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Abstract

We consider the consensus problem of a group of dynamic agents whose communication network

is modeled by a directed time-varying graph. In this paper wegeneralize the asymptotic consensus

problem to convex metric spaces. A convex metric space is a metric space on which we define a convex

structure. Using this convex structure we define convex setsand in particular the convex hull of a

(finite) set. Under minimal connectivity assumptions, we show that if at each iteration an agent updates

its state by choosing a point from a particular subset of the convex hull generated by the agent’s current

state and the states of his/her neighbors, then the asymptotic agreement is achieved. In addition, we

give bounds on the distance between the consensus point(s) and the initial values of the agents. As

application example, we use this framework to introduce an iterative algorithm for reaching consensus

of opinion. In this example, the agents take values in the space of discrete random variable on which we

define an appropriate metric and convex structure. For this particular convex metric space we provide

a more detail analysis of the convex hull generated by a finiteset points. In addition we give some

numerical simulations of the consensus of opinion algorithm.

I. Introduction

A consensus problem consists of a group of dynamic agents whoseek to agree upon certain

quantities of interest by exchanging information among them according to a set of rules. This
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problem can model many phenomena involving information exchange between agents such as

cooperative control of vehicles, formation control, flocking, synchronization, parallel computing,

etc. Distributed computation over networks has a long history in control theory starting with the

work of Borkar and Varaiya [1], Tsitsikils, Bertsekas and Athans [23], [24] on asynchronous

agreement problems and parallel computing. A theoretical framework for solving consensus

problems was introduced by Olfati-Saber and Murray in [16],[17], while Jadbabaie et al. studied

alignment problems [5] for reaching an agreement. Relevantextensions of the consensus problem

were done by Ren and Beard [14], by Moreau in [9] or, more recently, by Nedic and Ozdaglar

in [12], [11].

Typically agents are connected via a network that changes with time due to link failures, packet

drops, node failure, etc. Such variations in topology can happen randomly which motivates

the investigation of consensus problems under a stochasticframework. Hatano and Mesbahi

consider in [6] an agreement problem over random information networks, where the existence

of an information channel between a pair of elements at each time instance is probabilistic

and independent of other channels. In [13], Porfiri and Stilwell provide sufficient conditions for

reaching consensus almost surely in the case of a discrete linear system, where the communication

flow is given by a directed graph derived from a random graph process, independent of other time

instances. Under a similar model of the communication topology, Tahbaz-Salehi and Jadbabaie

give necessary and sufficient conditions for almost sure convergence to consensus in [21], while

in [22], the authors extend the applicability of their necessary and sufficient conditions to strictly

stationary ergodic random graphs. Extensions to the case where the random graph modeling the

communication among agents is a Markovian random process are given in [7], [8].

A convex metric space is a metric space on which we define a convex structure. The main goal

of this paper is to generalize the asymptotic consensus problem to the more general case of convex

metric spaces and emphasize the fundamental role of convexity and in particular of the convex

hull of a finite set of points. Tsitsiklis showed in [23] that,under some minimal connectivity

assumptions on the communication network, if an agent updates its value by choosing a point

from the (interior) of the convex hull of its current value and the current values of its neighbors,

then asymptotic convergence to consensus is achieved. We will show that this idea extends

naturally to the more general case of convex metric spaces.

Our main contributions are as follows.First, after citing relevant results concerning convex
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metric spaces, we study the properties of the distance between two points belonging to two,

possible overlapping convex hulls of two finite sets of points. These properties will prove to be

crucial in proving the convergence of the agreement algorithm. Second, we provide a dynamic

equation for an upper bound of the vector of distances between the current values of the agents.

We show that the agents asymptotically reach agreement, by showing that this upper bound

asymptotically converges to zero.Third, we characterize the agreement point(s) compared to

the initial values of the agents, be giving upper bounds on the distance between the agreement

point(s) and the initial values in terms of the distances between the initial values of the agents.

Forth, we emphasize the relevance of our framework, by providing an application under the

form of a consensus of opinion algorithm. For this example wedefine a particular convex metric

space and we study in more depth the properties of the convex hull of a finite set of points.

The paper is organized as follows. Section II introduces themain concepts related to the

convex metric spaces and focuses in particular on the convexhull of a finite set. Section III

formulates the problem and states our main theorem. SectionIV gives the proof of our main

theorem together with some auxiliary results. In Section VIwe present an application of our

main result by providing an iterative algorithm for reaching consensus of opinion.

Some basic notations:Given W ∈ Rn×n by [W] i j we refer to the (i, j) element of the matrix.

Theunderlying graphof W is a graph of ordern for which every edge corresponds to a non-zero,

non-diagonal entry ofW. We will denote by1{A} the indicator function of eventA. Given some

spaceX we denote byP(X) the set of all subsets ofX.

II. Convex Metric Spaces

The first part of this section deals with a set of definitions and basic results about convex

metric spaces. The second part focuses on the convex hull of afinite set in convex metric spaces.

A. Definitions and Results on Convex Metric Spaces

For more details about the following definitions and resultsthe reader is invited to consult

[25],[26].

Definition 2.1: Let (X,d) be a metric space and letx,y,z∈ X. We say thatz is between xand

y if d(x,z)+d(z,y) = d(x,y). For any two pointsx,y ∈ X, the set

{z∈ X | d(x,z)+d(z,y) = d(x,y)}
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is calledmetric segmentand is denoted by [x,y].

Definition 2.2: Let (X,d) be a metric space. A mappingψ : X×X× [0,1]→X is said to be

a convex structureon X if

d(u,ψ(x,y,λ)) ≤ λd(u, x)+ (1−λ)d(u,y), ∀x,y,u ∈ X and∀λ ∈ [0,1]. (1)

Definition 2.3: The metric space (X,d) together with the convex structureψ is calledconvex

metric space.

A Banach space and each of its subsets are convex metric space. There are examples of convex

metric spaces not embedded in any Banach space. The following two examples are taken from

[26].

Example 2.1:Let I be the unit interval [0,1] and X be the family of closed intervals [ai ,bi ]

such that 0≤ ai ≤ bi ≤ 1. For I i = [ai ,bi ], I j = [a j ,b j ] and λ ∈ I , we define a mappingψ by

ψ(I i , I j ,λ) = [λai + (1−λ)a j ,λbi + (1−λ)b j ] and define a metricd in X by the Hausdorff distance,

i.e.

d(I i , I j) = sup
a∈I
{| inf

b∈I i
{|a−b|} − inf

c∈I j
{|a−c|}|}.

Example 2.2:We consider a linear spaceL which is also a metric space with the following

properties:

(a) For x,y ∈ L, d(x,y) = d(x−y,0);

(b) For x,y ∈ L, andλ ∈ [0,1],

d(λx+ (1−λ)y,0)≤ λd(x,0)+ (1−λ)d(y,0).

Definition 2.4: LetX be a convex metric space. A nonempty subsetK ⊂X is said to beconvex

if ψ(x,y,λ) ∈ K, ∀x,y ∈ K and∀λ ∈ [0,1].

We define the set valued mappingψ̃ : P(X)→P(X) as

ψ̃(A) , {ψ(x,y,λ) | ∀x,y ∈ A,∀λ ∈ [0,1]}, (2)

whereA is an arbitrary set inX.

In [26] it is shown that, in a convex metric space, an arbitrary intersection of convex sets is

also convex and therefore the next definition makes sense.

Definition 2.5: The convex hullof the setA ⊂ X is the intersection of all convex sets inX

containingA and is denoted byconv(A).
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Another characterization of the convex hull of a set inX is given in what follows. By defining

Am, ψ̃(Am−1) with A0 = A for someA⊂X, it is discussed in [25] that the set sequence{Am}m≥0

is increasing and limsupAm exits, and limsupAm= liminf Am= lim Am=
⋃∞

m=0 Am.

