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Abstract

We consider the consensus problem of a group of dynamic sgémise communication network
is modeled by a directed time-varying graph. In this papergeaeralize the asymptotic consensus
problem to convex metric spaces. A convex metric space isteaspace on which we define a convex
structure. Using this convex structure we define convex amth in particular the convex hull of a
(finite) set. Under minimal connectivity assumptions, wewtthat if at each iteration an agent updates
its state by choosing a point from a particular subset of thevex hull generated by the agent’s current
state and the states of fiier neighbors, then the asymptotic agreement is achiewedddition, we
give bounds on the distance between the consensus point{sihe initial values of the agents. As
application example, we use this framework to introduceterafive algorithm for reaching consensus
of opinion. In this example, the agents take values in thespédiscrete random variable on which we
define an appropriate metric and convex structure. For thitqoular convex metric space we provide
a more detail analysis of the convex hull generated by a fggtepoints. In addition we give some

numerical simulations of the consensus of opinion algorith

|. INTRODUCTION

A consensus problem consists of a group of dynamic agentssebk to agree upon certain

guantities of interest by exchanging information amongrtheeccording to a set of rules. This
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problem can model many phenomena involving informatiorharge between agents such as
cooperative control of vehicles, formation control, flagyi synchronization, parallel computing,
etc. Distributed computation over networks has a long hysito control theory starting with the
work of Borkar and Varaiya [1], Tsitsikils, Bertsekas andhamns [23], [24] on asynchronous
agreement problems and parallel computing. A theoretihéwork for solving consensus
problems was introduced by Olfati-Saber and Murray in [187], while Jadbabaie et al. studied
alignment problems [5] for reaching an agreement. Relesstensions of the consensus problem
were done by Ren and Beard [14], by Moreau in [9] or, more rigelny Nedic and Ozdaglar
in [12], [11].

Typically agents are connected via a network that changestime due to link failures, packet
drops, node failure, etc. Such variations in topology cappea randomly which motivates
the investigation of consensus problems under a stoch&aticework. Hatano and Mesbahi
consider in [6] an agreement problem over random informmatietworks, where the existence
of an information channel between a pair of elements at el instance is probabilistic
and independent of other channels. In [13], Porfiri and $filwrovide sdficient conditions for
reaching consensus almost surely in the case of a disanet lsystem, where the communication
flow is given by a directed graph derived from a random grajplcgss, independent of other time
instances. Under a similar model of the communication toggl Tahbaz-Salehi and Jadbabaie
give necessary and ficient conditions for almost sure convergence to consems[#l{, while
in [22], the authors extend the applicability of their nesggy and sflicient conditions to strictly
stationary ergodic random graphs. Extensions to the caseewhe random graph modeling the
communication among agents is a Markovian random procesgiaen in [7], [8].

A convex metric space is a metric space on which we define aegmtwucture. The main goal
of this paper is to generalize the asymptotic consensuderoto the more general case of convex
metric spaces and emphasize the fundamental role of capeaxd in particular of the convex
hull of a finite set of points. Tsitsiklis showed in [23] thainder some minimal connectivity
assumptions on the communication network, if an agent @gsdi#és value by choosing a point
from the (interior) of the convex hull of its current valuedatine current values of its neighbors,
then asymptotic convergence to consensus is achieved. Weshow that this idea extends
naturally to the more general case of convex metric spaces.

Our main contributions are as followkirst, after citing relevant results concerning convex
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metric spaces, we study the properties of the distance betweo points belonging to two,
possible overlapping convex hulls of two finite sets of peifithese properties will prove to be
crucial in proving the convergence of the agreement algoritSecondwe provide a dynamic
equation for an upper bound of the vector of distances betwlee current values of the agents.
We show that the agents asymptotically reach agreementhbyisg that this upper bound
asymptotically converges to zerdhird, we characterize the agreement point(s) compared to
the initial values of the agents, be giving upper bounds endistance between the agreement
point(s) and the initial values in terms of the distancesvieen the initial values of the agents.
Forth, we emphasize the relevance of our framework, by providingapplication under the
form of a consensus of opinion algorithm. For this examplede®ne a particular convex metric
space and we study in more depth the properties of the convéxftha finite set of points.

The paper is organized as follows. Section Il introducesrtteen concepts related to the
convex metric spaces and focuses in particular on the cohuéixof a finite set. Section IlI
formulates the problem and states our main theorem. Set¥iagives the proof of our main
theorem together with some auxiliary results. In Sectionwé present an application of our
main result by providing an iterative algorithm for readniconsensus of opinion.

Some basic notationssiven W e R™" by [W];; we refer to thei( j) element of the matrix.
Theunderlying graphof W is a graph of orden for which every edge corresponds to a non-zero,
non-diagonal entry ofV. We will denote byl the indicator function of everA. Given some
spaceX we denote byP(X) the set of all subsets oX.

[I. ConveEx METRIC SPACES

The first part of this section deals with a set of definitionsl dasic results about convex

metric spaces. The second part focuses on the convex hufirtfeset in convex metric spaces.

A. Definitions and Results on Convex Metric Spaces

For more details about the following definitions and resthis reader is invited to consult
[25],[26].
Definition 2.1: Let (X,d) be a metric space and Igty,ze X. We say that is between =and

y if d(x,2)+d(zy) = d(xy). For any two points,y € X, the set
{ze X | d(x,2)+d(zy) = d(x.y)}
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is calledmetric segmenand is denoted byxy].
Definition 2.2: Let (X,d) be a metric space. A mapping: X x X x[0,1] — X is said to be

a convex structuren X if
d(u, w(x,y, 1) < Ad(u, X) + (1 —)d(u,y), YX,y,ue X andV¥a €[0,1]. Q)

Definition 2.3: The metric spaceX,d) together with the convex structuteis calledconvex
metric space

A Banach space and each of its subsets are convex metric §pjere are examples of convex
metric spaces not embedded in any Banach space. The fofjdwim examples are taken from
[26].

Example 2.1:Let | be the unit interval [0L] and X be the family of closed intervalsy, b;]
such that x & < bj < 1. Forl; = [a,b], Ij =[aj,bj] and 2 €I, we define a mapping by
y(li,1j,4) = [1ai + (1-2)aj, Ab; + (1 - A)b;] and define a metrid in X by the Hausddf distance,
i.e.

dli,lj) = SUHILQ{{Ia— bl} —lgfj{la—cl}l}.

ael i

Example 2.2:We consider a linear spadewhich is also a metric space with the following
properties:
() Forxyel, d(xy) =d(x-y,0);
(b) Forx,yel, anda€]0,1],

d(Ax+ (1 A)y,0) < 2d(x, 0)+ (1 - A)d(y, 0).

Definition 2.4: Let X be a convex metric space. A nonempty sulbsetX is said to beconvex
if y(x,y,2) eK, ¥Yx,ye K andVvae€]0,1].
We define the set valued mappigg P(X) —» P(X) as

V(A) = {w(xy.1) | YxyeAVae[0,1]}, )

whereA is an arbitrary set inX.

