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Abstract— Information broadcasting is an effective method to
deliver popular information pages to a large number of users
in wireless and satellite networks. In a previous work, we used
a dynamic optimization approach to address the problem of
broadcast scheduling for a pull system with equal file sizes.
In this paper, we address that problem in a more general
setting where the file sizes are not equal and have geometric
size distributions with possibly different means. The dynamic
optimization approach allows us to find a near-optimal scheduling
policy, which we use as a benchmark to evaluate a number of
other heuristic policies. Also, we modify the resulting policy and
apply it to the case with fixed (unequal) file sizes and compare
the results with some other well known, as well as new, heuristic
policies. Finally, we introduce a low-complexity heuristic policy
to be used for practical implementations. The results show that
the performance of the new policy is very close to that of the
original policy.

I. INTRODUCTION

The rapid growth in the demand for various informa-
tion delivery services in recent years has sparked numerous
research works for finding more efficient methods for the
delivery of information. In many applications the flow of data
is not symmetric. In what we call a typical data delivery
application, there are a few information sources and a large
number of users, thus, the volume of data transferred from
the sources to the users is much larger than that in the reverse
direction. The short information messages available in some
cellular phones is an example of this type of applications. The
WWW traffic, which constitutes a large portion of the Internet
traffic, can be also regarded as a data delivery application.
The data transferred through these applications is usually the
information packages requested by many users as opposed
to applications with one-to-one information content such as
email. This property of the data delivery applications and
the fact that every information package is typically requested
by a large number of users at any time, makes the wireless
broadcast systems a good candidate as the transport media
for those applications. These systems, due to their inherent
physical broadcast capability, form a one-hop structure where
all the receivers share the single download link and receive the
requested information at the same time. For the same reason,
these systems are highly scalable and can support additional
users without the need for major changes in their infras-
tructures. Throughout this report, we use the term broadcast
system to refer to this type of systems with physical broadcast

capability.
The two main architectures for broadcast delivery are the
one-way(or Push) and the two-way(or Pull) systems. In a
push system, the server does not actually receive the requests
and schedules its transmissions based on the statistics of
the user request pattern(hence the term push). Conversely,
in a pull system the server receives all the requests and can
schedule the transmissions based on the number of requests
for different data packages. In this paper we investigate the
problem of optimal scheduling of the broadcast messages in
a pull system in order to minimize the average waiting time
of the users. This situation is more general than the fixed-
length setting[1] and applies to applies to a larger number of
practical situations. In our formulation, we assume that the
page lengths are Geometric random variables with possibly
different mean values. Later in this paper, we use the obtained
results to consider the fixed-length case as well.

II. RELATED WORK

Compared to the wealth of research works on the schedul-
ing problem in push broadcast systems, fewer works have
addressed the scheduling problem in the pull systems. The
papers by Ammar, Dykeman and Wong[2] and [3] are probably
the first papers that introduced this problem and presented
both heuristic and numerical solutions for special cases. Later,
Franklin and Aksoy[4] presented a heuristic policy that ap-
proximated the Longest Total Wait First (LTWF) policy and
used the number of requests for each page together with the
time since the last broadcast of the page to calculate the
index associated with that page. The policy would then chose
the page with the largest index value to be broadcasted. Su
and Tassiulas[5] introduced another index policy ,which they
named PIP, that used the number of requests for each page
together with the request arrival rate for the page to calculate
the index associated with each page. Both of these policies
performed almost identical to each other and also to the
LTWF performance. In [5], a Markov Decision Process(MDP)
formulation of the problem was also presented. However, the
complex form of the problem prevented them from going
very far with that approach. The work by Raissi and Baras[1]
is probably the only one to use a MDP formulation of the
problem to find an analytical solution. They investigated the
problem in a more general framework where distinct weights



