Input, RF
Qutput, RF

BILL OF PROCESSES ————

e, Canacitor Bank 30574 |l | [Frocess 1D

1
2
4
5
7| amp Q8 6| M551957-13
a8
9
0
1

-
Functional Data Mode

22| MP80280SA
12 BITE Circuil t— Nl Tz|mpam
6/ MP209
2/ MP200
2/ MP200
. . 2l ezos
Product Designer View
\

aaaaaaa

INSERT
EDIT

= noenT -

CLOSE
ave ||

DELETE

*x
G
>

SOLUTION

Object-Relational Databases and Middleware to integrate heterogeneous distributed data sources:
multi-vendor DB, text, data, CAD drawings, flat, relational, object DBs

Entity-Relation Diagrams to provide multiple expert views of the data and integrate product and

process design phases into a single system environment

Hierarchical Task Network planning to explore alternate options at each level of the product:

parts and material, processes, functions assemblies

Multicriteria Optimization for trade-offs: cost, quality, manufacturability, ...

39|
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= |IPPD System Architecture

Microwave Module Design Data Integration

Supervisory Program

Electronic Component-selection Mechanical Data
CAD tradeoffs (CPLEX and CAD Integrator
(EEsof) HTN Planner) (Microstation) T
\ 4 \ 4 [
Cost HTN Northrop
Advantage Planner Grumman
I I / Enterprise
v v v Databases
A . J

Data Exchange Files

Copyright © John S. Baras 2011
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Modules

1-20 GHz frequency range (radars, satellite communications, etc.)
Difficult and expensive to design and manufacture

Multirole Electronically Scanned Arrad
'R MODULE

Copyright © John S. Baras 2011
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Design and Manufacturing

Conceptualization Module Design \
and Architecture Electrical Mechanical

7

T =]

Individual Module Design [~ —\{’;5_ H % i \‘
Ll —— | |

=

S ¥

© : Schematic | Artwork

2 | L Prototype Manufacturing

0 ¥ @ P Sub§trate

=~ | —{ Process Plannin besign &
‘g K Part selection Population

A

Module Manufacturing

Generate alternative designs

"

* Generate alternative process plans

A

Module Testing & Tuning
¥ * Evaluate multiple metrics

* Find Pareto optimal combinations

A

Device Assembly

e Interactive feedback to the user

Copyright © John S. Baras 2011
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Research
Processes
Process structure is more complicated - but it decomposes

naturally into tasks and subtasks that are performed in a
fixed sequence

Making the artwork

(one possible method)
\

'\'

Precleaning for artwork Applying photoresist Photolithography Etching

/ # \ (alternative methods)

Spindling photoresist Spraying photoresist Spreading photoresist Painting photoresist

Develop plan details depending on the details of the design

Copyright © John S. Baras 2011
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" The Metrics

« We evaluate the design with respect to five metrics:

Cost defined as the sum of material costs, process runtime
costs, and process setup costs

Manufacturing yield, defined as the product of process yields
and part yields

Supplier lead time, defined as the maximum of the delivery
lead times of the selected suppliers

Total number of suppliers selected

Quantity discounts associated with placing more orders with
the same supplier

Copyright © John S. Baras 2011
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Research

* Functional Data Model (FDM)

— Functional block elements (FBE)
— Functional bill of material (FBOM)
— Functional list of processes (FLOP)

« Assembly Data Model (ADM)

— Each assembly is a manufacturable unit
— Map FDM to ADM
— BIll of materials (BOM) for each assembly

 List of processes (LOP)

Copyright © John S. Baras 2011
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Implementation

trgui - Power Module Design
Database Optimizer ¥Yiew Help

=[] [2]e®] @|-“@3||
A\

\ MNo. of Scenario

CCA, Power Module (SiC) Curr. Scenario

T

roM | eemiran

EIE |

CCA, Power Module ¢SiC)

ADM

CCA, Capacitor Bank (CB1

Feady

Copyright © John S. Baras 2011 46
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External tools

Electronic
CAD

Database
Management

2 K Rv\-/”s;
System Architecture
The IPPD Tool
= Supervisory Program
Tradeoff optimizer
Process Process
Template Planner Interactive display
Editor | ST
Optimization
engine
! / CPLEX

( Data Exchange Files j

Copyright © John S. Baras 2011
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Sy Hierarchical Task Network -

Planning for ProcessPlanning

For use in a factory setting Initial design

— Must be easy for
non-researchers to | Part 1 I s %

understand and maintain
* Input: alternatives for [ ] A1 Ak Ak
each part in the design

* Qutput: plan fragments for o
each alternative part T112| P, | P ... 1“- P, P ’
— alternative processes for T.12- Tkl
each task 2 Py Py 2 - Py P2
- )L )

* Don’t yet want entire plans

— Later, will use tradeoff analysis
to combine the plan fragments [Design & plan 1] [Design & plan n]
into plans

Copyright © John S. Baras 2011
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* For each part, for each task to perform
on the part, the process planner finds Initial design

— All applicable alternative processes
— Setup time, run time, & yield for each

« Tradeoff analysis

— Choose a combination of
alternative parts

— For each chosen part, choose
a sequence of processes

« Find collections of choices that
have Pareto optimal values for

— Total cost

— Total time -
— Total number of suppliers \.\ \. ///

= =k Des1gn & plan i

Copyright © John S. Baras 2011 43
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Decision Variables For each component, choose exactly one

= 1if nodei € V is selected among its alternatives
1t U 0 otherwise ij =1 kev
J €V
Xip = (1) :)ftirecrv(\lrﬁ )e € Eis selected For each process related to a component,
choose exactly one among its alternative
1 if processp € P is selectec - )
Yp= 1 0 otherwise prj = X Vp, 1 €F)

p ER/[

Selection of processes Material cost:

: C =>ncx
Yp = Xp VP> T n = 4MOX
Selection of suppliers

w, =2 x; Vi €58, ] € §
Integrality

Runtime cost:

Cr — ggtpjxpj
Setup cost: ¢
Y, X, w, €10, 1} Vj, p, s Cp =—2> Uy

Total cost:

C=C_+C +C
. P 50
Copyright © John S. Baras 2011
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et Multicriteria Optimization i