In [26] it is shown that, in a convex metric space, an arbjtiatersection of convex sets is
also convex and therefore the next definition makes sense.

Definition 2.5: The convex hullof the setA c X is the intersection of all convex sets X

containingA and is denoted bgonyA).
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Another characterization of the convex hull of a seXims given in what follows. By defining
Am = J(Am-1) with Ag = A for someA c X, it is discussed in [25] that the set sequefBg}m=0
is increasing and limsufyy, exits, and limsupy, = liminf Ap = lim Am = Up_ g Am.

Proposition 2.1 ([25]): Let X be a convex metric space. The convex hull of aAet X is

given by
conV(A) = lim Ay, = U An. (3)
m=0

B. On the convex hull of a finite set

For a positive integen, let A= {Xy,...,Xy} be a finite set inX with convex hullconA) and
let z belong toconyA). By Proposition 2.1 it follows that there exits a positiveeigerm such
that ze Am. But sinceAn = y(Am-1) it follows that there exitszy,z, € An-1 and A1) € [0, 1]
such thatz = y(z1, 2, 4(1,2)). Similarly, there exitszs, 4, 75,26 € Am-2 and A3 4), 56 € [0, 1] such
that z; = y(z3,24,4(34)) and 2> = y(zs,26, A(56)). By further decomposings,z,zs and zg and
their followers until they are expressed as functions ofmelets ofA and using a graph theory
terminology, we note the is the root of a weighted binary tree with leaves belonginghe
setA. Each node; (except the leaves) has two childrep andn,, and are related through the
operatory in the sensey = y(n1,n2,1) for somea € [0,1]. The weights of the edges connecting
n with n1 andn, are given byl and 1- A respectively.

From the above discussion we note that for any paktonyA) there exits a non-negative
integerm such thatz is the root of a binary tree of heigint, and has as leaves elementsfof
The binary tree rooted & may or may not be @erfect binary treeThat is because on some
branches of the tree the pointsAnare reached faster then on others. betlenote the number
of times x; appears as a leaf node, wiff. ; nj < 2™ and letm, be the length of thé}h path
from the rootz to the nodex;, for I = 1...n;. We formally describe the paths from the raoto

X; as the set
Py 2 {({yil,j}?lo,{ﬂil,j}?lll) |l = 1...ni}, (4)

where{yilj}Tl'O is the set of points forming thigth path, withy;, o=z andyil,miI =X and where
{/lil,j}?l'l is the set of weights corresponding to the edges along tlies piat particular; j being

the weight of the edgey( j-1.Yi,j)- We define the aggregate weight of the paths from oot
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nodex; as m
nj |

WP2x) 2 > [ [ i (5)
=1 j=1

It is not difficult to note that all the aggregate weights of the a paths fifwenrootz to the

leaves{xy,...,Xn} Sum up to one, i.e.

D W(Py) =1
i=1

z€As
A2 1-Ap
€A, 7,640,
’)l‘:i"l 1‘?“3_1'] lﬁj;’ 1-As.6)
z:EA; 2464, z:EAy Z:€A,
Mg 1-A7a Ags,10) 1-Ay5, 109
X EA %:€A %HEA %EA X EA *:EA % EA XEA

Fig. 1. The decomposition of a poiate Az with A= {Xg, X2, X3}

Example 2.3:Figure 1 shows a binary tree corresponding to a paiatAz, where A =
{X1,X2,X3}. For this particular example, the paths from to raoto the leavesx; are given

by
Pox, ={({z 21,23, X1}, {A(1,2), 43.4), A(7.8)}) , ({Z. 21, Z4, X1}, {A(1.2), (1 — 2(3.4)), A9.10)}) »

({ 22,25, %1}, {(1 - 21,2)), A5.6)s /1(11,12)}) , ({ 222,25, %1}, {(1 - 21,2)), (1 - A56)), /1(13,14)})} ,
P2y, = {({2 21, 23, X2}, {A(1,2), A3.4), (1 — A7.8))})}
Poxs = {(12.21.24. X3} 1412). (1 Azay). (1 - A020))) . (12 22,25, X3} (1 - A1.2)- As6)- (1 - Aa112)}).

({Z, 2,26, %3}, {(1- A(1,2), (1 - A56), (1 - /1(1314))})}
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and the path weights are
W(Pzx,) = 11.2)A3.4)A7.8) + 41.2)(1 = A3.4)A(9.10) + (L = A(1.2)), A(5.6)> A(1112)»
W(Pz2x,) = 1124341~ 7s),
W(Pzx;) = 1.2 (1= 234) (L= A9.10) + (1= A1.2)A56) (1 — Aa112) + (1= A1.2))(1 — A5.6) (L~ A(1314)-

Definition 2.6: We say that a point belongs to thenterior of con\A) and we denote this
by ze int(con(A)), if all elements ofA belong to the set of leaves of the binary tree rooted at
Definition 2.7: Given a small enough positive scalak 1 we define the following sub-set of
int(conyA)) consisting in all points innt(conyA)) whose aggregate weights are lower bounded
by 4, i.e.
Ciu(A) = {z| zeint(conA)), W(Pzx) > 1, VX € A}. (6)

Remark 2.1:We can iteratively generate points for which we can make thatthey belong
to the interior of the convex hull of a finite sét= {x1,...,Xs}. Given a set of positive scalars

{11,...,An-1} € (0,1), consider the iteration
Yi+1 = W(Yi, Xi+1,4i) fori=1...n—-1 withy; = x3. (7)

It is not difficult to note thaty, is guaranteed to belong to the interior @ainyA). In addition,
if we impose the condition
iz "Yafori=1...n-1, (8)

theny, € Ca(A)

The next result characterizes the distance between twaspoine X belonging to the convex
hulls of two (possible overlapping) finite seXsand.

Proposition 2.2:Let ny andny be two positive integers, le¢={Xy,..., X} andY ={y1,...,yn }
be two finite sets oX and letd <1 be a positive scalar small enough.
(@) If xeint(conyX)) andy e X then

doey) < ' Aid(x.). (©)
i=1

for some; > 0 with 3, 4 = 1.
(b) If xeint(cony X)) andy € int(conyY)) then

nx Ny
d(xy) < Zzﬁijd(xi,yj'), (10)

i=1 =1
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for somea4ij > 0 with Zinlez?il/lij =1
(c) If xe Fa(X), ye Fa(Y), then

A=2danddij =A% Vi,j, (11)

where 4; and 4j; where introduced in part (a) and part (b), respectively.
(d) If xe Fa(X), ye Fa(Y) andXNY # 0, then

nk Ny

Z Z Aij L ideg.ypye0) < 1= 2, (12)

i=1j=1
where 1jj were introduced in part (b).
Proof:
(a) Mimicking the idea introduced at the beginning of thistem, sincex e con\X) it follows
that there exists a positive integarsuch thatze Xy, whereXm.1 = ¢(Xmn) with Xgo = X. Farther,
there existzy,z € X1 and 12 € [0,1] such thatz = y(z1, 20, 112). Using the definition of the

convex structure, it follows that the distance betweemdy can be upper bounded by

d(x.y) < 412d(z1.y) + (1 - 212)d(22.Y)-

Inductively decomposing,z; and theirchildren, it can be easily argued that

d(xy) < > Aid(x,),
i=1

for some positive weightg; > 0 summing up to one. Since we assumagint(conyX)) we get
thata; >0, fori=1...n.
(b) To obtain (10) we proceed as in the previous lines andimhtpper bounds oml(X;,Y).