are associated with the pages and derived a near-optimal index
policy using the MDP formulation. They also used that policy
to propose low complexity heuristic policies that extend the
PIP policy to this more general setting.
All of the above works on pull systems with minimum average
delay objective assume equal page sizes. This restriction
makes it difficult to apply any of those policies to the systems
where the stored pages naturally have different sizes and
this differences need to be taken into account in designing
the scheduling policy. One of the important instances of this
problem is in the satellite Internet delivery systems with
cache broadcasting where the cache contains web pages with
unequal sizes. To our knowledge, there has not been any
previous work, neither heuristic nor analytical, on this more
general setting and this work seems to be the first attempt
to study it. In this paper we propose a MDP formulation of
the problem and use the ideas from the Bandit Problems to
propose index-type scheduling policies. We study the problem
with random file sizes and later extend the policy to the case
with deterministic file sizes as well. In section III, we present
our MDP formulation of the problem and the Restless Bandit
approach for solving it. After proving the necessary properties
of the system, we use the Restless Bandit approach to find an
index policy for this problem in section IV. Section VI is
dedicated to evaluation of the policy and comparing it with
some heuristic policies. We then present a low-complexity
policy which performs close to our policy and also extends
it to the systems with deterministic page sizes.

III. PROBLEM FORMULATION

We denote by N(> 1), the number of information pages
stored in the system. We assume that the broadcasts can only
start in certain time instants which are equally spaced in time.
This periodic setting introduces a time unit that can be set to
one without any loss of generality. The page sizes are random
variables with Geometric distributions with parameter qi for
type i pages. If we denote by li the length of page i, we have

P [li = n] = qi(1 − qi)
n−1, n ≥ 1, 0 < qi ≤ 1, i = 1, . . . , N.

(1)
Here we implicitly assume that the sizes are rounded up to
the smallest integer multiple of the above time unit. We also
allow preemption in the system, i.e. the broadcast of a page
can be interrupted by the system, so that another page is
broadcasted, and can be resumed at a later time. However,
this can only happen at the beginning of every broadcast cycle.
This implies that the users are capable of receiving different
segments of a page separately and re-assembling them at the
receiver. Therefore, every broadcast initiation time t = 0, 1, . . .
is a decision time (and also a possible preemption time). The
waiting time of the requests for a page is defined as the time
since the arrival of the request until the end of the transmission
of the last segment of that page. The new requests for each
page which arrive after the beginning of the transmission of the
first segment of the page, need to wait till the beginning of the
next transmission of the whole page. We also assume that the
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Fig. 1. Sample path of a system with three pages.

system has K(1 ≤ K < N) identical broadcast channels. In
this pull broadcast system, the system has complete knowledge
about the number of pending requests for each page and based
on this information determines the page to broadcast in the
next time unit in order to minimize the average waiting time
over all users.
The request arrival process for each page i; i = 1, . . . , N
is a discrete-time, stationary, iid process which we show by
Ai(t); t = 0, 1, . . .. We denote by pi(a); a ≥ 0 the pmf of
the arrivals during every time unit and show its mean value
by λi. The state of the system at any time instance t is
X(t) = (X1(t), Y1(t), X2(t), Y2(t), . . . , XN (t), YN (t)) where
Xi(t) is the number of requests for page i at time t that have
received at least one segment of the requested page and Yi(t)
is the number of requests for the same page which arrived after
the broadcast of the first segment of the page and therefore
need to wait till the next full broadcast of that page. Each
(Xi(t), Yi(t)); i = 1, . . . , N process is a Markov process with
transition probability

(Xi(t + 1), Yi(t + 1)) =






(0, Yi(t) + Ai(t)) w.p. qi if i ∈ d(t)
(Xi(t), Yi(t) + Ai(t)) w.p. (1 − qi) if i ∈ d(t)
(Xi(t), Yi(t) + Ai(t)) if i ∈/ d(t)