14 Trade-Off Analysis WHility
File Tools Window Help

@ i |8 [l B} s 5 All Normalized Solutions - newng [_[O] <
@ cost lYieMl FETr— ofsuppliers] Click on the selution number to select that selution.
1.
E po¥ T T TT|ITT TN . T B Tt
= cost N E - %
E ) e P — _ e =] JE m) Lead time
0 )
Y 3500.000 B——E&—E—F—F pplE === r====== il (el il SR
______________ [ el
e — S R ———— —— ot
e 03
ppfl—— S E— B
I PR AP PP Ep— F I A e | - - = - 7
L1 R, ER— e I B
I A T ) 1 3 3 4 a [
2081.415 Problem Name: newng Solution 1D: ] -~
Criteria Name Minimum Good Nominal Bad Maximum
[ (R (! P I cost 1425 660 1425 BE0 1497 860 3500.000 3500.000
I:‘ ) Yield 0.300 0.906 0.393 0.300 0.906
I A T ) Maximum Lead time 25.000 25.000 25.000 71.000 71.000 =l
Bad Details
g * i Blx
= 2462.830 Nominal ke >
=
O s [ e Good T e e
o 0.2
e e Minimum aed
I O T -3 071 O Masximum
0.6 Bad
J # Current Value
1944.245 i
0.4
Minimum
I 0.3
0.2
F--q---- 0.1
0.0
L Lead time Mo of suppliers ‘ield cost
1425 660 <x—%—i Problem Name: newng Solution 1D: 9 -
12 3 Criteria Name Minimum Good Nominal Bad Maximum
cost 1425660 1425660 1497 860 3500.000 3500.000
Yield 0.300 0.906 0.393 0.300 0.906
Lead time 25.000 25.000 25.000 71.000 71.000
|
Preview | Optimize
Ready 51

M & & [ ® || [E)Exploring - bin (=] Micros oft PDWBFPDInt...| E¥ Optimize ||L_,.|_|Trﬂde_0ﬁ Analysi... T 545 P
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et Multicriteria Optimization (cont.)

ghInitial Normelized Solutions - pla

Click on the solution number to select that solution.

1.0
09
ogl— I S 1 ______ ;f\; ''''' _
D'T__ ________ N 4 ____._____/__:_.\______ [l Leadtime
s \‘ .
| S I ] N “’______\___ Mo of suppliers
0.5 7 .
B I WA ] N \\ _ # Yield
04 X
D_Sé\f'—"tz— """" —ﬂ ————— - e % cos!
02'_"\;_'_'_;%“—'\\ ''''' = \;_'_ _______ _
I I N A N _'\\'_ AN R —
Y et ihietiek GRSt Sttt Sttt
i 2 3 4 5 5]

The file containing the dascription of this problem cannot be found. Ensure there is a file called P1A TET in the same directory as the LP and i‘
MF files.




Sy Current Work: From IPPD e
to Health CARE

Reses: llk,ll

IPPD System Architecture ISR Innovations:
Dat * Object-oriented modeling of parts
Microwave Module Design ata and processes (system components)
Integration : .
* Respect the need for integration
Supervisory Program with company tools (some
Y I Y proprietary)
I I I  IPPD environment independent from
floct Component- : Dat company data warehouse contents
.eCCA';OD selection Mechani | ata * Integration of many discipline
me tradeoffs cal CAD R design tools
JeEset (Microsta 1 J : '
(CPLEX and _ - Multiple views of data: Functional
3 HTN Planner) t'on)_ data model, Assembly data model
v * ! * Object-relational databases
Cost HTN Northrop * Hierarchical task network planning
Advantage P'”‘P” Grumman for process plan generation
A q
vy _ v v I v E"terp”se - Tradeoff analysis via multi-criteria
A atabases optimization involving numerical
Data Exchange Files and Boolean variables

Process Models and efficiency Analysis of critical hospital systems (ICU):

Process Models, Equipment Models, Cost Models, Tradeoffs and Efficiency Improvement
Copyright © John S. Baras 2011 53



he

Sysems MBSE APPROACH TO @

Research IRy LN

ENERGY EFFICIENT BUILDINGS

\

»
Natural Ventilation,

Indoor Environment

Buildings Design
Energy and Economic
Analysis

\-

V=

J

Networks,
Communications,
Performance Database

N\

[Windows and Lighting

\_

Vs

Sensors, Controls,

Domestic/International Performance Metrics

Policies, Regulation,
Standards, Markets/

4 I
Demonstrations,
Benchmarking,
Operations

and Maintenance

-

P
Power Delivery and

Demand Response

-

e
Building Materials,

KMisc. Equipment
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Cyber-Physical Building Systems

* Research focus: Platform-Based Design for Building-Integrated
Energy Systems.

Pearl River Tower Complex Green Technology Tower — Architectural Proposal for Chicago

B LAs
AR
\
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Cyber-Physical Building
Systems Design

* Design Platform Stack

Research: Design of a scalable and
extensible platform infrastructure

Requirements

Arch. Reg.

Abstract Models

I |

Abstract Graph Model

r——-

Abstract Controller

Abstract Mapping

Factors Driving Design

J ERS,ITJ'

IRy LN

Performance

)
)
)
)
)

Architectural requirements. Design Flow
Occupancy requirements.
External loads { gravity, thermal, ... ) [ Architecture Design
Ventilation requirements. i
Energy generation re quirements. ¥
[ Power Design
Sequence of operations. '
Comfort requirements. Y
[ Control Design
Contrel speed requirements. 'y
Sensor and actuator requirements. Y
[ Network Design
L . |
ayout requiremnents. Y
[ Implementation
Building Architectyre Flatform  _ _ _ _ _ _ _ _ _ _ _ ____
! Abstract Models
1
- — Functionality 1 Abstract Dependencies
1
— Architecture Model - '— Y |_ _____ [X- ________ ]
4 .
Y —|— Mapping | ‘ 1
1
Controller Y Geometry Topolegy Computation | |
1
_-——— Y - A === 1| Y1 Network of spaces | | 1
1 S 1
—— Power System hModel 1 Intcgrated Vlua]lzanon 1
i ' ,
Y ! Composite :
Contreller : Centroller 1
I - '
Y i !
I EnergyPlus 1
—— Network Control I Simulation 1
1
1

vt

CUPNYIIEIIL & JUITTT D, DAIAd> £ZUll

Maximum ventilaton.
Marimum power generation.
Cost estimates.