Proposition 2.1 ([25]): Let X be a convex metric space. The convex hull of a setA ⊂ X is

given by

conv(A) = lim Am=

∞
⋃

m=0

Am. (3)

B. On the convex hull of a finite set

For a positive integern, let A= {x1, . . . , xn} be a finite set inX with convex hullconv(A) and

let z belong toconv(A). By Proposition 2.1 it follows that there exits a positive integerm such

that z∈ Am. But sinceAm = ψ̃(Am−1) it follows that there exitsz1,z2 ∈ Am−1 and λ(1,2) ∈ [0,1]

such thatz= ψ(z1,z2,λ(1,2)). Similarly, there exitsz3,z4,z5,z6 ∈ Am−2 andλ(3,4),λ5,6 ∈ [0,1] such

that z1 = ψ(z3,z4,λ(3,4)) and z2 = ψ(z5,z6,λ(5,6)). By further decomposingz3,z4,z5 and z6 and

their followers until they are expressed as functions of elements ofA and using a graph theory

terminology, we note thez is the root of a weighted binary tree with leaves belonging tothe

set A. Each nodeη (except the leaves) has two childrenη1 andη2, and are related through the

operatorψ in the senseη = ψ(η1,η2,λ) for someλ ∈ [0,1]. The weights of the edges connecting

η with η1 andη2 are given byλ and 1−λ respectively.

From the above discussion we note that for any pointz∈ conv(A) there exits a non-negative

integerm such thatz is the root of a binary tree of heightm, and has as leaves elements ofA.

The binary tree rooted atz may or may not be aperfect binary tree. That is because on some

branches of the tree the points inA are reached faster then on others. Letni denote the number

of times xi appears as a leaf node, with
∑n

i=1ni ≤ 2m and letmi l be the length of theithl path

from the rootz to the nodexi , for l = 1. . .ni . We formally describe the paths from the rootz to

xi as the set

Pz,xi ,

{(

{yi l , j}
mil
j=0, {λi l , j}

mil
j=1

)

| l = 1. . .ni

}

, (4)

where{yi l j}
mil
j=0 is the set of points forming thei l th path, withyi l ,0 = z andyi l ,mil

= xi and where

{λi l , j}
mil
j=1 is the set of weights corresponding to the edges along the paths, in particularλi l , j being

the weight of the edge (yi l , j−1,yi l , j). We define the aggregate weight of the paths from rootz to
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nodexi as

W(Pz,xi ) ,
ni
∑

l=1

mil
∏

j=1

λi l , j . (5)

It is not difficult to note that all the aggregate weights of the a paths fromthe rootz to the

leaves{x1, . . . , xn} sum up to one, i.e.
n
∑

i=1

W(Pz,xi ) = 1.

Fig. 1. The decomposition of a pointz∈ A3 with A= {x1, x2, x3}

Example 2.3:Figure 1 shows a binary tree corresponding to a pointz ∈ A3, where A =

{x1, x2, x3}. For this particular example, the paths from to rootz to the leavesxi are given

by

Pz,x1 =
{(

{z,z1,z3, x1}, {λ(1,2),λ(3,4),λ(7,8)}
)

,
(

{z,z1,z4, x1}, {λ(1,2), (1−λ(3,4)),λ(9,10)}
)

,

(

{z,z2,z5, x1}, {(1−λ(1,2)),λ(5,6),λ(11,12)}
)

,
(

{z,z2,z6, x1}, {(1−λ(1,2)), (1−λ(5,6)),λ(13,14)}
)}

,

Pz,x2 =
{(

{z,z1,z3, x2}, {λ(1,2),λ(3,4), (1−λ(7,8))}
)}

Pz,x3 =
{

(

{z,z1,z4, x3}, {λ(1,2), (1−λ(3,4)), (1−λ(9,10))}
)

,
(

{z,z2,z5, x3}, {(1−λ(1,2)),λ(5,6), (1−λ(11,12))}
)

,

(

{z,z2,z6, x3}, {(1−λ(1,2)), (1−λ(5,6)), (1−λ(13,14))}
)}
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and the path weights are

W(Pz,x1) = λ(1,2)λ(3,4)λ(7,8)+λ(1,2)(1−λ(3,4))λ(9,10)+ (1−λ(1,2)),λ(5,6),λ(11,12),

W(Pz,x2) = λ(1,2)λ(3,4)(1−λ(7,8)),

W(Pz,x3) = λ(1,2)(1−λ(3,4))(1−λ(9,10))+ (1−λ(1,2))λ(5,6)(1−λ(11,12))+ (1−λ(1,2))(1−λ(5,6))(1−λ(13,14)).

Definition 2.6: We say that a pointz belongs to theinterior of conv(A) and we denote this

by z∈ int(conv(A)), if all elements ofA belong to the set of leaves of the binary tree rooted atz.

Definition 2.7: Given a small enough positive scalarλ < 1 we define the following sub-set of

int(conv(A)) consisting in all points inint(conv(A)) whose aggregate weights are lower bounded

by λ, i.e.

Cλ(A) , {z | z∈ int(conv(A)),W(Pz,xi ) ≥ λ, ∀xi ∈ A}. (6)

Remark 2.1:We can iteratively generate points for which we can make surethat they belong

to the interior of the convex hull of a finite setA= {x1, . . . , xn}. Given a set of positive scalars

{λ1, . . . ,λn−1} ∈ (0,1), consider the iteration

yi+1 = ψ(yi , xi+1,λi) for i = 1. . .n−1 with y1 = x1. (7)

It is not difficult to note thatyn is guaranteed to belong to the interior ofconv(A). In addition,

if we impose the condition

λi ≥
n−1
√

λ for i = 1. . .n−1, (8)

thenyn ∈ Cλ(A)

The next result characterizes the distance between two points x,y∈ X belonging to the convex

hulls of two (possible overlapping) finite setsX andY.

Proposition 2.2:Let nx andny be two positive integers, letX= {x1, . . . , xnx} andY= {y1, . . . ,yny}

be two finite sets onX and letλ < 1 be a positive scalar small enough.

(a) If x ∈ int(conv(X)) andy ∈ X then

d(x,y) ≤
nx
∑

i=1

λid(xi ,y), (9)

for someλi > 0 with
∑nx

i=1λi = 1.

(b) If x ∈ int(conv(X)) andy ∈ int(conv(Y)) then

d(x,y) ≤
nx
∑

i=1

ny
∑

j=1

λi j d(xi ,y j), (10)
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for someλi j > 0 with
∑nx

i=1

∑ny

j=1λi j = 1.

(c) If x ∈ Fλ(X), y ∈ Fλ(Y), then

λi ≥ λ andλi j ≥ λ
2, ∀ i, j, (11)

whereλi andλi j where introduced in part (a) and part (b), respectively.

(d) If x ∈ Fλ(X), y ∈ Fλ(Y) and X∩Y, ∅, then

nx
∑

i=1

ny
∑

j=1

λi j1{d(xi ,y j),0} ≤ 1−λ2, (12)

whereλi j were introduced in part (b).

Proof:

(a) Mimicking the idea introduced at the beginning of this section, sincex∈ conv(X) it follows

that there exists a positive integerm such thatz∈ Xm, whereXm+1 = ψ̃(Xm) with X0 = X. Farther,

there existz1,z2 ∈ Xm−1 and λ12 ∈ [0,1] such thatz= ψ(z1,z2,λ12). Using the definition of the

convex structure, it follows that the distance betweenz andy can be upper bounded by

d(x,y) ≤ λ12d(z1,y)+ (1−λ12)d(z2,y).

Inductively decomposingz1,z2 and theirchildren, it can be easily argued that

d(x,y) ≤
nx
∑

i=1

λid(xi ,y),

for some positive weightsλi ≥ 0 summing up to one. Since we assumedx∈ int(conv(X)) we get

that λi > 0, for i = 1. . .n.

(b) To obtain (10) we proceed as in the previous lines and obtain upper bounds ond(xi ,y).