(2)

if Xi(t) > 0 and

(Xi(t + 1), Yi(t + 1)) =






(0, Ai(t)) w.p. qi if i ∈ d(t)
(Yi(t), Ai(t)) w.p. (1 − qi) if i ∈ d(t)
(0, Yi(t) + Ai(t)) if i ∈/ d(t)

(3)

if Xi(t) = 0. Here d(t) ⊂ {1, . . . , N} is the set containing
the indices of the K pages broadcast at time t. Figure 1 shows
a sample path of the evolution of a system with three pages
and a single broadcast channel.
The weighted average waiting time over all users is defined

by

W̄ =

N
∑

i=1

λi

λ
W̄i

where W̄i is the average waiting time for all page i requests
and λ is the total request arrival rate to the system. By Little’s



law the average waiting time can be written as

W̄ =
1

λ

N
∑

i=1

(X̄i + Ȳi). (4)

where X̄i and Ȳi are the average numbers of the requests
currently in service or waiting for service in queue i, respec-
tively. To avoid the difficulties associated with the average
cost problems, instead of minimizing (4), we use the total
discounted reward criteria and try to minimize the total dis-
counted expected number of waiting requests defined as

Jβ(π) = E

[

∞
∑

t=0

βt

N
∑

i=1

(Xi(t) + Yi(t))

]

. (5)

Here π is the scheduling policy resulting in Jβ(π) and under
mild conditions[6] (1−β)Jβ(π) approaches the optimal value
for problem (4) as β → 1. Equations (5) and (2), together with
the initial condition (X(0), Y (0)), define the minimization
problem

J∗
β(π) = min

π
E

[

∞
∑

t=0

βt

N
∑

i=1

(Xi(t) + Yi(t))

]

. (6)

It can be shown[7] that Jβ(π) satisfies the equation

(1 − β)Jβ(π) =

E

[

N
∑

i=1

(Xi(0) + Yi(0))

]

+ βE

[

∞
∑

t=0

βt

N
∑

i=1

Ai(t)

]

− βE





∞
∑

t=0

βt
∑

i∈d(t)

qi(Xi(t) + Yi(t)I[Xi(t) = 0])



 .

Therefore, since the first two terms of the right-hand side are
independent of the policy π, the problem of minimizing Jβ(π)
would be equal to the maximization problem

Ĵβ(π) =

max
π

E





∞
∑

t=0

βt
∑

i∈d(t)

qi(Xi(t) + Yi(t)I[Xi(t) = 0])



 . (7)

This problem is in fact a DP problem with decision space
D = {d; d ⊂ {1, 2, . . . , N} & |d| = K} and state vector
s = {x1, y1, . . . , xN , yN}. Let us denote by S the state space
of the problem. The expected reward for broadcast of pages
in d ∈ D at any state s ∈ S is

r(s, d) =
∑

i∈d

qi(xi + yiI[xi = 0]).

Also, if we show the optimal value function of this problem
by V (s), then V (s) satisfies the optimality equation

V (s) = max
d∈D

[

r(s, d) + β
∑

s′∈S

pd(s, s′)V (s′)

]

∀s ∈ S (8)

where pd(s, s′) is the probability of going from state s to
state s′ with decision d as defined by equations (2) and (3).

In generic terms, this problem is a scheduling problem in a
queueing system with N queues and K servers with different
Geometric service times for different queues. The additional
property which distinguishes this problem from the similar
well-known scheduling problems [8], [9] is the fact that the
servers are of the bulk service type with infinite bulk size.
In other words, with a single service, all of the users of the
serviced queue are cleared.
In this work, we limit our search to non-idling policies. Given
the fact that there is no cost associated with each service, it
can be shown that a non-idling optimal policy always exists.
Moreover, for practical reasons, we are only interested in index
policies. An index policy assigns a value (index) to each queue,
which is only a function (index function) of the state and other
parameters of that queue. For a system with N queues, the
complexity of the policy would be O(N) which is crucial for
implementation purposes. This problem fits in the definition
of the Restless Bandit problem introduced by Whittle[10],
[11]. However, Whittle’s approach can be only applied if the
problem has certain properties. We will briefly introduce this
method in the next section in such a way to fit our problem
and prove the required properties after that. More information
about this formulation can be found in [10] and [11].