Minimum response time.
Control accuracy.

Maximum available bandwidth.
Maximum computational speed.
Maximum storage size.

Actual ventilation.
Actual power generation.
Actual network: speed.
Actual layout constraints.
Actual installation cost.

5 S, O,
&
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Create a scalable

and extensible MBSE

Relationship Hub to:

(1) Support solutions
to the MBSE
challenges;

(2) Allow systems
engineers to
understand and
appreciate the
extent design
strategies can be
applied;

(3) Help engineers
evaluate and
balance competing
design criteria.

MBSE RELATIONSHIP
HuB

MBSE Relationship Hub
Higraph Infrastructure 0 o o
Q
s — Tools for system traceability. K‘O.'\D
;5 — Tools for automated transformation of system representations.
.E — Tools for assembly of cross—disciplinary trade spaces.
E "{P Specialization
73]
8 J
, Software with Electrical Mechanical Components
[ MBSE wita SysML ] { UML 2 } { Eogineerng } ( Eagineedng ] [ Suppliers ]
: Asspciation Associaion Asspeiation Association Association
[ SysML Ontology ] [ UML 2 Catology ] [ EE Qatolegy ] [ ME Qatology ] [ C/S Catology ]
T

~

MBSE Meta—Modeling.

COntolosy Infrastructure

— Tools for ontology representation and visualization.

— Tools for systems integration of ontologies.
— Tools for syothesis of ontologies from domain—specific models.

Copyright ©

John S. Baras 2011
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design of building-integrated energy systems

DESIGN PLATFORMS FOR SE
BUILDING-INTEGRATED ENERGY SYSTEMS

Extensible framework for assembly of (model, controller, simulation,
viewpoint) process networks and communication for platform-based

Building Architecture Flatform, _ _ _ _ _ _ L L o o oo oo -
Requirements I Abstract Models
= 1 1
Arch Req. i - — Functionality I Abstract Dependencies
I _ I A
Amu‘m Mmds : Archltccmm Mﬂdﬂl * I- -------------- q
Abstract Graph Model K—— * f —| = Mapping | |
1
| —|—— Coatrolle + Geometry ‘ Tepology Computatien
I
'-—————*—-f——— || /] Mebwork of spaces | | |
|
Abstract Controller l::]— Power System Model |
|
* T . Composite
—|— Cootroller : Costealles
i
Abstract Mapping {j * f 1
EoergyFhus
Metwork Control : Simulation
1

v

Copyright © John S. Baras 2011
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==+ IVIORE ELECTRIC AIRCRAFT (MEA)

Boeing 787

F-35 Fighter

Airbus A380

Copyright © John S. Baras 2011 59
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T EE——
GenerateI DiStributeI and Consume enerﬂx in an effective and efficient manner

Electric Wing
Ice Protection

Electric Engine Start

Electric Driven
Hydraulic Pumps

Electric Air Conditioning
and Cabin Pressurization
Systems

Highly Expanded
Electrical Systems

Copyright © John S. Baras 2011
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St 787: CLEANER, QUIETER, &
MORE EFFICIENT

The 787 Dreamliner delivers: *Relative to the 767
20%7 reduction in fuel and CO2
28% below 2008 industry limits for NOx

60%* smaller noise foot print

Advanced Wing Design

Innovative Systems Enhanced Flight Deck

Technologies

| D Composite Primary Structure

Advanced Engines and Nacelles

Copyright © John S. Baras 2011 61
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MuSyC Avionics Design Challenge

* Primary power distribution of an electric power system for next
generation aircraft -- part of the MuSyC avionics challenge problem

« Typically consists of a combination of generators, switches, and loads

* Primary power generation elements include batteries, auxiliary power
units (APU), generators connected to the air-craft engine, and a ram air
turbine (RAT) used for emergency power

« Electrical power is distributed via one or more buses and connection of
generators to loads is routed by way of a series of electronic control
switches (contactors)

« Primary electrical loads include communications and computing systems,
electrically-driven actuation systems (including electro-hydraulic
systems), anti-ice and/or de-ice systems, and lighting systems.

« Requirements categories: safety, performance, reliability, ....., subject
to priorities, component capabilities and schedules, ....

Copyright © John S. Baras 2011 62
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MBSE for Fault Tolerant Vehicle Management
Systems (Electrical, Hydraulic, etc.)

Goal: Synthesize logic
to switch between
generators and loads
on-demand and to
handle faults so as to
stay within safe
operating envelope

Joint with UTRC

[Image: hamiltonsunstrand.com]
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L

T
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T

T

T1
T\

MuSyC I
Avionics o -
Design
Challenge LIt

{ | l_ !
Fig. 1: Physical %F%

architecture of the ,
modern aircraft

%
Ji_,
—
I
i
:
"5
N}

power system ‘ T ”

II;Ietrquzurements -lﬂ- -er ” T

o o ﬁ

Fig 384: System i m -

SysML and Modelica
Fig. 5&6: System

BA.'I'-I

structure and nh |L ” ﬁ h

constraints using
SysML diagrams

Figure 1: Single line diagram of an electric power svstem adapted from Honeywell Patent
US 7,439,634 B2, Figure courtesy of Rich Poisson, Hamilton-Sundstrand.
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Requirements

MuSyC Avionics Desi

Challenge (cont.)