More precisely we get that

d(xi ,y) ≤
ny
∑

j=1

µ jd(xi ,y j), ∀i,

with µ j > 0 and
∑ny

j=1µ j = 1, and it follows that

d(x,y) ≤
nx
∑

i=1

ny
∑

j=1

λi j d(xi ,y j),

whereλi j = λiµ j > 0 and
∑nx

i=1

∑ny

j=1λi j = 1.

(c) We note thatλi =W(Px,xi ) andµ j =W(Py,y j ), ∀i, j. But sincex ∈ Fλ(X) andy ∈ Fλ(Y) it

immediately follows thatλi ≥ λ andµ j ≥ λ, and thereforeλi j = λ
2.
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(d) If X∩Y, ∅ then there exists at least one pair (i, j) such thatd(xi ,y j)= 0. But sinceλi j ≥ λ
2

the inequality (12) follows.

III. Problem formulation and statement of the main result

We consider a convex metric space (X,d) and a set ofn agents indexed byi which take values

onX. Denoting byk the time index, the agents exchange information based on a communication

network modeled by a time varying graphG(k) = (V,E(k)), whereV is the set of vertices (the

agents) andE(k) is the set of edges. An edge (communication link)ei j (k) ∈ E(k) exits if nodei

receives information from nodej. Each agent has an initial value inX. At each subsequent time-

slot is adjusting his/her value based on the observations about the values of his/her neighbors.

The goal of the agents is to asymptotically agree on the same value. In what follows we denote

by xi(k) ∈ X the value orstateof agenti at timek.

Definition 3.1: We say that the agents asymptotically reachconsensus(or agreement) if

lim
k→∞

d(xi(k), x j(k)) = 0, ∀i, j, i , j. (13)

Similar to the communication models used in [24], [2], [10],we impose minimal assumptions

on the connectivity of the communication graphG(k). Basically these assumption consists in hav-

ing the communication graph connectedinfinitely oftenand havingbounded intercommunication

interval between neighboring nodes.

Assumption 3.1 (Connectivity):The graph (V,E∞) is connected, whereE∞ is the set of edges

(i, j) representing agent pairs communicating directly infinitely many times, i.e.,

E∞ = {(i, j) | ( j, i) ∈ E(k) for infinetly many indicesk}

Assumption 3.2 (Bounded intercommunication interval):There exists an integerB ≥ 1 such

that for every (i, j) ∈ E∞ agent j sends his/her information to the neighboring agenti at least

once everyB consecutive time slots, i.e. at timek or at timek+1 or . . . or (at latest) at time

k+B−1 for anyk≥ 0.

Assumption 3.2 is equivalent to the existence of an integerB≥ 1 such that

(i, j) ∈ E(k)∪E(k+1)∪ . . .∪E(k+B−1), ∀(i, j) ∈ E∞.

Let Ni(k) denote the communication neighborhood of agenti, i.e. the set of all nodes sending

information toi at timek, which by convention contains the nodei itself. We denote byAi(k) ,

{x j(k),∀ j ∈ Ni(k)} the set of the states of agenti’s neighbors (its own included).
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The following theorem states our main result regarding the asymptotic agreement problem on

metric convex space.

Theorem 3.1:Let Assumptions 3.1 and 3.2 hold forG(k) and letλ < 1 be a positive scalar

sufficiently small. If agents update their state according to thescheme

xi(k+1) ∈ Cλ(Ai(k)), ∀i, (14)

then they asymptotically reach consensus, i.e.

lim
k→∞

d(xi(k), x j(k)) = 0, ∀i, j, i , j. (15)

Remark 3.1:We would like to point out that the result refers strictly to the convergence of the

distances between states and not to the convergence of the states themselves. It may be the case

that the sequences{xi(k)}k≥0 i = 1. . .n do not have a limit and still the distancesd(xi(k), x j(k))

decrease to zero ask goes to infinity. In other words the agents asymptotically agree on the

same value which may be very well variable.

Remark 3.2:A procedure for generating points for which is guaranteed tobelong toCλ(Ai(k))

is described in Remark 2.1. The idea of pickingxi(k+1) fromCλ(Ai(k)) rather thanint(conv(Ai(k)))

is in the same spirit of the assumption imposed on the non-zero consensus weights in [23], [10],

[2], i.e. they are assumed lower bounded by a positive, sub-unitary scalar. Settingxi(k+ 1) ∈

int(conv(Ai(k))) may not necessarily guarantee asymptotic convergence to consensus. Indeed,

consider the case whereX =R with the standard Euclidean distance. A convex structure onR

is given byψ(x,y,λ) = λx+ (1−λ)y, for any x,y ∈ R and λ ∈ [0,1]. Assume that we have two

agents which exchange information at all time slots and thereforeA1(k) = {x1(k), x2(k)}, A2(k) =

{x1(k), x2(k)}, ∀k ≥ 0. Let x1(k+1)= λ(k)x1(k)+ (1−λ(k))x2(k), whereλ(k) = 1−0.1e−k and let

x2(k+1)= µ(k)x1(k)+ (1−µ(k))x2(k), whereµ(k) = 0.1e−k. Obviously,xi(k+1)∈ int(conv(Ai(k))),

i = 1,2 for all k≥ 0. It can be easily argued that

d(x1(k+1), x2(k+1))≤ (λ(k)(1−µ(k))+µ(k)(1−λ(k)))d(x1(k, x2(k))). (16)

We note that limK→∞
∏K

k=0 (λ(k)(1−µ(k))+ (1−λ(k))µ(k))= limK→∞
∏K

k=0(1−0.2e−k+0.02e−2k)=

0.73 and therefore under inequality (16) asymptotic convergence to consensus is not guaranteed.

In fact it can be explicitly shown that the agents do not reachconsensus. From the dynamic
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equation governing the evolution ofxi(k), i = 1,2, we can write

x(k+1)=



















λ(k) 1−λ(k)

µ(k) 1−µ(k)



















x(k), x(0)= x0,

wherex(k)T = [x1(k), x2(k)], and we obtain that

lim
k→∞

x(k) =



















0.8540 0.1451

0.1451 0.8540



















x0

and therefore it can be easily seen that consensus is not reached from any initial states.

IV. Proof of the main result

This section is divided in three parts. In the first part we usethe results of Section II-B

regarding the convex hull of a finite set and show that the entries of the vector of distances

between the states of the agents at timek+1 are upper bounded by linear combinations of the

entries of the same vector but at timek. The coefficients of the linear combinations are the

entries of a time varying matrix for which we prove a number ofproperties (Lemma 4.1). In

the second part we analyze the properties of the transition matrix of the aforementioned time

varying matrix (Lemma 4.2). The last part is reserved to the proof of Theorem 3.1.

Lemma 4.1:Given a small enough positive scalarλ < 1, assume that agents update their states

according to the schemexi(k+1)∈ Cλ(Ai(k)), for all i. Let d(k) , (d(xi(k), x j(k))) for i , j be the

N dimensional vector of all distances between the states of the agents, whereN = n(n−1)
2 . Then

we obtain that

d(k+1)≤W(k)d(k), d(0)= d0, (17)

where theN×N dimensional matrixW(k) has the following properties:

(a) W(k) is non-negative and there exits a positive scalarη ∈ (0,1) such that

[W(k)] ī ī ≥ η, ∀ ī,k (18)

[W(k)] ī j̄ ≥ η, ∀ [W(k)] ī j̄ , 0, ī , j̄, ∀ k. (19)

(b) If Ni(k)∩N j(k), ∅, then the row̄i of matrix W(k), corresponding to the pair of agents (i, j),

has the property
N
∑

j̄=1

[W(k)] ī j̄ ≤ 1−η, (20)
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whereη is the same as in part (a).

(c) If Ni(k)∩N j(k) = ∅ then the row̄i corresponding to the pair of agents (i, j) sums up to one,

i.e.
N
∑

j̄=1

[W(k)] ī j̄ = 1. (21)

In particular if G(k) is completely disconnected (i.e. agents do not send any information),

thenW(k) = I .

(d) the rows ofW(k) sum up to a value smaller or equal then one, i.e.