More precisely we get that

My
dx.y) < ) pd06.y). Vi,
j=1

with uj >0 andz?il,uj =1, and it follows that

nx Ny
d(x,y) < Z Z/lijd(xi,yj),

i=1 j=1

wheredjj = Ajuj >0 andzir‘lez?il/lij =1.
(c) We note thatlj = W(Pxx) anduj = W(Pyy,), Vi, j. But sincex € F,(X) andy € F,(Y) it
immediately follows thatlj > 2 anduj > 2, and thereforelj = 22
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(d) If XNY #0 then there exists at least one paifj) such thai(x,y;) = 0. But sincedjj > A2
the inequality (12) follows. [ |

I1l. PROBLEM FORMULATION AND STATEMENT OF THE MAIN RESULT

We consider a convex metric spacé () and a set oh agents indexed biywhich take values
on X. Denoting byk the time index, the agents exchange information based omancmication
network modeled by a time varying grag(k) = (V,E(k)), whereV is the set of vertices (the
agents) andE(k) is the set of edges. An edge (communication lisk}k) € E(k) exits if nodei
receives information from nodg Each agent has an initial value #1 At each subsequent time-
slot is adjusting hi$er value based on the observations about the values fbiehiseighbors.
The goal of the agents is to asymptotically agree on the sauevin what follows we denote
by x(k) € X the value orstateof agenti at timek.

Definition 3.1: We say that the agents asymptotically reaodmsensugor agreement) if
Jim d(xi(k), x;(K)) =0, Vi, j, 1 # . (13)
Similar to the communication models used in [24], [2], [1@E impose minimal assumptions
on the connectivity of the communication gra@fk). Basically these assumption consists in hav-
ing the communication graph connecieafinitely oftenand havingoounded intercommunication
interval between neighboring nodes.

Assumption 3.1 (Connectivity)fhe graph V,E.) is connected, wherg,, is the set of edges

(i, }) representing agent pairs communicating directly inflpiteany times, i.e.,
Ew ={(i,]) | (j,i) € E(K) for infinetly many indicesk}

Assumption 3.2 (Bounded intercommunication intervaljere exists an integeB > 1 such
that for every |, J) € E,, agentj sends higer information to the neighboring ageinat least
once everyB consecutive time slots, i.e. at tinkeor at timek+1 or ... or (at latest) at time
k+B-1 for anyk > O.

Assumption 3.2 is equivalent to the existence of an inté&yerl such that
(,)) e E(UE(k+1)U...UE(k+B-1), ¥(i,]) € Ew.

Let Aj(k) denote the communication neighborhood of agene. the set of all nodes sending
information toi at timek, which by convention contains the nodéself. We denote by (k) =

{xj(k),V]j e Ni(K)} the set of the states of agerg neighbors (its own included).
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The following theorem states our main result regarding gergptotic agreement problem on
metric convex space.
Theorem 3.1:Let Assumptions 3.1 and 3.2 hold f@(k) and letd <1 be a positive scalar

suficiently small. If agents update their state according tosttteeme
Xi(k+1) € Ca(Ai(K)), Vi, (14)
then they asymptotically reach consensus, i.e.
Jim d(xi(k), x;(K)) =0, Vi, j, 1 # . (15)

Remark 3.1:We would like to point out that the result refers strictly hetconvergence of the
distances between states and not to the convergence ofatkes tiemselves. It may be the case
that the sequences;(K)}k=0 i = 1...n do not have a limit and still the distanceéx;(k), x;j(k))
decrease to zero dsgoes to infinity. In other words the agents asymptoticallyeagon the
same value which may be very well variable.

Remark 3.2:A procedure for generating points for which is guaranteeeiong toC (A (k)
is described in Remark 2.1. The idea of pickik+1) fromC,(Ai(k)) rather tharint(conyA;(k)))
is in the same spirit of the assumption imposed on the nom-@e@nsensus weights in [23], [10],
[2], i.e. they are assumed lower bounded by a positive, sitay scalar. Settingi(k+1) €
int(conyAi(k))) may not necessarily guarantee asymptotic convergemamsensus. Indeed,
consider the case wheré= R with the standard Euclidean distance. A convex structuré&on
is given bywy(x,y,1) = Ax+(1-2)y, for any x,ye R and 1 € [0,1]. Assume that we have two
agents which exchange information at all time slots andefioee A1 (k) = {x1(k), X2(K)}, A2(K) =
{x1(K), x2(K)}, Yk > 0. Let xq(k+1) = 2(K)x1(K) + (1L - 2(K))x2(K), whereA(k) = 1-0.1e¥ and let
Xo(k+1) = p(K)x1(K) + (1 - (k) x2(k), whereu(k) = 0.1e K. Obviously,x;(k+ 1) € int(conyAi(K))),
i=12 for all k> 0. It can be easily argued that

d(x1(k+ 1), x2(k + 1)) < (A(K)(1 - pu(K)) + (K) (1 = A(K))) d(xa (k. %2(K)))- (16)

We note that ink e [Tico (A0 (1~ (k) + (1~ AKDk(K)) = liMk o0 [T (1~ 0.267+0.0267%) =
0.73 and therefore under inequality (16) asymptotic convergdo consensus is not guaranteed.

In fact it can be explicitly shown that the agents do not reachsensus. From the dynamic
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equation governing the evolution gf(k), i = 1,2, we can write
AK) 1-a(k)
p(k)  1-p(k)

wherex(K)T = [x1(K), x2(k)], and we obtain that

x(k+1)= [ ]x(k), X(0) = Xo,

lim x(k) =

k— oo

0.8540 01451
X
0.1451 08540

and therefore it can be easily seen that consensus is ndtecdom any initial states.

IV. PROOF OF THE MAIN RESULT

This section is divided in three parts. In the first part we tise results of Section 11-B
regarding the convex hull of a finite set and show that theieswf the vector of distances
between the states of the agents at tknel are upper bounded by linear combinations of the
entries of the same vector but at tirke The codicients of the linear combinations are the
entries of a time varying matrix for which we prove a numbemobperties (Lemma 4.1). In
the second part we analyze the properties of the transitiatnixnof the aforementioned time
varying matrix (Lemma 4.2). The last part is reserved to tfrepof Theorem 3.1.