adequate power 10 support &

all operations, a load
shedding should take place
‘with higher priority to the

primary loads”

req [Modei] Data [ requrements | T S
aequenents
M.Q-QMHSIM cconstrants
Ten ‘I’heelectnta csatistys osastants
|system should provide F=-=-—"""1
|adequate power to support panseters
lat leastthe primary loads of :
the plane, including cases
|of emergentcy” -
blocks
‘Main_Bus
- —1
atstys - [ |
& Transfer_Bus
= areoqurements i ® /mry. -
areqkemery Redundancy g e
Performance Pere—t e T "eblock>
PECT 1d="1.2" otstp 900
Text="The systern shouid Tex="The system should - —_—
b6 oiocthe snd eskclent have enough redundancyin € ~ — _ csatistyn
order 1o deal with system % T e _ [T
facls S < ety Backup_GEN |
=~ tiocks |
APY_GEN |
R econsirants
aeqirements Weight
lﬂd_ﬂi_cn constants
PR {Check_weight = i (APU_weightsL._Backup_GENeR_Backup_GENeL_DGR_JDGp=50000, 0,1))
Ted="Thetotalweightof & — — —“2°2> _ _ _ s
the generators and the WW\“ » ogram)
wirng should notexseed .__a;mga. kglirt = ingram)
50.000 k9. mﬁ llg[’u‘t-\joth
+ hggiund = biogram)
IRIDG: kgl = kogram)
aequrements
Load Shedding ——
1d="14" ; ” ;I ,M o
Terd="In case there is not atisty =

""""""" loads : Losds ')
IManage : Bectric_System (1)
LLoad_Sheding()

Copyright © John S. Baras 2011
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MuSyC Avionics Design

Challenge (cont.)

stm [Stete Machine] STM_Electric_System| STM_Electric_System ]

?ﬂm [ext_power==TRUE]

exit £ send_Event(evOpen,

., EPC1, EPC2)

APU GEN)

OPERATING
EXT POWERED
. mily 1 send_eveni(evClose EPC Lett BTB, Right 6T8)
lq stable) / send_
APU ONLY
entry / send_Event(evClose, APB)

[Error in both DGs) / send_event(evStop APU)

ot (Prismary systems are ready) / send_event(evStart, Let DG, Right I0G)
[Both DGs are OK) / send_event(evStop APU)

1

TWO I0Gs

[Error in one 0G]

| entry / send_event(evClose Left GCB Right GCB)

J—

s | (priorty==apu) 1 send, evStart J\ Priority==NONE]
T (Priorty==APU) § send_overd((evStart APLY) Piorty==NONE]
L 1 serdd_e BACKUP)|
S send_evert{evStart BACKUP) ( 2 | ONE DG ONLY
" ectry f send,
1 send_event(evStan BACKUP)
[Priority==APU] [Priorty==NONE]
[Priory==NONE]
o Sy L Ry==NONE] /- (evStart,
T entry 7 sond_ mwcuseunccawccs)JW" 17o50d_svonkiovSien BACAN). 5

APUBACKUP k (Priorty==APU]

| entry / send_ BAPE) [
T75end APUBACKUP

eblocks

<<modelicaModel>
Main Generator

MODELICA MODEL

model MainGenerator "MainGenerator”
input Real v[6],

omega;
output Real y[6];
parameter Real Lls=...,

..., Lskg=.., Lsfd=...,

Ligk=..., Lmkg=..., LIfd=...,
ra=.., rb=.., rc=..., rkg=...

Lfdqd=..., LIkd=..,, Lmkd-=...,
rfd=..., rkd=...,

Pi=3.1415926535;
equation
Real r[6]=[ra, rb, rc,-rkq,-rfd,-rkd];
Real Ls[3,3]=[LIs + LA-Lb*cos(2*theta), -0.5*LA-LB*cos(2*(theta-Pi/3)),-0.5* LA-
LB*cos(theta+Pi/3); -0.5*LA-LB*cos(2*(theta-Pi/3)), LIs + LA-LB*cos(2*(theta-2/3*Pi)), -
0.5*LA-LB*cos(2*(theta+Pi)); -0.5*LA-LB*cos(2*(theta+Pi/3)),-0.5* LA-
LB*cos(2*(theta+Pi)), LIs + LA-LB*cos(2*(theta+Pi));]
Real Lsr[3,3]=[Lskq*cos(theta), Lsfd*sin(theta), Lskd*sin(theta); Lskq*cos(theta-Pi/3),
Lsfd*sin(theta-2/3*Pi), Lskd*sin(theta-2/3*Pi);Lskq*cos(theta+2/3*Pi),
Lsfd*sin(theta+2/3*Pi), Lskd*sin(theta+2/3*Pi)];
Real Lr[3,3]=[LIkq+Lmkq,0,0;0,:Ifd+Lmfd,Lfdkd;0, Lfdkd, Llkd + Lmkd];
Real L[6,6];
L[1:3,1:3]=-Ls; L[1:3,4:6]=Lsr; L[4:6,1:3]=-transpose(Lsr); L[4:6,4:6]=Lr;
der(lambda) = diagonal(r)*inv(L)*lambda+v;
der(theta) = omega;
y =lambda;
end MainGenerator

Copyright © John S. Baras 2011
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MuSyC Avionics Design
Challenge (cont.)

\QERSITJ,

par Systen) Bchi System| Bectc System Pramelic

| 0C Load:0C L0ad | o s poer cconsheinds FuslPoprer Ut | Fuel Boost Pump  Fuel Boost Pump
—] Primaty_Loads :Primary_Loads Constr [—&
power : Power Unit {Tolal_primary_oads=Avionics +Fuel +DC_loadsWindow) _{ power : Power Unit APU: APU_GEN Left_IDG:10G Right_IDG: IDG
iemﬁy?welwl ‘cu‘ty:l’omlllil capacity: Power Unit |
Avinics : Avionics Wekow:Poper Lt Window HT:Window HT ' : |
] 656 [ edl
CPower Ut r Tt vy s Power O power :Power Ut l g S R M
power | i power 1| .I
] 5 &% %
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status : Integer
ouput: nteger
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Block Diagram

Exciler Rechlfer
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kd : | v | [
N t'. [ 4 (2N 4 D41 DBA D2
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e

r _______ R (;ati_ng—P’aFoFM_ain_Shaft ; L
Exciter Generator Main Generator

Field Armature > Rectifier » Field Armature
LM

. Generator Control Unit
(GCU)
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SysML - Modelica IDG

Structure Modeling

bdd { |5 IDG Electrical System | J :

..............

..............

..............

...........

ahlockz
DG

...........

| ==modelicaModel==
Exciter Generator

..................................................

..................................................

........

...............................

l==modelicaModel== '
Rectifier :

......

......