N
∑

j̄=1

[W(k)] ī j̄ ≤ 1, ∀ ī,k. (22)

Proof: Given two agentsi and j, by part (b) of Proposition 2.2 the distance between their

states can be upper bounded by

d(xi(k+1), x j(k+1))≤
∑

p∈Ni (k),q∈N j(k)

wi j
pq(k)d(xp(k), xq(k)), i , j, (23)

wherewi j
pq(k) > 0 and

∑

p∈Ni (k),q∈N j (k) wi j
pq(k) = 1. By definingW(k) , (wi j

pq(k)) for i , j and p, q

(where the pairs (i, j) and (p,q) refer to the rows and columns ofW(k), respectively), inequality

(17) follows. We continue with proving the properties of matrix W(k).

(a) Since allwi j
pq(k)> 0 for all i , j, p∈Ni(k) andq∈N j(k) we obtain thatW(k) is non-negative.

By part (c) of Proposition 2.2, there existsη , λ2 such thatwi j
pq(k) ≥ η for all non-zero entries of

W(k). Also, sincei ∈Ni(k) and j ∈N j(k) for all k≥ 0 it follows that the termwi j
i j (k)d(xi(k), x j(k)),

with wi j
i j (k) ≥ η will always be present in the right-hand side of the inequality (23), and therefore

W(k) has positive diagonal entries.

(b) Follows from part (d) of Proposition 2.2, withη = λ2.

(c) If Ni(k)∩N j(k) = ∅ then no terms of the formwi j
pp(k)d(xp(k), xp(k)) will appear in the sum

of the right hand side of inequality (23). Hence
∑

p∈Ni (k),q∈N j (k) wi j
pq(k) = 1 and therefore

N
∑

j̄=1

[W(k)] ī j̄ = 1.

If G(k) is completely disconnected, then the sum of the right hand side of inequality (23) will

have only the termwi j
i j (k)d(xi(k), x j(k)) with wi j

i j (k) = 1, for all i, j = 1. . .n. ThereforeW(k) is the

identity matrix.
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(d) The result follows from parts (b) and (c).

Let Ḡ(k) = (V̄, Ē(k)) be the underlying graph ofW(k) and let ī and j̄ refer to the rows and

columns ofW(k), respectively. Note the under this notation, indexī corresponds to a pair (i, j)

of distinct agents. It is not difficult to see that the set of edges ofḠ(k) is given by

Ē(k) = {((i, j), (p,q)) | (i, p) ∈ E(k), ( j,q) ∈ E(k), i , j, p, q} . (24)

Proposition 4.1:Let Assumptions 3.1 and 3.2 hold forG(k). Then, similar properties hold

for Ḡ(k) as well, i.e.

(a) the graph (̄V, Ē∞) is connected, where

Ē∞ = {(ī, j̄) | (ī, j̄) ∈ Ē(k) infinetly many indicesk};

(b) there exists an integer̄B ≥ 1 such that every (̄i, j̄) ∈ Ē∞ appears at least once everȳB

consecutive time slots, i.e. at timek or at timek+1 or . . . or (at latest) at timek+ B̄−1 for

any k≥ 0.

Proof:

It is not difficult to observe that similar to (24),̄E∞ is given by

Ē∞ = {((i, j), (p,q)) | (i, p) ∈ E∞, ( j, p) ∈ E∞, p, q, i , j}. (25)

(a) Showing that (̄V, Ē∞) is connected is equivalently to showing that for any two pairs (i, j)

and (p,q) there exits a path connecting them. Since (V,E∞) is assumed connected, there exits a

path i0→ i1→ . . . ,→ i l−1→ i l , for somel ≤ n, such thati0 = p and i l = i. From (25), it is easily

argued that (i0, j)→ (i1, j)→ . . .→ (i l−1, j)→ (i l , j) represents a path connecting (i, j) with (p, j).

Similarly, there exits a pathj0→ j1→ . . .→ jm−1→ jm for somem≤ n, such that j0 = q and

jm = j. Therefore, (p, j0)→ (p, j1)→ . . .→ (p, jm−1)→ (p, jm) is a path connecting (p, j) with

(p,q) and it follows that (i, j) and (p,q) are connected.

(b) Let ((i, j), (p,q)) be an edge in̄E∞ or equivalently (i, p) ∈E∞ and (j,q)∈E∞. By Assumption

3.2, we have that for anyk≥ 0

(i, p) ∈ E(k)∪E(k+1). . .∪E(k+B−1),

( j,q) ∈ E(k)∪E(k+1). . .∪E(k+B−1),
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where the scalarB was introduced in Assumption 3.2. But this also implies that

(ī, j̄) ∈ Ē(k)∪ Ē(k+1)∪ . . .∪ Ē(k+B−1), ∀(ī, j̄) ∈ Ē∞.

ChoosingB̄, B, the result follows.

Let Φ(k, s) ,W(k− 1)W(k− 2)· · ·W(s), with Φ(k,k) =W(k) denote the transition matrix of

W(k) for anyk≥ s. It should be obvious from the properties ofW(k) thatΦ(k, s) is a non-negative

matrix with positive diagonal entries and‖Φ(k, s)‖∞ ≤ 1 for anyk≥ s.

Lemma 4.2:Let W(k) be the matrix introduced in Lemma 4.1. Let Assumptions 3.1 and 3.2

hold for G(k). Then there exits a row index̄i∗ such that

N
∑

j̄=1

[Φ(s+m, s)] ī∗ j̄ ≤ 1−ηm ∀ s,m≥ B̄−1, (26)

whereη is the lower bound on the non-zero entries ofW(k) and B̄ is the positive integer from

the part (b) of the Proposition 4.1.

Proof: Let (i∗, j∗) ∈ E∞ be a pair of agents. By Assumptions 3.1 and 3.2, there exits a

positive integers′ ∈ {s, s+1, . . . , s+ B̄−1} such that agentj∗ sends information to agenti∗. This

implies thatNi∗(k)∩N j∗(k) , ∅ and by part (b) of Lemma 4.1, we have that

N
∑

j̄=1

[W(s′)] ī∗ j̄ ≤ 1−η,

whereī∗ is the index corresponding to the pair (i∗, j∗). The sum of thēi∗ row of transition matrix

Φ(s′+1, s) can be expressed as

N
∑

j̄=1

[Φ(s′+1, s)] ī∗ j̄ =

N
∑

j̄=1

[W(s′)] ī∗ j̄

N
∑

h̄=1

[Φ(s′, s)] j̄ h̄.

But since‖Φ(k, s)‖∞ ≤ 1 for anyk≥ s, we have that
∑N

h̄=1
[Φ(s′, s)] j̄ h̄ ≤ 1 for any j̄, and therefore

N
∑

j̄=1

[Φ(s′+1, s)] ī∗ j̄ ≤ 1−η. (27)

We can writeΦ(s′+2, s) =W(s′+1)Φ(s′+1, s) and it follows that thēi∗ row sum ofΦ(s′+2, s)

can be expressed as

N
∑

j̄=1

[Φ(s′+2, s)] ī∗ j̄ =

N
∑

j̄=1

[W(s′+1)]ī∗ j̄

N
∑

h̄=1

[Φ(s′+1, s)] j̄ h̄.
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Since
∑N

h̄=1
[Φ(s′+1, s)] j̄ h̄ ≤ 1 for any j̄ it follows that

N
∑

j̄=1

[Φ(s′+2, s)] ī∗ j̄ ≤ [W(s′+1)]ī∗ ī

N
∑

h̄=1

[Φ(s′+1, s)] ī∗h̄+
∑

j̄=1, j̄,ī∗

[W(s′+1)]ī∗ j̄ ≤

≤ [W(s′+1)]ī∗ ī∗(1−η)+
∑

j̄=1, j̄,ī∗

[W(s′+1)]ī∗ j̄ ≤

N
∑

j̄=1

[W(s′+1)]ī∗ j̄ −η[W(s′+1)]ī∗ ī∗ ≤ 1−η2,

since [W(s′+1)]ī∗ ī∗ ≥ η. By induction it can be easily argued that

N
∑

j̄=1

[Φ(s′+m, s)] ī∗ j̄ ≤ 1−ηm, ∀m≥ 0. (28)