IV. RESTLESS BANDIT APPROACH

The additive form of the reward in our problem allows
us to use the Linear Programming(LP) formulation of the
DP problems[6] and convert problem (8) into the (dual) LP
problem

Maximize

N
∑

i=1

[

∑

s∈Si

ri(s)zi(s, 1)

]

(9)

subject to
∑

d∈{0,1}

zi(s
′, d) −

∑

s∈Si

∑

d∈{0,1}

βpd
i (s, s

′)zi(s, d) = αi(s
′)

(10)
for i = 1, . . . , N and s′ ∈ Si. Here, αi(.) is the initial
probability distribution of the states, ri(s) is the reward for
activating project i while in state s,

zi(s, 1) = E

[

∞
∑

t=0

βtI[xi(t) = s , i ∈ d(t)]

]

and

zi(s, 0) = E

[

∞
∑

t=0

βtI[xi(t) = s , i /∈ d(t)]

]

where I(.) is the indicator function of the event defined by its
argument. In other words, zi(s, 1) is the discounted expected
value of the number of times queue i is served while at state
s.
An additional constraint implicit to this scheduling problem
is that at any time t, exactly K queues should be served.
Whittle’s relaxation assumes that instead of having exactly K
projects activated at any time, only the time average of the
number of activated projects be equal to K. This assumption



in the discounted case can be stated as the following additional
constraint to the dual problem

N
∑

i=1

∑

s∈Si

zi(s, 1) = K/(1 − β) (11)

Using the Lagrangean Relaxation[12] method, the relaxed
problem can be defined as[11]

Maximize

N
∑

i=1

[

∑

s∈Si

ri(s)zi(s, 1)

]

+ ν

(

K/(1 − β) −
N
∑

i=1

∑

s∈Si

zi(s, 1)

)

(12)

where ν is the lagrange multiplier. This problem can be also
written as

Maximize

N
∑

i=1

[

∑

s∈Si

(ri(s) − ν)zi(s, 1)

]

+Kν/(1−β) (13)

subject to constraint (10). Using the additive form of the
objective function (13) and independence of the constraint on
each project in (10), this maximization problem can be broken
into N independent single-project maximization problems as

Maximize
∑

s∈Si

(ri(s) − ν)zi(s, 1) (14)

subject to constraint (10) for i = 1, 2, . . . , N . The optimal
policy for each problem assigns one of the two idle and active
actions to every possible state of the project.
Whittle showed that an optimal index policy for the relaxed
problem exists, provided that the above single-project prob-
lems have a certain monotonicity property. This property states
that for each project i; i = 1, . . . , N , the set of states for
which it is optimal to leave the project idle, increases from
∅ to the whole state space Si as ν is increased from −∞ to
∞. In that case, the value of the index for project i while
at state xi is the amount of service cost ν that puts state
xi on the border of idle and active regions. With the index
function defined, the optimal policy for the relaxed problem
is characterized by a threshold value ν∗ specific to the problem
and is to serve those queues with their indexes greater than
ν∗. Inspired by this results, Whittle proposed a heuristic policy
for the original problem that uses the same index function and
serves the queues with K largest index values at any time.
It was later shown[13] that this policy enjoys some form of
asymptotic optimality.
In the next section we first investigate the indexability of our
problem and then provide a method for computing the index
function.