T E=modelicaModel=={
*| Main Generator

-+ | ==modelicaModel==
Generator Control Unit

...............................................................

...............................

enerator Control Unit

..........................
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SysML - Modelica Main

Generator Behavior Modeling

«block»

<<modelicaModel>
Main Generator

MODELICA MODEL

Numerical
model MainGenerator "MzainGenerator” values
input Real v[6],
omega;

output Real y[6];
parameter Real Lls=.., LA=..., LB=..,, Lskg=..., Lsfd=...,
Ligk=..., Lmkg=..., Lifd=..., Lfdgd=..., LIkd=..., Lmkd=...,
ra=...,, rb=..., re=...,, rkg=...,rfd=..., rkd=...,
Pi=3.1415926535;
equation
Real r[6]=[ra, rb, rc,-rkg,-rfd,-rkd];
Real Ls[3,3]=[LIs + LA-Lb*cos(2*theta), -0.5*LA-LB*cos(2*(theta-Pi/3)),-0.5%LA-

LB*ceos(theta+Pi/3); -0.5*LA-LB*cos(2¥(theta-Pi/3)), LIs + LA-LB*cos{2*(theta-2/3%Pi}), -

0.5*LA-LB*cos(2*(theta+Pi}); -0.5*LA-LB*cos(2*(theta+Pi/3)}),-0.5%LA-
LB*cos(2*(theta+Pi}), LIs + LA-LB*cos|2*(theta+Pi});]
Real Lsr[3,3]=[Lskq*cos(theta), Lsfd*sin(theta), Lskd*sin(theta); Lskq*cos(theta-Pi/3),
Lsfd*sin(theta-2/3%Pi), Lskd*sin(theta-2/3*Pi);Lskq®cos(theta+2/3*Pi),
Lsfd*sin(theta+2/3*Pi), Lskd*®sin({theta+2/3*Pi}];
Real Lr[3,3]=[LIkg#Lmkq,0,0;0,:Ifd+Lmfd,Lfdkd;0, Lfdkd, Likd + Lmkd];
Real L[6,6];
L[1:3,1:3]=-Ls; L[1:3,4:6]=Lsr; L[4:6,1:3]=-transpose(Lsr); L[4:6,4:6]=Lr;
der(lambda) = diagonal(r)®*inv(L)*lambda+v;
der(theta) = omega;
v =lambda;

end MainGenerator
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Design Space Exploration

IBD/BDD Parametrics Performance
(structure) Metrics

Tradeoff
Analysis

Constraints Structured

: Solver
Constraint /

Optimizer

Program

e Given the requirements/specifications captured as
constraints/metrics and mapped to structure/behavior in the
parametric diagrams, is it possible to perform tradeoff analysis and
design space exploration via multicriteria optimization-based and
constraint-based reasoning methods and tools?

e (Can this be done hierarchically? Respect modularity?

 How do we efficiently link the “integrated modeling hub” to
tradeoff analysis tools?

* Impact analysis and change management?
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e Expressed as multi-objective optimization problem

e Approaches

— Exact: Integer Linear Programming, Branch and Bound,
Constraint Programming
—> Prohibitive large computation times

— Heuristics: Polynomial complexity, especially crafted for the
particular optimization problem
—> Reasonable quality solutions

— Meta-heuristics: Simulated Annealing, Tabu Search,
Evolutionary Algorithms
—> Good quality in reasonable time

Copyright © John S. Baras 2011
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INTEGRATION OF CONSTRAINT-BASED REASONING
AND OPTIMIZATION FOR NETWORKED CPS TRADEOQOFF

To enable rich
design space
exploration
across various
physical
domains and
scales,

as well as cyber
domains

and scales

ANALYSIS AND SYNTHESIS

ILOG
OPL Studio

Sogfud JJ,: Dispatcher (J)Configurator

.
Claad
. )
.....
»

£ ixed M ,e, : [IOGConcert Technol v ikl :"
Ptogrammlng E

Introduction of new active i
sensors for column generation § | "ot
Variables reduced cost that will

be used by CP for selection of
new potential active sensors

.
-
o
.
.....
---------
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sydtims Trade-off Analysis Integration &
with Modeling “Hub”

Integration of SysML-Modelica-MATLAB “modeling hub” with
UMD Consol-Optcad tools for detailed trade-off analysis of
complex systems with multiple objectives and for better design

space exploration

<<Modeling hub>>

SysML

)

INTEGRATION

Modelica

<<Multi-criteria Optimization Tool>>

Consol - Optcad
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Trade-off Analysis in MBSE

Goal

Build a modeling hub for trade-off analysis in MBSE environments

Our Approach:

* Consider SysML to be at the center of this hub
* Try to integrate multi-criteria optimization and constraint-based reasoning with SysML

First step

v’ Integrate SysML with Consol-Optcad, that allows multi-criteria optimization for
continuous variables

v Integration will be achieved through SysML Parametric diagram

Next steps

v’ Enhance the capabilities of Consol in order to handle mixed integer problems
v’ Integrate SysML with more trade-off tools
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The big picture -
Integration Steps

Meta-modeling layer

SysML Optcad
Metamodel < Transformation Rules (eMoflon) > Metamodel

ﬁ Generated Codeh

®
[

XMIFile |
Tool Adapter (Java)

| | o

AP ] [ XMI Parser ]

| | |

SysML Consol-Optcad <<profile>> in SysML g R
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* Trade-off tool for multi-criteria optimization

* Functional as well as non-functional objectives/constraints can be specified

* Designer initially specifies good and bad values for each objective/constraint
based on experience and/or other inputs

* Each objective/constraint value is scaled based on those good/bad values, fact
that effectively treats all objectives/constraints equally

Major advantage
» Gives the designer the flexibility to see results at every iteration (pcomb)
» Allows for a change in the good/bad values of objectives and constraints

Performance Comb (lter= 3) (iPhase 2) (MAX_COST_SOFT= 0.32038)

'I‘ypeJ Name I Present I Good Performance Comb Bad I
@ Conl linear 1.320e+000  1.000e+4000  ==========|===% | ... 2.000e+000
@ 0bjl quadratic 1.456e+000 1.000e+000 ==========|=% | ... 4.000e+000

The Performance Comb
(Screenshot from Consol-Optcad)
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Enterprise Architect (EA) Eclipse

~—Weta-models :
eMoflon Plug-in /m\

_~Transformation™.