Note that by Assumption 3.2, a pair (i, j) can exchange information ats′ = s the earliest or at

s′ = s+B−1 the latest. From (28) we obtain that fors′ = s+B−1

N
∑

j̄=1

[Φ(s+B−1+m, s)] ī∗ j̄ ≤ 1−ηm, ∀m≥ 0, (29)

and for s′ = s
N
∑

j̄=1

[Φ(s+m, s)] ī∗ j̄ ≤ 1−ηm, ∀m≥ 0,

or
N
∑

j̄=1

[Φ(s+B−1+m, s)] ī∗ j̄ ≤ 1−ηm+B−1, ∀m≥ 0, (30)

From (29) and (30) we get

N
∑

j̄=1

[Φ(s+B−1+m, s)] ī∗ j̄ ≤ 1−ηm+B−1, ∀s,m≥ 0,

or equivalently
N
∑

j̄=1

[Φ(s+m, s)] ī∗ j̄ ≤ 1−ηm, ∀m≥ B−1. (31)

Corollary 4.1: Let W(k) be the matrix introduced in Lemma 4.1 and let Assumptions 3.1 and

3.2 hold forG(k). We then have

[Φ(s+ (N−1)B̄−1, s)] ≥ η(N−1)B̄ ∀s, i, j, (32)

whereη is the lower bound on the non-zero entries ofW(k) and B̄ is the positive integer from

the part (b) of the Proposition 4.1.
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Proof: By Proposition 4.1 and Lemma 4.1 all the assumptions of Lemma2, [10] are satisfied,

from which the result follows.

We are now ready to proveTheorem 3.1.

Proof: We have that the vector of distances between the states of theagents respects the

inequality

d(k+1)≤W(k)d(k),

where the properties ofW(k) are described by Lemma 4.1.

It immediately follows that

‖d(k+1)‖∞ ≤ ‖d(k)‖∞, for k≥ 0. (33)

Let B̄0 , (N−1)B̄−1, whereB̄ is the positive integer from the part (b) of the Proposition 4.1.

It the following we show that all row sums ofΦ(s+2B0, s) are upper-bounded by a positive

scalar strictly less than one. Indeed sinceΦ(s+2B̄0, s) = Φ(s+2B̄0, s+ B̄0)Φ(s+ B̄0, s) we obtain

that

N
∑

j̄=1

[Φ(s+2B̄0, s)] ī j̄ =

N
∑

j̄=1

[Φ(s+2B̄0, s+ B̄0)] ī j̄

N
∑

h̄=1

[Φ(s+ B̄0, s)] j̄ h̄, ∀ī.

By Lemma 4.2 we have that there exists a rowj̄∗ such that
N
∑

h̄=1

[Φ(s+ B̄0, s)] j̄∗h̄ ≤ 1−ηB̄0,∀s,

and since
∑N

h̄=1
[Φ(s+ B̄0, s)] j̄ h̄ ≤ 1 for any j̄, we get

N
∑

j̄=1

[Φ(s+2B̄0, s)] ī j̄ ≤

N
∑

j̄=1, j̄, j̄∗

[Φ(s+2B̄0, s+ B̄0)] ī j̄ + [Φ(s+2B̄0, s+ B̄0)] ī j̄∗(1−η
B̄0) =

=

N
∑

j̄=1

[Φ(s+2B̄0, s+ B̄0)] ī j̄ − [Φ(s+2B̄0, s+ B̄0)] ī j̄∗η
B̄0.

By Corollary 4.1 it follows that

[Φ(s+2B̄0, s+ B̄0)] ī j̄ ≥ η
B̄0+1, ∀ī, j̄, s,

and since
∑N

j̄=1
[Φ(s+2B̄0, B̄0)] ī j̄ ≤ 1 we get that

N
∑

j̄=1

[Φ(s+2B̄0, s)] ī j̄ ≤ 1−η2B̄0+1 ∀ī, s.
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Therefore

‖Φ(s+2B̄0, s)‖∞ ≤ 1−η2B̄0+1 ∀s. (34)

It follows that

‖d(tk)‖∞ ≤
(

1−η2B̄0+1
)k
‖d(0)‖∞, ∀k ≥ 0, (35)

wheretk = kB̄0 which shows that the subsequence{‖d(tk)‖∞}k≥0 asymptotically converges to zero.

Combined with inequality (33) we farther obtain that the sequence{‖d(k)‖∞}k≥0 asymptotically

converges to zero. Therefore the agents asymptotically reach consensus.

V. Distance between the consensus points and the initial points

In this section we analyze the evolution of the distance between the states of the agents and

their initial values under the scheme described by Theorem 3.1. This analysis will give us upper

bounds on the distance between the consensus point(s) and the initial values of the agents.

Consider distanced(xi(k), xl(0)) for somei, l and let us assume thatxi(k+1) is chosen according

to the scheme described by Theorem 3.1, i.e.xi(k+1)∈ Cλ(Ai(k)). By part (a) of Proposition 2.2

we can express this distance as

d(xi(k+1), xl(0))≤
∑

j∈Ni(k)

λi j (k)d(x j(k), xl(0)), (36)

whereλi j (k)≥ λ and
∑

j∈Ni (k)λi j (k)= 1. By defining then dimensional vectorηl(k)= (d(xi(k), xl(0)))

(wherei varies) and then×n dimensional matrixΛ(k)= (λi j (k)), inequality (36) can be compactly

written as

ηl(k+1)≤ Λ(k)ηl(k), ηl(0)= ηl0. (37)

whereΛ(k) is a row stochastic matrix. It is not difficult to note that the underlying graph ofΛ(k)

is G(k) and that in fact inequality (37) is valid for anyl. In the following proposition we give

upper bounds on the distance between the consensus states and the initial values of the states.

Proposition 5.1:Let Assumptions 3.1 and 3.2 hold forG(k) and let the states of the agents

be updates according to the scheme given by Theorem 3.1. We then have that

lim
k→∞

d(xi(k), xl(0))≤
n
∑

j=1

v jd(x j(0), xl(0)), ∀ i, l, (38)

March 26, 2010 DRAFT



18

wherev= (v j) is a vector with positive entries summing up to one satisfying

lim
k→∞
Λ(k)Λ(k−1)· · ·Λ(0)= 1vT , (39)

and whereΛ(k) is the matrix defined in inequality (37).

Proof: Our assumptions fit the assumptions of Lemmas 3 and 4 of [10], from where (39)

follows. Therefore by inequality (37) the result follows.

Remark 5.1:If in addition to the assumptions of Proposition 5.1 we also assume thatΛ(k) is

doubly stochastic, then by Proposition 1 of [10] we get that

lim
k→∞
Λ(k)Λ(k−1)· · ·Λ(0)=

1
n
11

T .

Therefore, inequality (38) gets simplified to

lim
k→∞

d(xi(k), xl(0))≤
1
n

n
∑

j=1

d(x j(0), xl(0)), ∀i.

The assumptions in this remark correspond to the assumptions for the average consensus problem

in Euclidean spaces. For the aforementioned case, the consensus point is given by the average

of the initial points, i.e.xav=
1
n

∑n
i=1 xi(0). It can be easily check that indeedxav satisfies

‖xav− xl(0)‖ ≤
1
n

n
∑

j=1

‖x j(0)− xl(0)‖,

where‖ · ‖ represents the euclidean norm.

VI. A pplication - Asymptotic consensus of opinion

Social networks play a central role in the sharing of information and formation of opinions.

This is true in the context of advising friends on which movies to see, relaying information about

the abilities and fit of a potential new employee in a firm, debating the merits of politicians.