V. SOME PROPERTIES OF A SINGLE CONTROLLED BULK
SERVICE QUEUE

Imagine one of our bulk service queues with arrivals and
service times as before. The sub-problem we would like to
consider for a single queue is to find the optimal policy that
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Fig. 2. Typical shapes of the idle and active regions for a single queue
problem.

results in the maximum expected value of the discounted
reward given a fixed service cost ν. The optimal policy is the
optimal assignment of active (serving the queue) or passive
(leaving the queue idle) actions to every state. More precisely,
the objective function is:

Jβ = E

[

∞
∑

t=0

βtR(t)

]

where R(t) is the reward at time t, that is

R(t) =














x(t) − ν w.p. q if d(t) = 1 & x(t) > 0
y(t) − ν w.p. q if d(t) = 1 & x(t) = 0
−ν w.p. 1 − q if d(t) = 1
0 if d(t) = 0

where d(t) is the action at time t which is 1 if the queue
is served and 0 otherwise and (x(t), y(t)) is the state of this
system at time t as defined before.
We need to find if the optimal solution to this problem has
the monotonicity property. Furthermore, we need to find the
exact form of the policy and its switching curve to be able to
calculate the index at any decision time. Figure 2 shows one
example of the form of the optimal policy with the idle and
active regions distinguished. All of our experimental results
obtained by finding the optimal solution for this problem (via
the Value Iteration method) in a large number of different
settings (different values of λ,ν and q) confirm the monotonic
expansion of the idling policy with increasing values of ν.
Figure 3 shows a few results for this system with different
ν values. The idling region for each case is the region that
includes the origin and is surrounded by the x and y axes and
the corresponding switching curve. The shape of the idling
region is more or less the same in all results. It defines a
policy which is of the threshold type in both x and y directions
(except x = 0 points in some cases). The threshold property
in the x direction can be stated as follows:

Property 1: If d(x, y) is the decision defined by the optimal
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policy for state (x, y) we have

if d(x, y) = 1 then d(x+ i, y) = 1; ∀x > 0and i > 0; (15)
Proof: [7].
Unlike the above case, it is very difficult to prove the threshold
property in the y direction. Due to the bulk service property
of the server, the usual techniques (e.g. [14], [15], [16], [17])
which take advantage of the sub(super)-modularity properties
of the problem are not successful here. Nonetheless, the
general methods for approaching this type of problems can
still be used. We used induction on the Policy Iteration[6]
steps to prove the properties of the switching curve for the
light traffic case where the time slots are small enough so that
the probability of having more than one arrival during a time
slot is negligible. Briefly, the switching curve in this case has
certain properties as follows. Defining x0

4
= b ν

q
c, we have

1) d(x, y) = 1 ; ∀y , ∀x > x0

2) ∃y0 > 0 s.t. d(0, y) =

{

1 if y ≥ y0

0 if y < y0

3) ∀ 0 < x ≤ x0; ∃yx > 0 s.t. d(x, y) =
{

1 if y ≥ yx

0 if y < yx

4) ∀ 0 < x < x0; 0 ≤ yx − yx+1 ≤ 1
βa

+ 1
5) For 1 > β >> 0 we have y0 > x0

where a = q
1−β(1−q) . Properties 1 and 4 basically describe the

threshold property in the x direction in more details. Properties
2 and 3, deal with the threshold property in the y direction
and property 5 is only a reasonable assumption to make the
problem more tractable. Figure 4 shows the exact form of
the switching curve for a typical light traffic setting which is
calculated using the Value Iteration method. A general proof of
these properties requires careful consideration of all cases that
may happen for different values of the parameters. However,
the details of the proof for a typical case can be found in [7].
The values of the different points of the switching curve can
be found using a continues approximation of the curve which
gives the values of the yx for x = 0, . . . , x0 up to a rounding
error. Since the top part of the curve is a straight line with
slope −1/βa, we only need the y0 and y1 values to specify
the curve. It can be shown that these values satisfy

y1 − y0 =
1

βa

[

ν

q
− 1

]

− ap1

q
(16)

y0 =
ν

q
+

βp1

1 − β

(

1 − c−y0

)