Code
rules

* Both meta-models are defined in Ecore format

* Transformation rules are defined within EA and are based on graph
transformations

* Story Driven Modeling (SDM) is used to express the transformations

* eMoflon (Tu parmstadt) plug-in automatically generates an eclipse
project

* Eclipse project hosts the implementation of the transformations in
Java

Copyright © John S. Baras 2011
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Simple example of graph transformation

Step 2 —Rule Appllcatlon
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Tool Adapter

v It will be implemented as a SysML modeling tool (i.e.
MagicDraw) plug-in

v’ Is used to access/change the information contained within the
SysML model

v’ Performs the transformations by calling the generated Java
methods from the previous step

Parser

v The output of the transformation will be an XMl file containing
the needed Consol-Optcad constructs

v'The parser will translate the XMl File to a Problem Description
File (input file for Consol-Optcad)

Copyright © John S. Baras 2011
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SysRemls and Tools with SysML=- Integrated Models BROVE
esearch RyLd>

The Challenge & Nee_d: . BENEFITS

Develop scalable holistic methods, models and tools for - Broader Exploration

enterprise level system engineering of the design space

Multi-domain Model Integration System Modeling Transformations . Modularity, re-use
via System Architecture Model (SysML) « Increased %Iexibility

m::gmw . adaptability, agility
/@\ - Engineering tools

allowing conceptual
design, leading to full
product models and
easy modifications
Automated
validation/verification

o B APPLICATIONS
“ Master System Model” \ « Aircraft and
Tradeoff parameters Avionics

Update System Modg

ADD & INTEGRATE ~—______—] * Automotive
« Multiple domain modeling tools | DBofsystem | « Energy Efficient

ILOG
SOLVER,

CPLEX « Tradeoff Tools (MCO & CP) components Buildings
« Validation / Verification Tools : and models  Power Grid
« Databases and Libraries of annotated « MANET and WSN
component models from all disciplines « Collaborating UAVs
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“Hardware” for MEMS and NANOS

Develop Build Simuwiafe Crecie Layou! Perform
Concepl Design Performance & 3D Model Detailed Analysis Fobricale

gt
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and IC Design Flow — Current Limitations

e MEMS design currently:

* Not well organized

* Typically requires teams of expert specialists -- mostly confined to
IDMs that have their own fabs

Traditionally separated from IC design and verification

Little connection between the design of a MEMS device and the
electronic circuitry it interacts with

Handoff between MEMS and IC designers is ad hoc, manual and
error-prone

Absence of cell library of basic building blocks
Not well suited to address cost and time-to-market demands

Copyright © John S. Baras 2011
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and IC Design Flow — Current Limitations

* Need for a “structured” automated design flow, that
links MEMS 3D design with custom IC design

 Modeling approach defined up front repeatable, rather than made
up on the fly to suit each new design

* Process variables, material properties, and geometric properties
(lengths, widths, thicknesses) should be parametric to provide
maximum design flexibility

* A well-characterized library of reusable MEMS building blocks (can
be assembled into arbitrarily complex designs)

e Each block should have a 3D view (structure) and a behavioral
model supporting all types of simulations

e Extraction and design-rule checking for MEMS devices
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as a MODEL Integration Framework

@@quﬁr@m@n@
Repository
MATLAB, MathCad,

PSPICE

Research

VMS, UPPALL,
IF, BIP

System
Analysis Models Ath!t:ecture JM0d9| Verification Models
=
— UGs) %(%% G(s) — I Eﬁ% E=

F E@

Req’ts Allocation &
Design Integration

Hardware Models

UML, UPPALL
ARTIST,
MAPLE

COMSOL,
Modelica, CFD
ANSYS, MEMS +
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Integrated Design Environment
for MEMS & NANOS P

The Challenge & Need:

Develop scalable holistic methods, models and tools for BENEFITS

MEMS & NANOS system engineering * Broader Exploration
Multi-domain Model Integration System Modeling Transformations of the design space

via System Architecture Model (SysML) - Modularity, re-use

SOLVER,
CPLEX

o Mol Ot « MEMS & NANO
Fak Systems Design tools

allowing conceptual
design, leading to full
product models and
easy modifications

« Automated

validation/verification

b
“Master System Mode
ADD & INTEGRATE

III

Tradeoff parameters

Multiple domain modeling tools N~ —

Tradeoff Tools (MCO & CP) DB of system

Validation / Verification Tools Eomponefits
and models

Databases and Libraries of annotated
MEMS, NANO component models
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SYSTEM COMPLEXITY ANALYSIS
AND CONTROL

Verification of Hybrid Automata via reachability analysis. Designer specifies a region of
undesired behavior and method determines whether the system will exhibit it.

More recent method uses
system locality
to increase the
efficiency of
rigorous analysis
via optimization,
probabilistic inference or
logical inference
by embedding
system in special
structure.

Solution consists of a

local computations.

Evaluate the Metrics
Block by sampling its
parameter space and
taking intersections
additionally with

Complexity grows propagated data.

linearly in the
size of the system vs exponential

partially ordered set of

_

Propagate the
shared variables
(drop Weight by
projection).

Sample the parameter space
of the Perch Block and
determine which points are
feasible.

Propagate shared variables (drop

v PerchTime by projection).

Evaluate the Weight Block
by sampling its parameter
space and taking
intersections additionally
with the propagated data.

Whole is greater than the sum of its parts -- Divide and Conquer

Copyright © John S. Baras 2011
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determine which
points are feasible.




The

Institute tor
Systems

Research

Sneak Preview

\QERSITJ,

IRy LN

Quadrotor Tradeoff Analysis Problem

W PerchTime PerchTime

7

«constrainb P [payioad Payload [ «constraint»
:Cost ‘ F : PerchTime
[} 1
L|—‘Cost L |
Battery
Cost Payload
L] ) ) :
«constraint» Weig ht W eight
: Weight
1
Cost
Battery
L]
«consfraint»
: Tradeoff Battéry
1
Range
Battery
]
* [ | |
Range Range FlightCurrent

Weight [ «constraint»
: Current

1

L _J

FlightCurrent

FlightCurrent

«constraint» 1
{——t‘ :Range ’;}
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e Divide and Conquer

e Defeat in detail.
 Wedge issues.
 Divide and rule.

e Separation effective because the “whole is greater than the sum of
its parts”.
— Difficulty of problem grows faster than the sum.