In the following we consider a scenario in which a group of agents try to agree on a common

opinion. Assume for example that a group of friends would like to go to see a movie. Different

members of the group may suggest different movies. A member of the group discusses with all

or just some of his/her friends to find out about their opinions. This member gives some weight

(importance) to the opinion of his friends based on the trustin their expertize. For instance

some members of the group are more informed about the qualityof the proposed movies, and

therefore there opinions may have a heavier influence on the final decision. By repeatingly

discussing among themselves, the group of friends have to choose one of the movies.
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In the following we mathematically formalize the scenario described above and show that we

can use the framework introduced in the previous sections togive an algorithm which ensures

asymptotic consensus on opinions. We model the opinion of a member of the group (agent) as a

discrete random variable. Under an appropriate metric we show that the metric space of discrete

random variable is convex by providing a convex structure. In addition, we analyze in more

detail the convex hull of a finite set; this analysis is possible since the convex structure is given

explicitly. We give an iterative algorithm that ensures agreement of opinion, which is based on

Theorem 3.1 and provide some numerical simulations.

A. Geometric framework

Let s be a positive integer and letS = {1,2, . . . , s} be a finite set. Consider the sample space

Ω= {ω1,ω2, . . . ,ωs} and let (Ω,F ,P) be a probability space. We denote byX the space of discrete

random variable defined on (Ω,F ,P), given byX , {X | X : Ω→ S}.

We introduce the operatord : X×X→R, defined as

d(X,Y) = E[ρ(X,Y)],

whereρ : R×R→ {0,1} is the discrete metric, i.e.

ρ(x,y) =



















1 x, y

0 x= y

It is not difficult to note that the operatord can also be written asd(X,Y),E[1{X,Y}] =Pr(X,Y),

where1{X,Y} is the indicator function of the event{X , Y}.

We note that the operatord satisfies the following properties

1) For anyX,Y ∈ X, d(X,Y) = 0 if and only if X = Y with probability one.

2) For anyX,Y,Z ∈ X, d(X,Z)+d(Y,Z) ≥ d(X,Y) with probability one,

and therefore is an (almost) metric onX. The setX together with the operatord define the

(almost) metric space(X,d). We use the attributealmost, to emphasize that the two properties

of the operatord are satisfied with probability one.

Let ψ : X×X× [0,1]→X be a mapping given by

ψ(X1,X2,λ) = 1{θ=1}X1+1{θ=2}X2, (40)
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where X1,X2 ∈ X and whereθ ∈ {1,2} is a random variable independent on any event on the

σ-field F , with probability mass functionPr(θ = 1)= λ and Pr(θ = 2)= 1−λ, whereλ ∈ [0,1].

Proposition 6.1:The mappingψ is a convex structure onX.

Proof: For anyU,X1,X2 ∈ X andλ ∈ [0,1] we have

d(U,ψ(X1,X2,λ)) = E[ρ(U,ψ(X1,X2,λ))] = E[E[ρ(U,ψ(X1,X2,λ))|U,X1,X2]] =

= E[E[ρ(U,1{θ=1}X1+1{θ=2}X2)]|U,X1,X2] == E[λρ(U,X1)+ (1−λ)ρ(U,X2)] =

= λd(U,X1)+ (1−λ)d(U,X2).

From the above proposition it follows that (X,d) is a convex metric space.

The next theorem characterizes the convex hull of a finite setin X.

Theorem 6.1:Let n be a positive integer and letA = {X1, . . . ,Xn} be a set of points inX.

Consider a sample spaceΩθ and a random variableθ : Ωθ → {1, . . . ,n}, independent of any

X ∈ X, with probability measure given byPr(ω : θ(ω) = i) = wi , for some non-negative scalars

wi , with
∑n

i=1wi = 1. We define the set

K(A) ,















Z ∈ X | Z =
n
∑

i=1

1{θ=i}Xi , ∀wi ≥ 0,
n
∑

i=1

wi = 1















. (41)

Then

conv(A) =K(A).

Proof: We recall from Proposition 2.1 that the convex hull ofA is given by

conv(A) = lim Am=

∞
⋃

m=1

Am,

whereAm= ψ̃(Am−1), with A1 = ψ̃(A). Also, sinceAm is an increasing sequence, clearlyA⊂ Am

for all m≥ 1. The proof is structured in two parts. In the first part we show that any point

in K(A) belongs to the convex hull ofA, while in the second part we show that any point in

conv(A) belongs toK(A) as well.

Let Z ∈ K(A) i.e. Z =
∑n

i=11{θ=i}Xi where Pr(θ = i) = wi , for somewi ≥ 0,
∑n

i=1wi = 1. The

random variableθ is defined such thatθ(ωi)= i andPr(ωi)=wi . LetΩi = {ω
i
1,ω

i
2}, i = 1. . .n−1 be

a set of sample spaces whose events are independent among themselves (i.e.ωi
j are independent
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for i = 1. . .n−1, j = 1,2) and of any event on theσ-algebraF . We define the probability measure

for each of the events inΩi as

Pr(ωi
1) =

w1+ . . .+wi−1

w1+ . . .+wi
,

Pr(ωi
2) =

wi

w1+ . . .+wi
,

for i = 1. . .n−1. We consider the following succession of events fromΩi

S1 =
{

ω1
1ω

2
1 . . .ω

n−1
1

}

,

S2 =
{

ω1
2ω

2
1 . . .ω

n−1
1

}

,

Si =
⋃2

j1... j i−2=1

{

ω1
j1
. . .ωi−2

j i−2
ωi−1

2 ω
i
1 . . .ω

n−1
1

}

, i = 3. . .n−1,

Sn =
⋃2

j1... jn−2=1

{

ω1
j1
. . .ωn−2

jn−2
ωn−1

2

}

.

(42)

For example, forn= 4 (42) becomes

S1 = {ω
1
1ω

2
1ω

3
1},

S2 = {ω
1
2ω

2
1ω

3
1},

S3 = {ω
1
1ω

2
2ω

3
1}∪ {ω

1
2ω

2
2ω

3
1}

S4 = {ω
1
1ω

2
1ω

3
2}∪ {ω

1
2ω

2
1ω

3
2}∪ {ω

1
1ω

2
2ω

3
2}∪ {ω

1
2ω

2
2ω

3
2}.

Using the independence assumption on the events fromΩi is not difficult no see that

Pr(Si) = wi , i = 1. . .n.

Assume that each eventωi that we observe can be decomposed in a succession of independent

events fromΩi , which are invisible to the observer. In particular let

ωi = Si , i = 1. . .n.

The particular decomposition of eventωi in a set of intermediate, independent events given by

Si makes sense since bothωi andSi have the same probability measure. It immediately follows

that

1{ω:θ(ω)=i} = 1{ωi} = 1{Si}. (43)

Let us now define the random variablesθi : Ωi → {i, i +1}, where

θi(ω
i
1) = i, θi(ω

i
2) = i +1,
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for i = 1. . .n−1. Obviously

Pr(θi = i) =
w1+ . . .+wi−1

w1+ . . .+wi
, Pr(θi = i +1)=

wi

w1+ . . .+wi
,

andθi are independent from each other and from any event fromF .

From (42) and (43) together with the independence of the random variablesθi the following

equalities in terms of the indicator function are satisfied

1{θ=1} = Π
n−1
j=11{θ j= j}

1{θ=i} = 1{θi−1=i}Π
n−1
j=i 1{θ j= j}, i = 2. . .n−1

1{θ=n} = 1{θn−1=n}.

(44)

From (44) it follows thatZ is the result of thenth step of the iteration

Yi+1 = 1{θi=i}Yi +1{θi=i+1}Xi+1,

for i = 1. . .n, with Y1 = X1, i.e. Z = Yn. It can be easily argued thatYi ∈ Ai−1, i = 2. . .n and

thereforeZ ∈ An−1 or Z ∈ conv(A) which implies thatK(A) ⊂ conv(A).