Lemma 4.1:Given a small enough positive scalak 1, assume that agents update their states
according to the scheme(k+1) € Ca(Ai(K)), for all i. Let d(k) = (d(xi(k), xj(k))) for i # ] be the
N dimensional vector of all distances between the stateseohfents, wherél = @ Then
we obtain that

d(k+1) < W(k)d(k), d(0)=do, a7)

where theN x N dimensional matrixV (k) has the following properties:
(&) W(K) is non-negative and there exits a positive scalar(0,1) such that
WK)IT=n, ¥ ik (18)
[WEIT=7 ¥ [WKIF#0, i#], ¥k (19)

(b) If Ni(k)NnNj(K) #0, then the rowi of matrix W(K), corresponding to the pair of agentsj],
has the property

N
D WK< 1-n, (20)

i=1
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wheren is the same as in part (a).
(c) If Ni(Kk N Nj(K) = 0 then the rowi corresponding to the pair of agentsjj sums up to one,

l.e.

N
2 IWRIT= 1. (21)

j=1
In particular if G(k) is completely disconnected (i.e. agents do not send armynr&tion),
thenW(k) = 1.

(d) the rows ofW(k) sum up to a value smaller or equal then one, i.e.

N
Z[W(k)]qs 1, V i,k (22)
j=1

Proof: Given two agents and j, by part (b) of Proposition 2.2 the distance between their
states can be upper bounded by
dsk+ 1) x(ke1)< > Whd(Xp(K) Xq(K), | # ], (23)
PeNi (K).aeN;(K)
wherewy(k) > 0 and Y, pen; to.qen (k Woa(K) = 1. By definingW (k) £ (Wy(K) for i # j andp#q
(where the pairsi(j) and (o,q) refer to the rows and columns WV (k), respectively), inequality
(17) follows. We continue with proving the properties of mvatw (k).

(a) Since all/\fgq(k) >0 foralli# j, pe Ni(k) andge Nj(k) we obtain thatV (k) is non-negative.
By part (c) of Proposition 2.2, there exisjg 12 such thalwigq(k) > n for all non-zero entries of
W (k). Also, sincei € Nj(k) and j € Nj(k) for all k> O it follows that the teme (K)d(xi(k), xj(K)),
with WH (k) > n will always be present in the right-hand side of the inedqugR3), and therefore
W(K) has positive diagonal entries.

(b) Follows from part (d) of Proposition 2.2, with= 1°.

(c) If Ni(KkNNj(K) =0 then no terms of the form/igp(k)d(xp(k),xp(k)) will appear in the sum
of the right hand side of inequality (23). Heng&e v, (k).qen; ¥ vvigq(k) =1 and therefore

N
D IWRIG=1

j=1
If G(k) is completely disconnected, then the sum of the right hade sf inequality (23) will
have only the terw! (K)d(x (), x;(K)) with wll(k) = 1, for alli, j = 1...n. Thereforew/(k) is the

identity matrix.
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(d) The result follows from parts (b) and (c). [ |

Let G(K) = (V,E(K)) be the underlying graph oiV(k) and leti and j refer to the rows and
columns ofW(k), respectively. Note the under this notation, ind_&)orresponds to a pair, ()
of distinct agents. It is not @icult to see that the set of edges®) is given by

E(K) = {((, ) (p.9)) | (. p) € E(K), (j,q) € E(K)i # |, p#0). (24)

Proposition 4.1:Let Assumptions 3.1 and 3.2 hold f@&(k). Then, similar properties hold

for G(k) as well, i.e.

(a) the graphV\(,E..) is connected, where
Ew ={(i,]) | (i, ]) € E(K) infinetly many indicesk};

(b) there exists an integeB > 1 such that everyi(j) € E. appears at least once eveB/
consecutive time slots, i.e. at tinkeor at timek+1 or... or (at latest) at timd+ B-1 for
any k> 0.

Proof:

It is not difficult to observe that similar to (245?,_00 is given by

Ewo = {((,)-(P.) | (i-P) € Ece. (j, P) € Ewo, P# G # ). (25)

(a) Showing that\?, E_oo) is connected is equivalently to showing that for any twapdi j)
and (p,q) there exits a path connecting them. SinWeE(,) is assumed connected, there exits a
pathig —» i1 —...,— i1 — I, for somel < n, such thaig= p andi; =i. From (25), it is easily
argued thatig, j) — (i1, ) = ... = (-1, ]) = (i}, ) represents a path connectinigjf with (p, j).
Similarly, there exits a pathp — j1 — ... = jm-1 — jm for somem < n, such thatjo = q and
jm = |. Therefore, p,jo) = (p,j1) — ... = (P, Jm=1) = (P, jm) iS @ path connectingp(j) with
(p,g) and it follows that , j) and (p,q) are connected.

(b) Let ((, j), (p,q)) be an edge ifE., or equivalently i, p) € E and (j, q) € E«. By Assumption
3.2, we have that for ank> 0

(i,p) € E(Q)UE(Kk+1)...UE(k+B—1),

(j,q) € E( UE(k+1)...UE(k+B—-1),
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where the scalaB was introduced in Assumption 3.2. But this also implies that
(i,]) € E()UE(k+1)U...UE(k+B—-1), ¥(i, j) € Ew.

Choosingl?jé B, the result follows. [ |
Let d(k,s) = W(k—1)W(k—2)---W(s), with d(k,k) = W(k) denote the transition matrix of
W (K) for anyk > s. It should be obvious from the propertieswf(k) that®(k, s) is a non-negative
matrix with positive diagonal entries afid(k, S)||.o < 1 for anyk > s.
Lemma 4.2:Let W(K) be the matrix introduced in Lemma 4.1. Let Assumptions 3d 3.2
hold for G(k). Then there exits a row index such that

N
DIo(s+m9iy<1-7"V sm>B-1, (26)
j=1

wheren is the lower bound on the non-zero entriesVitk) and B is the positive integer from
the part (b) of the Proposition 4.1.

Proof: Let (i*,]*) € E, be a pair of agents. By Assumptions 3.1 and 3.2, there exits a
positive integers’ € {s,s+1,...,s+B—1} such that agen}* sends information to ageiit. This

implies thatNi:(k) N Nj<(k) # @ and by part (b) of Lemma 4.1, we have that

N
DIWES)Rj<1-n,

j=1
wherei* is the index corresponding to the paiif, (*). The sum of thé* row of transition matrix

®(s +1,5) can be expressed as
N N

N
D0 +L9Trr= Y IWEFT Y [0S, 9

j=1 j=1 h=1

But since||®(k, 9)llo < 1 for anyk > s, we have thaghuzl[d)(s’, 9)]jn <1 for any j, and therefore

N
Do +19r7< 1-n. (27)
ji=1

We can writed(s +2,s) = W(s + 1)0(s +1,s) and it follows that thé* row sum of®d(s +2, )

can be expressed as
N N

N
DO +2.957= Y IW(S + Dl ) [0S + 19
h=1

j=1 j=1
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Since N [@(s +1,9)]j5< 1 for any j it follows that