(17)

where c = 1−βp0

βp1

, p0 = 1 − p1 and p1 is the rate in light
traffic regime or equivalently, the probability of one arrival.
It is then easy to show that the switching curve expands
in both x and y directions as ν increases and therefore the
monotonicity property holds for the single-queue problem.
All of our numerical results (e.g. figure 3) suggest that the
property also holds for higher arrival rates. However, due to
the complicated form of the switching curve, we were not
able to bring any analytical arguments for that. The above
equations also allow us to calculate the value of the index
function for every state. The index function at any state (x, y)
is by definition the minimum amount of the service cost ν that
puts the point (x, y) on the switching curve. for x ≤ x0, the
corresponding y1 value is

y1 = y + (x − 1)/βa. (18)

Next, y0 can be calculated by solving the following equation

y1+
1

βa

[

βp1

1 − β
+ 1

]

+
ap1

q
= y0

(

1 +
1

βa

)

+
p1

a(1 − β)
c−y0 .

(19)
Having found the value of y0, the corresponding ν is

ν = qy0 −
qβp1

1 − β

(

1 − c−y0

)

. (20)

If the resulting ν turns to be smaller than qx, then x is on
the right border of the idling region, i.e. x = ν/q. For x = 0
case, the available y is in fact the y0 value and ν is directly
calculated from equation (20).

VI. RESULTS

In this chapter we compare the results of our index policy
with that of a number of other indexing policies. Unfortu-
nately, to our knowledge, the broadcast scheduling problem



with random file sizes has not been addressed before. There-
fore, we don’t have any immediate rival policy readily avail-
able for comparison. However, based on previous experiences,
we chose a number of well-known policies used in simpler
broadcast systems for comparison. In all experiments, we
extended the index function defined above to general traffic
cases by plugging in the actual rate in the equations. More
detailed results and discussions can be found in[7].

A. Random file sizes

We compared our policy, which we named NOP(Near-
Optimal Policy), to five other policies. We set up a system
with 50 pages and simulated it under different settings with
each policy. Other than the choice of the scheduling policy,
every experiment had two other parameters namely, the
average size of each of the pages and, the total request arrival
rate of the system. In all experiments the assignment of the
average size to each page was the opposite of the assignment
of the request arrival rate to that page i.e., the longest page(in
the average sense) was the least popular page and the shortest
page the most. This rule is qualitatively consistent with many
practical situations. Also, in all experiments we used the Zipf
law to assign the individual request arrival rates to each queue
given the total request arrival rate of the system. In order
to investigate the effect of the distribution of the average
file sizes on the performance of the policy, we performed
our experiments for three choices of the distribution namely,
Exponential, Uniform and Pareto distributions.
The policies that were used in the final set of experiments are:

• NOP: The light traffic approximate indexing policy de-
rived in this paper.

• PIP: Arbitrary extension of the original PIP policy in-
troduced in [5] extended for the new two dimensional
setting

νi =
xi + cyyi√

λi

• HP1: Heuristic policy defined as

νi =
(xi + cyyi)qi√

λi

• HP2: Heuristic policy defined as

νi =
(xi + cyyi)

√
qi√

λi

• HP5: Heuristic policy defined as

νi =
(x2

i + y2
i + xiyi)

λi

• MRF: Maximum-Request-First index defined as

νi = (xi + cyyi)

where cy is a weight parameter and needs to be tuned for each
policy. For a fair comparison, the cy parameter was tuned for
each policy through a large number of experiments and each
policy was used with its own ”optimal” cy value.
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Fig. 5. Comparing the performance of different scheduling policies for
different choices of the file size distribution.