We now begin the second part of the proof and show that any point in conv(A) belongs to

K(A) as well. If Z ∈ conv(A), from Section II-B we have that there exits a positive integer m

such thatZ ∈ Am and thereforeZ is the root of a binary tree of heightm with leaves from the

set A. Using the same notations as in Section II-B for each of the leaf nodesXi , there exists

ni ≥ 1 paths fromZ to Xi , of lengthsmi l , l = 1. . .ni which are denoted by

PZ,Xi ,

{(

{Yi l , j}
mil
j=0, {λi l , j}

mil
j=1

)

| l = 1. . .ni

}

,

where Yi l , j−1 = ψ
(

Yi l , j ,∗,λi l , j

)

for j = 1. . .mi l , l = 1. . .ni and where we denoted by∗ some

intermediate node in the tree. We introduce the independent, random variablesθi l , j such that

Pr(θi l , j = i l , j) = λi l , j andPr(θi l , j = ∗) = 1−λi l , j . It follows that Z can be expressed as

Z =
n
∑

i=1



















ni
∑

l=1

mil
∏

j=1

1{ω:θil , j=i l , j}



















Xi

Using again the independence ofθi l , j we have that

ni
∑

l=1

mil
∏

j=1

1{ω:θil , j=i l , j} = 1{
⋃ni

l=1
⋂

mil
j=1{ω:θil , j=i l , j}}
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Let Si ,
{

⋃ni
l=1

⋂mil
j=1{ω : θi l , j = i l , j}

}

and let us interpret the events inSi as the set of underlying

sub−eventsgeneratingωi i.e. ωi = Si . It is not difficult to see that

Pr(ωi) = Pr(Si) =W(PZ,Xi ).

By definingwi ,W(PZ,Xi ) we get that
∑n

i=1 Pr(ωi) = 1. Note that if there exits ani∗ such that

Xi∗ is not among the leaves of the binary tree rooted atZ, the measure of the eventωi is zero.

Therefore we have thatZ can be expressed as

Z =
n
∑

i=1

1{ωi}Xi =

n
∑

i=1

1{θ=i}Xi ,

wherePr(θ = i) =wi and hence it follows thatZ ∈K(A) and consequentlyconv(A) ⊂K(A). From

part one and part two of our proof, the result follows.

Remark 6.1:We note that any pointZ belonging to the convex hull ofX1,X2 is betweenX1

andX2 in the sense of Definition 2.1. Indeed, ifZ ∈ conv({X1,X2}) thenZ = 1{θ=1}X1+1{θ=2}X2,

wherePr(θ = 1)= λ and Pr(θ = 2)= 1−λ, for someλ ∈ [0,1]. It follows that

d(X1,Z)+d(Z,X2) = E[ρ(X1,Z)+ρ(Z,X2)] = E[E[ρ(X1,Z)+ρ(Z,X2)]|X1,X2] =

= E[λρ(X1,X2)+ (1−λ)ρ(X1,X2)] = d(X1,X2).

However, not any point belonging to the metric segment [X1,X2] belongs toconv({X1,X2}).

Indeed, assume for example thatX1,X2 ∈ {1,2} and consider a random variableZ ∈ {1,2} whose

probability mass function, conditioned on the values ofX1 and X2 is given by Pr(Z = 2|X1 =

2,X2 = 1)= λ, Pr(Z = 1|X1 = 2,X2 = 1)= 1−λ, Pr(Z = 1|X1 = 1,X2 = 2)= λ̃, Pr(Z = 1|X1 = 1,X2 =

2)= 1− λ̃ andPr(Z= 2|X1= 2,X2= 2)= Pr(Z= 1|X1= 1,X2= 1)= 1, for someλ, λ̃ ∈ (0,1). Since

Pr(Z = 2|X1 = 2,X2 = 1), Pr(Z = 1|X1 = 1,X2 = 2) it follows thatZ < conv({X1,X2}). However it

can be easily checked thatZ ∈ [X1,X2]. In fact any random variableZ whose probability mass

function conditioned on the values ofX1 and X2 satisfies

∑

z,x1,x2

Pr(Z = z|X1 = x1,X2 = x2) = 0,
∑

z,x

Pr(Z = z|X1 = x1,X2 = x2) = 0,

belongs to the metric segment [X1,X2].

Corollary 6.1: Let n be a positive integer, letA= {X1, . . . ,Xn} be a set of points inX and let

λ < 1 be a positive scalar sufficiently small. Consider a sample spaceΩθ and a random variable
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θ : Ωθ→ {1, . . . ,n}, independent of anyX ∈ X, with probability measure given byPr(ω : θ(ω) =

i) = wi , for some positive scalarswi , with
∑n

i=1wi = 1. We define the set

Kλ(A)) ,















Z ∈ X | Z =
n
∑

i=1

1{θ=i}Xi , ∀wi ≥ λ,

n
∑

i=1

wi = 1















. (45)

Then

Cλ(A) =Kλ(A).

Proof: Follows immediately from Definitions 2.6, 2.7 and Theorem 6.1.

B. Asymptotic Consensus of Opinion Algorithm and NumericalSimulations

We assume that each agent of a group ofn agents has aninitial opinion. We model the set of

opinions by a finite set of distinct integers, sayS= {1,2, . . . , s} for some positive integers, where

each element ofS indicates an opinion. The goal of the agents is to reach the same opinion by

continuously discussing among themselves.

Denoting as before byk the time-index and byG(k)= (V,E(k)) the time varying graph modeling

the communication network among then agents, we model the evolution of the opinion of an

agent i as a random processXi(k) on the probability space (Ω,F ,P), whereXi(k) ∈ X for all

k≥ 0. Each agenti has an initial opinionXi(0)= x0
il ∈S with probability pil ≥ 0, with

∑s
l=1 pil = 1.

Corollary 6.2: Let Assumptions 3.1 and 3.2 hold forG(k). Given a small enough, positive

scalarλ < 1, assume that at every time-slot each agenti rolls an imaginary dice with|Ni(k)|

facets numbered from 1 to|Ni(k)|. The probability that the result of a dice roll isj ∈ Ni(k),

is wi j (k) with wi j (k) ≥ λ and
∑

j∈Ni(k) wi j (k) = 1. The agenti updates is state according to the

following scheme. If the result of the dice roll isj then agenti chooses the opinion of agentj.

We then have that the agents asymptotically agree on the sameopinion, i.e.

lim
k→∞

d(Xi(k),X j(k)) = 0,∀i, j

Proof: By modeling the dice of agenti as an i.i.d. random processθi(k) ∈ {1,2, . . . , |Ni(k)|}

such thatPr(θi(k) = j) = wi j (k) for all j ∈ Ni(k) and for all i,k ≥ 0, the update scheme of agent

i can be formally written as

Xi(k+1)=
∑

j∈Ni (k)

1{θi(k)= j}X j(k).
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However this implies thatXi(k+1) ∈ Cλ(Ai(k)), ∀i,k and the result follows from Theorem 3.1.

Remark 6.2:The above corollary shows that under the proposed scheme thedistances between

the agents states converge to zero. In general we can not say anything about the convergence

of the states themselves. However for this particular metric space more can be said about the

convergence of the states. Recall that we define the distancebetween two pointsX1,X2 ∈ X as

d(X1,X2) = E[ρ(X1,X2)] = Pr(X1 , X2).

From the above corollary we have that

lim
k→∞

d(Xi(k),X j(k)) = 0,

or equivalently

lim
k→∞

Pr(Xi(k) , X j(k)) = 0.

This says that the measure of the set on whichXi(k) and X j(k) are different converges to zero

ask goes to infinity. Noting that

{

ω : Xi(k) are not all equal
}

=
⋃

i, j,i, j

{

ω : Xi(k) , X j(k)
}

,

it follows that

Pr
(

ω : Xi(k) are not all equal
)

≤
∑

i, j,i, j

Pr
(

ω : Xi(k) , X j(k)
)

,

and therefore

lim
k→∞

Pr
(

ω : Xi(k) are not all equal
)

= 0,

or equivalently

lim
k→∞

Pr

















⋃

o∈S

{ω : Xi(k) = o,∀i}

















= 1.