N N
DS +2, 957 < WS + D ) [0S + L9+ Y| [W(S +DJpj<

j=1 h=1 j=1,j#i*

N
<W(S +Dfr@A-m+ > WS+ D7 ) WS + Dl-nIW(S + Dl < 1-17
j=1,j#i* j=1
since W(s' +1)Jz# = n. By induction it can be easily argued that

N
Z[@(y +m9)rr<1-5™, ¥m>0. (28)
ji=1

Note that by Assumption 3.2, a pair, [) can exchange information at = s the earliest or at

s =s+B-1 the latest. From (28) we obtain that fer=s+B-1

N
Z[(D(s+ B-1+m9r<1-y™ Ym>0, (29)
j=1
and fors' =s \
Dlo(s+m9ly<1-4" vm=0,
j=1
or

N
D lo(s+B-1+m 95 < 1-7™5 vm=>0, (30)
j=1

From (29) and (30) we get
N

Z[CD(S+ B-1+m9)Jrr<1-n™B"1 vsm>0,
j=1
or equivalently
N
Ylo(s+m 9y 1-4" vm=B-1. (31)
j=1
[ |
Corollary 4.1: Let W(K) be the matrix introduced in Lemma 4.1 and let AssumptiofsaBd

3.2 hold forG(k). We then have
[(s+(N-1)B-1,9)] > s DB vsi ], (32)

wheren is the lower bound on the non-zero entriesVétk) and B is the positive integer from

the part (b) of the Proposition 4.1.
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Proof: By Proposition 4.1 and Lemma 4.1 all the assumptions of Le@nfit0] are satisfied,
from which the result follows. [ |
We are now ready to prov€heorem 3.1.
Proof: We have that the vector of distances between the states algiets respects the
inequality
d(k+1) < W(k)d(k),

where the properties oiV(k) are described by Lemma 4.1.

It immediately follows that
ld(k+ L)lleo < ld(K)lleo, for k> 0. (33)

Let B2 (N-1)B—1, whereB is the positive integer from the part (b) of the Propositioh. 4
It the following we show that all row sums ab(s+ 2B, s) are upper-bounded by a positive
scalar strictly less than one. Indeed sie+ 2By, s) = ®(s+ 2Bg, S+ Bo)®(s+ By, S) we obtain
that

N N N
Z[cp(s+ 2Bo, 9)Iij = Z[cp(s+ 2By, s+ §o)]g_2[®(s+ Bo. 9157 Vi.
=1 j=1 h=1

By Lemma 4.2 we have that there exists a rEWsuch that

N _
> [&(s+Bo,9)5q < 1-n™, Vs
h=1

and sincexN [®(s+Bo,9)]jr < 1 for any j, we get

N N _
Z[cp(s+ 2Bo.9li7< D" [®(s+2Bo, s+ Bo)lij+ [@(s+2Bo, s+ Bo)lfj: (1- ™) =

=1 j=Li)"
N _ _ _ _ _
= > [®(s+2Bo, 5+ Bo)lij - [(s+2Bo, 5+ Bo)lij: ™.
j=1

By Corollary 4.1 it follows that
[®(s+2Bo, s+ Bo)lij = %0+, Vi 1.5

and sincezjuzl[CD(s+ 2Bo, Bo)lif< 1 we get that

N — —_—
> [@(s+2Bo, )i < 1-n?%*t Vi
j=1
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Therefore
|®(s+2Bg, 9leo < 1— 7?21 vs (34)

It follows that
=y k
ld@lleo < (1-77%*1) 1Id(O)llee, Yk 2O, (35)

wheret, = kBy which shows that the subsequenie(ty)ll- }k=0 asymptotically converges to zero.
Combined with inequality (33) we farther obtain that the wtre!{||d(K)||- k=0 asymptotically
converges to zero. Therefore the agents asymptoticalthreansensus.

V. DISTANCE BETWEEN THE CONSENSUS POINTS AND THE INITIAL POINTS

In this section we analyze the evolution of the distance betwthe states of the agents and
their initial values under the scheme described by TheordmThis analysis will give us upper
bounds on the distance between the consensus point(s) enditihl values of the agents.

Consider distancd(x;(k), x(0)) for some,| and let us assume thai{k+ 1) is chosen according
to the scheme described by Theorem 3.1,%.6k+ 1) € C(Ai(K)). By part (a) of Proposition 2.2
we can express this distance as

d(xi(k+1),%(0)) < Z Aij (K)d(x;(K), x(0)), (36)
ieNi(®)
wheredjj(k) > 2 and}; jen; ) 4ij (K) = 1. By defining then dimensional vecton' (k) = (d(xi(k), x(0)))
(wherei varies) and th@xn dimensional matrix\(k) = (1;;(k)), inequality (36) can be compactly

written as
7 (k+1) < A (K), 7(0) = ng,. (37)

whereA(K) is a row stochastic matrix. It is notfticult to note that the underlying graph afk)

is G(k) and that in fact inequality (37) is valid for arly In the following proposition we give

upper bounds on the distance between the consensus stdtdseanitial values of the states.
Proposition 5.1:Let Assumptions 3.1 and 3.2 hold f@(k) and let the states of the agents

be updates according to the scheme given by Theorem 3.1. &vehthve that
n

lim d(4(9, 3(0)) < ) vid((0). x(0), V il (38)
=1
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wherev = (vj) is a vector with positive entries summing up to one satigfyi
lim AGA(KK=1)-+-A(0) = v, (39)

and whereA (k) is the matrix defined in inequality (37).
Proof: Our assumptions fit the assumptions of Lemmas 3 and 4 of [i®}) fvhere (39)
follows. Therefore by inequality (37) the result follows. [ ]
Remark 5.1:1f in addition to the assumptions of Proposition 5.1 we alssuane that\ (k) is
doubly stochastic, then by Proposition 1 of [10] we get that

1

lim AMAK=1)---A(0) = ﬁ]l]lT.

Therefore, inequality (38) gets simplified to
. 1¢ .
lim d(x (). %(0)) < - ;d(x" (0).%(0)). ¥i.

The assumptions in this remark correspond to the assungdtothe average consensus problem
in Euclidean spaces. For the aforementioned case, the sus@oint is given by the average

of the initial points, i.e Xqy = %Z{‘lei(O). It can be easily check that indegg, satisfies
1 n
I¥ay=4(0)] < = ]Z;ij(o)—xl(o)”,

where||- || represents the euclidean norm.

VI. APPLICATION - ASYMPTOTIC CONSENSUS OF OPINION

Social networks play a central role in the sharing of infatioraand formation of opinions.
This is true in the context of advising friends on which maevie see, relaying information about
the abilities and fit of a potential new employee in a firm, delgathe merits of politicians.