— An enemy group of size N has strength « N?2. strength < firepower *
durability. Both firepower and durability grow ~linearly with N.

e System analysis.

— Analysis complexity grows ~exponentially with system size measured
in the number of parameters.
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e System represented by an undirected graph G =<V, E>.
— Nodes, V, correspond to variables.
— Aformula f (x4, ..., x,) = C induces edges (x;, x;) Vi # j € [1,n].

— Edge, (x,y) € E, means that variables x, y are in mathematical
relation.

* Rules of system partitioning.

1. Choose a subset of nodes that completely separate the graph into
subgraphs.

2. Separation produces an interface relation that contains all the
nodes in the separator.

— By adding links, brings resulting subsystems closer to inseparability.

* Due to recursive partitioning this decomposition results in trees.
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= Treewidth Definition

 The “width” of a decomposition can be defined as the size
of the largest component in that system.

* The treewidth is the minimum possible width over all tree
decompositions-1.

* |n general treewidth is NP-hard to compute.

* For many NP-complete problems on graphs, including
vertex cover, independent set, dominating set, graph k-
colorability, Hamiltonian circuit, network reliability, and
dynamic programming , the complexity is exponential in
treewidth and linear in problem size.
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MO |Func Name j“
Cost Cost,Battery,Payload N

Tradeoff |Cost,Range Quad rotor Analysis TRy LN

Range Battery,Range, Flight Current

Weight Weight,Battery, Payload

PerchTime |Payload,PerchTime

(e o R N

Current FlightCurrent, Weight

Tool input from parametric diagram. D PerchTime

FPerchTime Payload

Cost
Payload

Range
Weight

Cost

Initial graph.

S

FlightCurrent

Range

Weight to range fillin created.
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PerchTime

Payload

Weight to range
fillin created.

Quadrotor Analysis (cont.) ‘&

-

[Payload, PerchTime]

[Battery, Payload, Range, Weight]

[Battery, Cost, Payload, Range]

[Battery, FlightCurrent, Range, Weight]

PerchTime

Payload

,,

Payload to
range fillin
created. Graph
is now chordal.

Range

' 4

Join tree created.

Copyright © John S. Baras 2011
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The tool implemented
currently uses elimination
order rather than separators
to perform analysis. They are
mathematically equivalent.
An implementation using
separators is underway.
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«block»
Perch

constraints

{PerchTime(PerchTime,Payload)}

«block»
Metrics

Quadrotor Factor Join Tree

QERSI7Y,
S A

18 56

Q
Ohe) &

Payload

-7
-
-
-
-
-
-
-
-
-
-
-
-
.-
-

constraints

{Cost(Cost,Battery,Payload)}

values
Payload
PerchTime
«block»
W eig ht

«block»
Range

constraints

{Weig ht(Weig ht,Battery,Payload)}

{Tradeoff(Cost,Range)}
values

Battery

Cost

Payload

Range

{Range(Battery,Range FlightCurrent)}
{Current(FlightCurrent,Weig ht)}

constraints

values

Battery,Payload,Ra
nge

values
Ea“er{j Battery
ayloa FlightCurrent
Rar_lge Range
Weig ht Weig ht
Battery,Rang e,Wei
ght
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Summary Propagation

Sy Tradeoff Analysis using Q%

Sample the parameter space
Solution consists of a of the Perch Block and

. determine which points are
partially ordered set of s
local computations.

Propagate shared variables (drop
PerchTime by projection).

v

E;,c?clial;cj :gr?wlr\)/lliitg”i?cz 4 | Evaluate the Weight Block A | Samplethe
q by sampling its parameter parameter space of
para!me.ter space_ an space and taking the Range Block and
tak'“? intersections Propagate the intersections additionally | Propagate the determine which
geditieagiauith shared variables with the propagated data. | shared variables points are feasible.
propagated data. (drop Weight by (drop FlightCurrent
projection). by projection).

 Builds tables of feasible values for each of blocks.

* Uses (weighted) natural-semijoin on tables to propagate
information.

* Applies (aggregated) projection on tables to hide
unnecessary information.
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Range: d* complexity of construction Weight: d* complexity of construction

attery | FightCurrnt | Range | weight JR Gatery | Poyioad | Range | Weight

‘ projection

Weighted Natural Join
Battery m Removes elements from Weight that do

_ 6% not occur in T3.

T4: Natural semijoin of Range and Weight.

ttery | Payload | Range | Weight
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Queries

* As shown in the previous example, the query
itself influences the shape of the resulting
graph.

* A query that is not local can create links
between non-local variables.

* The resulting graph and analysis complexity is
dependent on the query.
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* Inference in propositional satisfiability.
e Bayesian network inference.
* (max,+) optimization; other semirings

Semiring

+Domain
+AdditionOperator
+MultiplicationOperator

yAY
BooleanAlgebra Tropical Bayesian
+Domain = {0,1} +Domain = Reals +Domain = [0,1]
+AdditionOperator = OR +AdditionOperator = max +AdditionOperator = +
+MultiplicationOperator = AND +MultiplicationOperator = + +MultiplicationOperator = 1

Copyright © John S. Baras 2011
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444444

Implementations

* Trees and a query define a partial order so
parallelism exists to be exploited.

* Cliques define local, encapsulated
calculations. These are suitable for distributed
evaluation, either by computers or by teams
of engineers.

Copyright © John S. Baras 2011
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(Ongoing Work)

* The systems examined thus far can be treated

statically. What happens when the components
have behavior?

* [Ferrara 2005] proves that evaluating this is
EXPSPACE hard in general.

~0000

—~

geee
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Loww E._I'_'I igh —

* N, identical, interacting behaviors at each bed.
* |nteraction is via dispatch.