Finally, the experiments were performed under seven
choices of the total request arrival rates namely λ =
5, 10, 20, 50, 100, 150, 200. Figure 5 shows the results obtained
from each policy under different simulation settings. The
results show that the MRF and HP2 policies perform close to
the NOP policy for exponential and uniform file size(average)
distributions. However, only HP2 remains close to NOP for
Pareto distribution with NOP slightly outperforming HP2 in
all cases.
To summarize, we found that the optimized versions of all
candidate policies are inferior to NOP. However, according
to the results, HP2 (with cy = 0.5) can be used as a low
complexity alternative for NOP for practical purposes.



B. Fixed file sizes

In some broadcast systems, the files to be broadcasted are
locally stored in the system and therefore the system knows
their exact sizes. The cache broadcast systems are examples
of this type of systems. Unfortunately, the analytical approach
to this problem proved to be too complicated. However, in the
absence of an analytical solution, it is possible to modify the
NOP policy for this case and it is constructive to compare its
performance with those of some other heuristic policies.
The NOP policy can be easily modified for use in the fixed
file length case by replacing the average file size parameter
1/qi, with the exact file size value Li in the previous formu-
las. We compared the performance of the NOP with MRF,
HP1,HP2 and HP5. It can be shown[7] that the HP5 index
is in fact an approximation of the Longest-Total-Wait-First
policy extended for the systems with preemption. Therefore,
we use the LTWF1 name for that policy in this case. We also
tested another version of LTWF that take advantage of the
number of transmitted segments of each file and is defined
as LTWF2 = LTWF1 − lx, where l is the number of
transmitted segments of the file. The HP1 and HP2 in this
case replace the qi factor with 1/Li wherever it appears and
we also used the optimum values of cy found in the previous
experiments for them. The set of experiments in this section
are similar to the last section, i.e., we found the average
waiting times resulted by all policies for seven different arrival
rates and three choices of the file size distribution. Since the
file sizes are deterministic, assuming different distributions for
them has a better meaning in this case. Figure 6 shows the
results. The first observation is the poor performance of the
LTWF policies compared to the other policies. This can be
an indication that this type of policy, unlike for the equal file
size case, is not optimal (or even close to optimal) for this
system. Also, in all graphs, HP1 performs poorly compared to
the other policies. NOP and HP2 always perform very close
to each other. As a conclusion, we can say that for practical
purposes, HP2 can be used as a low complexity policy for a
wide range of file size distributions.
A legitimate question is the validity of the above results for
higher request arrival rates. In fact, since our index function
was found by extending the index function for the light traffic
regime to arbitrary rates, we expect the performance of this
policy to degrade for higher rates. However, the use of the
pull broadcast systems with their additional cost for a return
channel is only justified for relatively lower traffic loads and
it has been shown that in practice for higher rates, both of
the pull and push systems have the same performance and
therefore the latter is preferred due to its lower cost. A well-
designed broadcast system(with a return channel available)
uses the pull delivery for files with low to medium request
rates and the push delivery for other files.
In general, the results suggest that our approximate index
policy performs very close to the optimal policy. The dynamic
optimization approach also allows us to address other varia-
tions of the problem. For example, an immediate extension of
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Fig. 6. Performance of different policies for different choices of the file size
distribution.

this problem where distinct weights are assigned to the average
waiting times of the users of different files, can be addressed
in a straightforward manner. We are currently trying to address
similar problems with time constraint and will publish the
results in future publications.

VII. CONCLUSION

In this paper, we used the Restless Bandit problem formula-
tion to address the problem of optimal scheduling in broadcast
systems with random file lengths. We showed that the problem
is indexable and derived an equation for the index function
for the light traffic regime and extended it to be used for
moderate traffic cases and fixed file size situations. At the same
time, we chose several well-known, as well as new, heuristic
policies and tried to optimize them for use in our experiments.



All of the results strongly suggest that our policy is a near-
optimal policy. Also, one of our heuristic policies proved to
perform as good as the original policy and can be used as a
low complexity policy for practical applications. Nevertheless,
the optimization approach remains valid as a powerful method
for investigating other variations of the problem.
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