In the following we consider a scenario in which a group ofragdry to agree on a common
opinion. Assume for example that a group of friends wouleé lik go to see a movie. Berent
members of the group may suggedtelient movies. A member of the group discusses with all
or just some of higer friends to find out about their opinions. This member giseme weight
(importance) to the opinion of his friends based on the tmstheir expertize For instance
some members of the group are more informed about the quadlitlye proposed movies, and
therefore there opinions may have a heavier influence on tfa diecision. By repeatingly

discussing among themselves, the group of friends havedosehone of the movies.
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In the following we mathematically formalize the scenargscribed above and show that we
can use the framework introduced in the previous sectiorggvi® an algorithm which ensures
asymptotic consensus on opinions. We model the opinion oémlper of the group (agent) as a
discrete random variable. Under an appropriate metric vogvghat the metric space of discrete
random variable is convex by providing a convex structureadidition, we analyze in more
detail the convex hull of a finite set; this analysis is po&sgince the convex structure is given
explicitly. We give an iterative algorithm that ensuresesmgnent of opinion, which is based on

Theorem 3.1 and provide some numerical simulations.

A. Geometric framework

Let s be a positive integer and |& ={1,2,...,s} be a finite set. Consider the sample space
Q={w1,wy,...,ws} and let Q,F,P) be a probability space. We denote Xythe space of discrete
random variable defined o)(7,%), given byX = {X | X: Q — S}.

We introduce the operatar: X x X — R, defined as

d(X,Y) = E[o(X, Y)],

wherep : RxR — {0,1} is the discrete metric, i.e.
1 x+#y

0 x=y
It is not difficult to note that the operatdrcan also be written a¥(X,Y) = E[1{x»v;] = Pr(X#Y),

M&W={

wherelx.y; is the indicator function of the evefX # Y}.

We note that the operatar satisfies the following properties

1) For anyX,Y € X, d(X,Y) =0 if and only if X =Y with probability one.

2) For anyX,Y,Z € X, d(X,Z2) +d(Y,Z) > d(X,Y) with probability one,

and therefore is an (almost) metric 8h The setX together with the operatat define the
(almost) metric spacéX,d). We use the attributalmost to emphasize that the two properties
of the operatod are satisfied with probability one.

Let v: XxXx[0,1] —» X be a mapping given by

Y(X1, X2,14) = Ljg=1) X1 + Lig=2) X2, (40)
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where X1, X2 € X and wheref € {1,2} is a random variable independent on any event on the
o-field F, with probability mass functiofPr(¢ =1)= 1 andPr(6 =2) = 1- 1, wherea € [0, 1].
Proposition 6.1: The mappingy is a convex structure oX.
Proof: For anyU, X1, X, € X and A € [0,1] we have

d(U, (X1, X2, 1)) = E[p(U, y(X1, X2, 2))] = E[E[p(U, y(X1, X2, 2))IU, X1, X2]] =
= E[E[o(U, T{p=1y X1 + Ljp=21X2)]IU, X1, X2] == E[2p(U, X1) + (1 - )p(U, X2)] =

= 2d(U, Xq) + (1 2)d(U, X5).

From the above proposition it follows thak(d) is a convex metric space

The next theorem characterizes the convex hull of a finitensat.

Theorem 6.1:Let n be a positive integer and l&k = {X1,...,Xn} be a set of points inX.
Consider a sample spadcey, and a random variablé : Qy — {1,...,n}, independent of any
X e X, with probability measure given bir(w : 6(w) = i) = w;, for some non-negative scalars

wi, with 31 w; = 1. We define the set

n n
(K(A)é{ZeX 1 2= TjpmipXi, YW 20, ) w :1}. (41)
i:l |:1

Then
conyA) = K(A).

Proof: We recall from Proposition 2.1 that the convex hullAfs given by

conA) =lim Ay, = U Am,

m=1
where Ay = y(Am-1), with A; =y(A). Also, sinceA, is an increasing sequence, cleafly An
for all m> 1. The proof is structured in two parts. In the first part wevstbat any point
in K(A) belongs to the convex hull oA, while in the second part we show that any point in
conyA) belongs toK(A) as well.

Let Ze K(A) i.e. Z= Y 1p-iyX wherePr(d =i)=w;, for somew; >0, 3 ;w =1. The
random variabl@ is defined such tha(w;) =i andPr(wj) = w. LetQ; = {w,w)},i=1...n-1 be

a set of sample spaces whose events are independent amorsgves (i.ewij are independent
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fori=1...n-1, j=1,2) and of any event on the-algebra7. We define the probability measure
for each of the events if; as

Wip+...+Wj1

Wi4...+W
Wi

Wi+ +W

Pr(w}) =
Pr(w)) =

fori=1...n-1. We consider the following succession of events fram

{12 n-1
Sl—{culwl...wl }
S2= {w1w2 .. w”‘l},
D= i-2 i-1 n-1 ; _ B
SI - Ujl_,.ji_zzl{wjl"'wji72w2 wl"'wl },I - 3...n 1,
=12 . { 1 n-2 n—1}
Sn= U11~-~Jn—2:1 w]l"'w]nfsz :

For example, fom =4 (42) becomes

S1= {w%wiw‘z’},

Sy = {w%wiw‘z’},

S3 {wiw%w?} U {w%w%wi}
{ }

U {w%a)ia)g} U {w%w%wg} U {w%w%wg}.
Using the independence assumption on the events pms not dificult no see that
Pr(Si)=w;, i=1...n.

Assume that each eveni that we observe can be decomposed in a succession of indayend

events fromQ;, which are invisible to the observer. In particular let
wi=Sj,i=1...n

The particular decomposition of evednt in a set of intermediate, independent events given by
Si makes sense since bath andS; have the same probability measure. It immediately follows
that

Liwo)=iy = Liw) = Lisy.- (43)
Let us now define the random variablgs Q; — {i,i + 1}, where

(W) =1, Oi(w)) =i+1,
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fori=1...n-1. Obviously

W1+ ..+ Wi : Wi
ML g —iv 1)
+. W Wi+ W

Prg =i) =
andg; are independent from each other and from any event ffoam
From (42) and (43) together with the independence of theaandariablesy; the following
equalities in terms of the indicator function are satisfied
Lig=g) = I3 L40,j)
]l{g:i} = ]l{gifl:i}n?;il]l{gj:j}, i=2...n-1 (44)
Lig=n) = L6y 4=n-

From (44) it follows thatZ is the result of then" step of the iteration
Yitr = Lig=i)Yi + Lig=iz 1y Xi+1,

for i =1...n, with Y; = Xq, i.e. Z=Y,. It can be easily argued th& € A_;, i=2...n and
thereforeZ € A,_1 or Z € conA) which implies that ' (A) c conyA).