* Overall machine has many states due to the
whole being greater than the sum of the parts.
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Appropriate
definition of
semiring
operations for
summation and
multiplication
yields significant
reductions in this
problem.

Reductions are due
to symmetry of the
beds however.

What class of
systems does this
generalize to?

Projection is Label Erasure

Flattened states size

10

10

10°F

_
(=]
)
T

Evolution of flattened states size

systems Composition is Product of Machines -

ERSITJ,

5\

JQ

RYLPSl

- Result states size for occupancy

Result states size for arrival
% Result states size for ICP level
= = = Dijrect result without states reduction

5 10
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The . S

SYstems Automotive B

Research TRyLAS

¢ The new trend is

+ Break the “one-aubsyatem one-ECU" paradigm
+ Distributs functionalities over asveral nodes to optimize number and coat of ECUs
¢ Advantages
+ flexibility, cost reduction, redundancy (fault-toleranca)
+ more sophisticated control enabled by mors powerful hardware & UTE@SAR

104
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SYSteins FAA NEXTGEN &8
Research @dRYLP\é

Next Generation Air Transportation System (NextGen)

Aircraft Trajectory
Based Operations

,. <

.
-

tion Operations and Supponj

o / / (i Flight Operations and Support ) ——— == —
- 4 i =  ——
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The |

systems MBSE for Robotic Arms and Grippers @@

Research

* Transcend areas of application: from
space to micro robotics

* Include material selection in design

* Include energy sources, resilience,
reliability, cost

* Include validation-verification and
testing

* Use integrated SysML and Modelica
environment

e Link it to tradeoff tools CPLEX and ILOG
Solver

* Demonstrate reuse, traceability,
change impact and management
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AUTONOMOUS SWARMS - T~
Systems

NETWORKED CONTROL

« Component-based Architectures

« Communication vs Performance
Tradeoffs

« Distributed asynchronous

* Fundamental limits
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Sehlne SMART MANUFACTURING A%

Research TRYLAS

* Flexible production lines
* Robotics and humans
‘ integrated
* Reduce manufacturing to
compilation
= * Custom materials
=2 %= .« Materialsas a design variable
* Composite materials design

_— 4

i i

Model-based systems engineering —
manufacture to component models
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II]\(I[[![L tor 18 56

Systems 7 B0

" NEW HOME HEALTH PLATFORMS

* Digital home entertainment infrastructure can be used for health
* Everyday health through everyday devices
* Personalized, proactive health info/reminders/agents
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SYarsins INTEL’S PROACTIVE HEALTH LAB 58

Research
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Qugicior HYBRID LOC -- BIOCHIPS @@Q

Biochips are currently emerging with different’™
form factors and technologies for applications
INn research, pharma and healthcare

All biochip
concepts are
disposables

OMA pwArray piluidic chip

L] | H ﬁ I 4 pfluidic chip +
[] DA pArray
B g = 4 L B g =

Applications:

= Basic research

» Pharma R&D / Drug develnpm}niged Biotech®

~ Healthcare
“Gresn Biotech”

= Agriculiure and enviromment . : .
Grey Biotech

= Industrial amd process control
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e . NIODEL-BASED SYSTEMS ENGINEERING:
Systems Bt )1

Research Ch a’lenges 1 TRYLAS

®* Domain Specific Modeling Languages (DSML) with semantics that
can be composed and manipulated

®* Composition platforms — correct by construction systems

platforms and models of computations; substantial reduction in
V&YV

®* System and component behavioral abstractions that can support
Incremental System Integration — while preserving testability and

predictability

®* Fully integrated semantically control, hardware, software and
systems design tools and platforms

®*  Much richer semantics for interfaces, especially in the most
critical physical to cyber boundary —accommodate and indeed
unite the two sides of the boundary

* Metamodels and Metamodeling Environments, user/designer
friendly

Copyright © John S. Baras 2011 11
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mei.or  NVIODEL BASED SYSTEMS ENGINEERING: @

Systems
Challenges 2

Research
® Principles for system integration — System Science — Network
Science

®* Fundamental performance limitations of networked systems
with asynchrony, concurrency, etc.

®* Fundamental implications of physical implementation
technology selection — multi-physics

®* Fundamental performance limits of distributed hybrid
asynchronous systems, concurrency, non-collocated sensors,
decision making and actuation nodes, multiple feedback loops,
delay & bandwidth constraints

®* Distributed control of and inference in the same — self
organization — self assembly

* Theories of compositionality

®* Much better integration of logic and optimization for trade-off
analysis in dynamical systems
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Instltutc for
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Research

A Bold
Experiment

Starting early in the
education chain

Undergraduates
working with
industry and
government
mentors on SE
projects

NEW FOR FALL 2010

ENES 489P

e
SPECIAL TOPICS IN ENGINEERING

HANDS-ON SYSTEMS
ENGINEERING PROJECTS

WOULD YOU LIKETO
UNDERSTAND:

How to master system complexity?

*  How to build systems to meet time and
budget requirements?

= How to builld systems that can be easily
verified and validated?

=  How to control risk?

=  How to design safe systems?

This course will e a great opp ortunity for

senior-level undergraduates and grad Stu-

dents in all engineering disciplines. You'll get

the chance to work in teams on hands-on,

complex systems design in collaboration with W

industry and government experts.

Be among 10 select groups in the country

to be ntroduced to the new area of systems

9 Q.- Systems eng g is rapidly
3 asa weh: ‘*-deucm

pam'ovononc«sdal lmdsand:sprown o ¢
to be a critical factor for U.S. competitivengss.

Get ahead of your class and get introduced to
!hccm-gm model-based systems engineer-

de

3 \_/ HULTIPLE VIEWS
OF A SYSTEM

INSTRUCTORS Professor Mark A Austin and Professor John S. Baras
LECTURE NOTE TIME CHANGE Tuesdays, 5:00-6115 p.m. 2107 CSIC

LAB Thursdays, 3330-6:00 pm. SEIL Lab, 2250 AV. Wiliams Bidg.

CLASS LIMIT 20 students Learn more online!

3 CREDITS www.isr.umd.edu/~austin/enes4 89p .html
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Thank you!

baras@umd.edu
301-405-6606
http://www.isr.umd.edu/~baras

Questions?
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