However, this does not necessarily imply thatXi(k), i = 1. . .n converge to the same value with

probability one, i.e.

Pr

















⋃

o∈S

{

ω : lim
k→∞

Xi(k) = o,∀i
}

















= 1.
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It turns out that still this is the case. Recall that by inequality (35), d(Xi(k),X j(k)) = Pr(Xi(k) ,

X j(k)), ∀i, j converge at least geometrically to zero. Therefore the sum

∑

k≥0

















1−P

















⋃

o∈S

{ω : Xi(k) = o,∀i}

































<∞,

which by the Borel-Cantelli lemma implies that

Pr

















⋃

o∈S

{

ω : lim
k→∞

Xi(k) = o,∀i
}

















= 1,

and hence the agents converge to the same value with probability one.�

In the following we show that the same result can be obtained by using purely probability

theory arguments. For simplicity we assume that the communication network remains constant

and connected and that the coefficientswi j are constant as well.

Proposition 6.2:Let G be the graph modeling the communication network assumed connected

and let the agents update their state according to the schemedescribed in Corollary 6.2, where

wi j > 0 are assumed constant for allk ≥ 0. We then have that the agents converge to the same

value with probability one, i.e.

Pr

















⋃

o∈S

{

ω : lim
k→∞

Xi(k) = o,∀i
}

















= 1. (46)

Proof: We define the random processZ(k) = (X1(k),X2(k), . . . ,Xn(k)) which has a maximum

of ss states and we introduce theagreement spaceas

A , {(o,o, . . . ,o) | o ∈ S}.

The state update dynamics is given by

Xi(k+1)=
∑

j∈Ni

1{θi(k)= j}X j(k),

where Pr(θi(k) = j) = wi j , for all j ∈ Ni and for all i. The conditional probability ofXi(k+1)

conditioned onX j(k), j ∈ Ni is given by

Pr(Xi(k+1)= oi |X j(k) = o j , j ∈ Ni) =
∑

j∈Ni

wi j1{oi=o j}. (47)

It is not difficult to note thatZ(k) is a finite state, homogeneous Markov chain. We will show

that Z(k) has s absorbing states and all otherss− s states are transient, where the absorbing
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states correspond to the states in agreement spaceA. The entries of the probability transition

matrix of Z(k) can be derived from (47) and are given by

Pr(X1(k+1)= ol1, . . . ,Xn(k+1)= oln|X1(k) = op1, . . . ,Xn(k) = opn) = (48)

=

n
∏

i=1

∑

j∈Ni

wi j1{l i=p j}.

We note from (48) that once the process reaches an agreement state it will stay there indefinitely,

i.e.

Pr(X1(k+1)= o, . . . ,Xn(k+1)= o|X1(k) = o, . . . ,Xn(k) = o) = 1, ∀o ∈ S,

and hence the agreement states are absorbing states. We willshow next that under the connectivity

assumption the agreement spaceA is reachable from any other state, and therefore all other states

are transient. We are not saying that all agreement states are reachable from any other state,

but that from any state at least one agreement state is reachable. Assume that at time zero

Z(0)= (oi1, . . . ,oin) <A, with i j ∈ {1, . . . ,N}, for j = 1. . .n. Note that fromZ(0) only states with

a smaller number distinct entries, compared toZ(0), are reachable. Letj be an agent with an

initial choiceo∈ O, i.e. X j(0)= o. We show that with positive probability the agreement vector

(o,o, . . . ,o) can be reached. At time one, with probabilityw j j agentj keeps its initial choice, while

its neighbors can chooseo, i.e. Xi(1) = o with probability wi j , i ∈ N j . Due to the connectivity

assumptionN j is non-empty. At the next time-index all the agents which have already chosen

o, keep their choice with positive probability, while their neighbors will chooseo with positive

probability. Since the communication network is assumed connected, every agent will be able

to chooseo with positive probability in at mostn−1 steps, therefore agreement can be reached.

Arguing similarly for any other initial states and other agents, it follows that the probability of

reaching an agreement state fromZ(0) is positive. Since the agreement states are absorbing it

follows thatZ(0) is a transient state. Therefore, the probability for theMarkov chainZ(k) to be

in a transient state converges asymptotically to zero, while the probability to be in one of the

agreement states converges asymptotically to one, i.e.

lim
k→∞

Pr(Z(k) = z) = 0, ∀ z<A,

and

lim
k→∞

∑

z∈A

Pr(Z(k) = z) = 1,
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which is equivalent to

lim
k→∞

∑

o∈S

Pr(Xi(k) = o,∀i) = 1.

In addition, due to the geometric decay toward zero of the probability Pr(Z(k) < A), by the

Borel-Catelli Lemma it follows thatZ(k) converges to one of the agreement states not only in

probability but also with probability one and the result follows.

C. Numerical example

In what follows we consider an example where a group of eight agents (n= 8) have to choose

between two opinions, i.e.S= {1,2}. We assume that the agents communication network is given

by an undirected circular graph as in Figure 2, assumed fixed for all time-slots.

1

2

3

4

5

6

7

8

Fig. 2. Undirected circular graph with eight nodes

We assume that the agents use the scheme described by Corollary (6.2) for updating their

states, i.e. the coefficients wi j are constant. In particular we choosewii = 0.7778 andwi,i−1 =

wi,i+1= 0.1111 and choose as initial valuesXi(0)= 1 for i = 1. . .4 andXi(0)= 2 for i = 5. . .8 with

probability one. Figure 3 presents an execution of our agreement algorithm which indeed shows

that the agents agree on the same opinion. The different colors that appear indicates different

agents.

Next we numerically analyze the evolution of the vector of distancesd(k) = (d(Xi(k),X j(k))),

∀ i , j. First we see that under our assumption the entries of matrix[W(k)] ī, j̄ = wipw jq, where

ī and j̄ correspond to the pairs of agents (i, j) and (p,q), respectively, and wherewi j define

the probability mass function of the random variablesθi(k) as described in Corollary 6.2. We

March 26, 2010 DRAFT



29

0 50 100 150

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

k

X
i
(k

)
i
=

1
.
.
.8

Fig. 3. Execution of the agreement algorithm

consider the linear system

d̃(k+1)=W(k)d̃(k), d̃(0)= d(0).

By (17) of Lemma 4.1, we have that̃d(k) is an upper bound ofd(k). Figure 4 presents the

evolution of ‖d̃(k)‖∞ with time. It is worth mentioning that sinceψ defined in (40) satisfies

the definition of a convex structure with equality, it can be easily argued that (17) holds with

equality and therefore the upper boundd̃(k) is in fact d(k).

We next analyze the distance between the initial points and the consensus point(s). Sinceψ

respects the definition of a convex structure with equality,we have that

d(Xi(k+1),Xl(0))=
∑

j∈Ni

wi j d(X j(k),Xl(0)),

which is basically a consensus algorithm. Since the consensus matrix is doubly stochastic we

know that

lim
k→∞

d(Xi(k),Xl(0))=
1
n

n
∑

j=1

d(X j(0),Xl(0))

Figure 5 presents the evolution of the distance betweenXi(k) andX1(0) for i = 1. . .n. Considering

our choice for initial values and the fact thatn= 8 it is not difficult to see that

1
n

n
∑

j=1

d(X j(0),Xl(0))=
1
2
.
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Fig. 4. Evolution of‖d̃(k)‖∞ with time
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Fig. 5. The distances betweenXi(k) and X1(0) for i = 1. . .8

which is also what Figure 5 shows.

VII. Conclusions

In this report we emphasized the importance of the convexityconcept and in particular the

importance of the convex hull notion for reaching consensus. We did this by generalizing the
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asymptotic consensus problem to the case of convex metric space. For a group of agents taking

values in a convex metric space, we introduced an iterative algorithm which ensures asymptotic

convergence to agreement under some minimal assumptions for the communication graph. As

application, we provided an iterative algorithm which guarantees convergence to consensus of

opinion.
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