We now begin the second part of the proof and show that anyt poioonyA) belongs to
K(A) as well. If Z € conA), from Section II-B we have that there exits a positive ietreq
such thatZ € Ay, and thereforeZ is the root of a binary tree of heigim with leaves from the
set A. Using the same notations as in Section II-B for each of tla tedesX;, there exists
ni > 1 paths fromZ to X, of lengthsm;, | = 1...n; which are denoted by

Pz, = {(1¥i.1 00 (i ) 11 =1..mi},
whereYj j_1 = w(\(i,,j,*,/lil,j) for j=1...my, | =1...n and where we denoted by some
intermediate node in the tree. We introduce the independantiom variable®j ; such that
Pr(@i.j =11,]) = 4j,,j andPr(6;, j = ) = 1- 4, ,-. It follows thatZ can be expressed as

i=1

Using again the independence @f; we have that

ni M
1 G5 =i, j) = 1 ) m . o
IZJ:- g {w 1, 1| ]} {Ulnzllmjzll{w'gﬂ,j:ll,”}
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LetS; = {Ulni:l ﬂ?l'l{w S 60i,p =T, j}} and let us interpret the events$ as the set of underlying

sub- eventsgeneratingu; i.e. wj = S;. It is not difficult to see that
Pr(wi) = Pr(Si) = W(Pzx;).

By definingw; = W(Pzx) we get thatzi”:1 Pr(wi) = 1. Note that if there exits arf such that
X« is not among the leaves of the binary tree rooted,athe measure of the eveaj is zero.

Therefore we have that can be expressed as

n n
Z= Z; L Xi = Z;]l{ezi}xi,
I= 1=

wherePr(6 =1) =w; and hence it follows thal € K(A) and consequentlgonyA) c K(A). From
part one and part two of our proof, the result follows.
[
Remark 6.1:We note that any poinZ belonging to the convex hull a1, X, is betweenX;
and Xz in the sense of Definition 2.1. Indeed,4fe con\{Xy, Xo}) thenZ = 1g-1yX1 + Lg=2 X2,
wherePr(6 =1)=2 andPr(0 = 2)=1- 2, for someaA € [0,1]. It follows that

d(X1,2) +d(Z,X2) = E[p(X1,Z) + p(Z, X2)] = E[E[o(X1,Z) +p(Z, X2)]1X1, X2] =
= E[1p(X1,X2) + (1 = )p(X1, X2)] = d(X1, X2).

However, not any point belonging to the metric segmexy, Xo] belongs tocony{Xi, Xz}).
Indeed, assume for example thét, X, € {1,2} and consider a random varialfes {1,2} whose
probability mass function, conditioned on the valuesXafand X, is given byPr(Z = 2|X; =
2Xo=1)=A, Pr(Z=1X;=2,X=1)=1-1, Pr(Z=1X1=1,X=2)=1, Pr(Z=1X; =1, Xo =
2)=1-1andPr(Z=2/X1=2,X,=2)=Pr(Z=1/X1 =1, X, = 1)= 1, for somel # 1 € (0, 1). Since
Pr(Z=2X1=2,X2=1)#Pr(Z=1X; =1,X = 2) it follows thatZ ¢ con|{X1, X2}). However it
can be easily checked thate [ X1, X2]. In fact any random variablg whose probability mass
function conditioned on the values &f and X, satisfies

Z Pr(Z = ZX1 = x1,X2 = X2) =0, Z Pr(Z = 2X1 = x1,X2 = X2) =0,

ZEX1# X2 Z£EX
belongs to the metric segmen{4] X2].
Corollary 6.1: Let n be a positive integer, leA = {Xy,...,Xn} be a set of points iX and let

A< 1 be a positive scalar ficiently small. Consider a sample spaegand a random variable
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0:Qy— {1,...,n}, independent of any € X, with probability measure given byr(w : 8(w) =

i) =w;, for some positive scalans;, with Zi”:lwi = 1. We define the set

n n
7@(A))é{2ex | ZZZ]I{gzi}Xi, VW, 24’2""‘ :1}. (45)
i=1 i=1
Then
Ca(A) = Ka(A).
Proof: Follows immediately from Definitions 2.6, 2.7 and Theorer. 6. [ ]

B. Asymptotic Consensus of Opinion Algorithm and Numei&alulations

We assume that each agent of a groum afyents has amitial opinion. We model the set of
opinions by a finite set of distinct integers, say- {1,2,..., s} for some positive integes, where
each element of indicates an opinion. The goal of the agents is to reach tiree sgpinion by
continuously discussing among themselves.

Denoting as before blythe time-index and b(k) = (V, E(K)) the time varying graph modeling
the communication network among theagents, we model the evolution of the opinion of an
agenti as a random process(k) on the probability spacelX, 7,%), where X;(k) € X for all
k> 0. Each agenithas an initial opiniorX;(0) = X? € S with probability pj > 0, with ¥° , py = 1.

Corollary 6.2: Let Assumptions 3.1 and 3.2 hold f@&(k). Given a small enough, positive
scalard < 1, assume that at every time-slot each agerdlls an imaginary dice withN;(K)|
facets numbered from 1 taVj(k)|. The probability that the result of a dice roll ise Nj(K),
is wij (k) with wij(k) > 2 and ¥ jen:Wij(K) = 1. The agent updates is state according to the
following scheme. If the result of the dice roll jsthen agent chooses the opinion of agent

We then have that the agents asymptotically agree on the spmien, i.e.
Jim d(Xi(k), X;(K)) = 0,vi, ]

Proof: By modeling the dice of agentas an i.i.d. random proceggk) € {1,2,...,|INi(K)|}
such thatPr(6;(k) = j) = wij(k) for all j € Nj(k) and for alli,k > 0, the update scheme of agent

i can be formally written as

Xik+1)= > Tgg=jXi®.
ieNi(K)
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However this implies thaki(k+ 1) € C(Ai(K)), Vi,k and the result follows from Theorem 3.1.
[
Remark 6.2:The above corollary shows that under the proposed schentistiamces between
the agents states converge to zero. In general we can notng#lyirey about the convergence
of the states themselves. However for this particular medpace more can be said about the

convergence of the states. Recall that we define the distagteeeen two pointxi, Xs € X as
d(X1, X2) = E[p(X1, X2)] = Pr(Xy # Xp).
From the above corollary we have that
Jim d(Xi(k), X;(k)) = O,
or equivalently
kI|_r2o Pr(Xi(k) # X;(k)) = 0.

This says that the measure of the set on whigtk) and Xj(k) are diferent converges to zero
ask goes to infinity. Noting that
{w : Xi(K) are not all equdl= U {w - Xi(K) # Xj(k)},
i, i#]
it follows that
Pr(w: Xi(k) are not all equal< >’ Pr(w:Xi(K) # X;(K)),
%]
and therefore

kIim Pr(w : Xi(k) are not all equal=0,

or equivalently

kli_r)r!oPr[U{w - Xi(K) = o,Vi}] =1

0eS

However, this does not necessarily imply th&(k), i = 1...n converge to the same value with

Pr(U{w Jim () = o,Vi}] _1,

0eS

probability one, i.e.
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It turns out that still this is the case. Recall that by indiy&35), d(Xi(k), Xj(k)) = Pr(Xi(Kk)
Xj(K)), Vi, j converge at least geometrically to zero. Therefore the sum

Z[l—P(U{w L Xi(K) = o,Vi}D < o0,

k=0 0eS
which by the Borel-Cantelli lemma implies that

Pr(U{w :Jim () = o,Vi}] _1,

0eS

and hence the agents converge to the same value with pribpainié. o

In the following we show that the same result can be obtainediding purely probability
theory arguments. For simplicity we assume that the comeation network remains constant
and connected and that the fogentsw;j are constant as well.

Proposition 6.2: Let G be the graph modeling the communication network assumeteoted
and let the agents update their state according to the sceswibed in Corollary 6.2, where
wij > 0 are assumed constant for &l 0. We then have that the agents converge to the same
value with probability one, i.e.

Pr(U{w Jim () = o,Vi}] _1, (46)

0eS

Proof: We define the random proce2&ék) = (X1(K), X2(K), ..., Xn(K)) which has a maximum

of s° states and we introduce tlagreement spacas
A={(0,0,...,0) | 0€ S}.
The state update dynamics is given by

Xi(k+1)= > Tig0=1Xi (K,
JEN;
where Pr(6i(k) = j) = wij, for all j € Nj and for alli. The conditional probability ofXi(k+ 1)
conditioned onX;(K), j € N is given by
Pr(Xi(k+1)=0ilX(K) = 0}, j e M) = > WijT 0= (47)
IeN;
It is not difficult to note thaZ(k) is a finite state, homogeneous Markov chain. We will show

that Z(k) has s absorbing states and all othet- s states are transient, where the absorbing
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states correspond to the states in agreement s@acehe entries of the probability transition

matrix of Z(k) can be derived from (47) and are given by

Pr(Xi(k+1)=0y,...,Xn(k+ 1) = 0,,|X1(K) = Op,, ..., Xn(K) = Op,) = (48)
n
= ]—[ Z Wij L1i=p;)-
i=1 jeN;

We note from (48) that once the process reaches an agreetatmnit svill stay there indefinitely,
ie.
Pr(Xi(k+1)=o0,...,Xn(k+1) = 0/X1(k) = 0,...,Xn(K) =0) = 1, YO€ S,

and hence the agreement states are absorbing states. \Whawilhext that under the connectivity
assumption the agreement spatés reachable from any other state, and therefore all othaéest
are transient. We are not saying that all agreement stageseachable from any other state,
but that from any state at least one agreement state is tdachsssume that at time zero
Z(0) = (0iy,...,0i,) € A, with ij € {1,...,N}, for j=1...n. Note that fromZ(0) only states with

a smaller number distinct entries, comparedZ{0), are reachable. Let be an agent with an
initial choiceo € O, i.e. Xj(0) = 0. We show that with positive probability the agreement vecto
(0,0,...,0) can be reached. At time one, with probability, agentj keeps its initial choice, while

its neighbors can choosg i.e. Xj(1) = o with probability wij, i € N'j. Due to the connectivity
assumptionV;j is non-empty. At the next time-index all the agents whichehalready chosen

0, keep their choice with positive probability, while theieighbors will choose with positive
probability. Since the communication network is assumegheoted, every agent will be able
to chooseo with positive probability in at mosh—1 steps, therefore agreement can be reached.
Arguing similarly for any other initial states and other atg it follows that the probability of
reaching an agreement state fra{0) is positive. Since the agreement states are absorbing it
follows thatZ(0) is a transient state. Therefore, the probability for Merkov chainZ(k) to be

in a transient state converges asymptotically to zero,emfie probability to be in one of the

agreement states converges asymptotically to one, i.e.
kIim Pr(Zkk=2=0, VY z¢ A,
and

lim Z; Pr(zK) =2 = 1,
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which is equivalent to
gmz Pr(Xi(k) = o,Vi) = 1.

0eS

In addition, due to the geometric decay toward zero of thébgindity Pr(Z(k) ¢ A), by the
Borel-Catelli Lemma it follows tha¥Z (k) converges to one of the agreement states not only in

probability but also with probability one and the resultldals. [ |

C. Numerical example

In what follows we consider an example where a group of eigehts (= 8) have to choose
between two opinions, i.& = {1,2}. We assume that the agents communication network is given

by an undirected circular graph as in Figure 2, assumed figedlf time-slots.

Fig. 2. Undirected circular graph with eight nodes

We assume that the agents use the scheme described by Go(6l2) for updating their
states, i.e. the céiécientswij are constant. In particular we choosg = 0.7778 andw;j_; =
Wi i+1 =0.1111 and choose as initial valugg0)=1 fori=1...4 andX;(0)=2 fori=5...8 with
probability one. Figure 3 presents an execution of our ages¢ algorithm which indeed shows
that the agents agree on the same opinion. Tlfferént colors that appear indicatestelient
agents.

Next we numerically analyze the evolution of the vector dftaincesd(k) = (d(Xi(K), Xj(K))),
Vi # j. First we see that under our assumption the entries of mgWigk)]; j = wipwjq, where
i and j correspond to the pairs of agenisjf and (,q), respectively, and wherey j define

the probability mass function of the random variabdg&) as described in Corollary 6.2. We
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Fig. 3. Execution of the agreement algorithm

consider the linear system
d(k+1) = W(K)d(K), d(0) = d(0).

By (17) of Lemma 4.1, we have thal(k) is an upper bound ofi(k). Figure 4 presents the
evolution of ||d(K)|l. With time. It is worth mentioning that since defined in (40) satisfies
the definition of a convex structure with equality, it can laesily argued that (17) holds with
equality and therefore the upper boudk) is in fact d(k).
We next analyze the distance between the initial points Aerdconsensus point(s). Singe
respects the definition of a convex structure with equality,have that
d(Xi(k+1),%(0)) = Z wij d(X;(k), X1(0)),
JEN;
which is basically a consensus algorithm. Since the comsenstrix is doubly stochastic we

know that .
: 1
lim d(Xi(k).%(0)) = - ,Z; d(X)(0). X(0))

Figure 5 presents the evolution of the distance betwgég andX1(0) fori=1...n. Considering

our choice for initial values and the fact that 8 it is not dificult to see that

LS 0. X (0) =5
=1
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Fig. 4. Evolution of{|d(K)lle with time

0.9

0.8

0.7

051

0.4

d(Xi(k), X1(0)), i

031

0.2

0.1

L
100 150

o
ol
S

Fig. 5. The distances betweef(k) and X;(0) fori=1...8

which is also what Figure 5 shows.

VIl. CoNcLUSIONS

In this report we emphasized the importance of the convesatycept and in particular the

importance of the convex hull notion for reaching consen¥us did this by generalizing the
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asymptotic consensus problem to the case of convex metiespor a group of agents taking
values in a convex metric space, we introduced an iteratyg@ithm which ensures asymptotic
convergence to agreement under some minimal assumptioriedacommunication graph. As
application, we provided an iterative algorithm which qardees convergence to consensus of

opinion.
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