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Abstract:  A simplified network describing the interactions between the cholesterol 

and beta amyloid (Aβ) synthesis pathways was generated using information 

available from the KEGG database and literature.  A system of ordinary differential 

equations was developed and modeled using Matlab.  Rate constants and molecular 

concentrations were approximated using basic parameter estimation.  Initial 

simulations demonstrated the importance of negative feedback control by 

cholesterol in the regulation of beta  amyloid  levels.  Eliminating negative feedback 

by beta amyloid on cholesterol, as well as decreasing the initial levels of cholesterol 

or Aβ, led to no changes in the steady state levels of molecules studied.  The model 

was then adapted to include compartmentalization of cholesterol and ApoE into 

neuronal, astrocytic and free ApoE.  This adapted model was used to study the 

effect of decreasing ApoE, decreased neuronal cholesterol, decreased acetyl CoA, as 

well as decreased LRP-1 expression.  Future work will continue to expand on the 

model to include further compartmentalization, where applicable, as well as the 

possible effect of statin treatments on the concentration levels of key proteins (Aβ, 

ApoE, LRP-1).  Future models will also use a Monte Carlo simulation method to 

study the effect of noise on such a system. 

Background & Introduction 

• Brain contains the highest level of cholesterol of all organs in the 
human body (~25%; Bjorkhem 2004):  
– 80% necessary for producing myelin 
– Remainder necessary for:  

• Maintenance of plasma membrane fluidity 
• Synaptic vesicle & synapse formation 
• Neurite extension 

•  In AD, the level of cholesterol in both the blood plasma and the 
brain is believed to play a role in pathogenesis: 
– High plasma cholesterol, due to hypercholesterolemia or heart disease, 

leads to ↑ Aβ deposition (Refolo 2000, Puglielli 2003) 
– Increased APP levels lead to: 

• ↓ in LRP-1 & cholesterol 
• ↑ in apoE (Liu 2007) 

• Synthesis & regulation of cholesterol in the brain is just starting to 
be understood  
– Cholesterol is believed to inhibit BACE activity, preventing generation of 

Aβ (Crameri 2006) 
– Aβ is believed to inhibit AcetylCoA production by inhibiting the action of 

pyruvate dehydrogenase (Hoshi 1996) 

• Currently no quantitative model to study this 
– Would provide a method to study this possible regulation using control & 

systems theory, reducing the difficulty to study the system 
– Could also help identify key chemicals or regulatory steps that could be 

used in future treatments 

Basic Model Basics: Negative Feedback & Related Equations 
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Discussion & Conclusion: 
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•  We have developed a simplified model to study feedback regulation between 
cholesterol and Aβ in the brain, showing that feedback regulation between 
cholesterol and Aβ is essential 

• We have also started to develop a systems-level model to integrate metabolic, 

proteomic and lipidomic networks to have more accurate simulations 

• We have shown that a top-down approach is valid by developing a high level 

network consisting of interactions between various cellular components and the 

brain ECM, each containing sub-networks describing the distribution of 

biomolecules 

•  In the future, we plan on expanding on the current networks, as well as 

complete Monte Carlo simulations to study the effect of noise on the system 

•  We are also conducting in vivo experiments to study the effect of decreased 

cholesterol  and inflammation on the distribution of key protein (Aβ, LRP, apoE). 

Standard Simulation 
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Role of AcetylCoA Degradation Rate 

Figure 1: Simulation results for various AcetylCoA 

degradation rates (kdeg = 0.01, 0.1, 0.25, 0.5).  Low levels 

of AcetylCoA lead to slightly increased levels of beta 

amyloid. 
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Role of Feedback Inhibition 

Figure 2: ~50% increased levels of beta amyloid when 

no feedback control by cholesterol.  When feedback by 

Aβ is removed,  normal levels of cholesterol and Aβ 

observed. 
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Figure 3: No change in 

steady state values; 

increase in Aβ in all 

simulations, demonstrating 

importance of negative 

feedback control in 

regulating Aβ levels. 
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Role of Cholesterol Levels 
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Figure 4: Simulation results 

for various cholesterol levels 

(0, 25, 100; arbitrary units).  

Feedback ensures that 

cholesterol and Aβ levels 

converge to similar steady 

states. 
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Figure 5: Simulation results for 

various Aβ levels (0, 10, 100).  

Again, feedback ensures that 

cholesterol and Aβ levels converge 

similarly. 

Role of Aβ Levels 
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Figure 2: Decreased levels of ApoE lead to slightly increased 

levels of beta amyloid with an initial decrease in AcetylCoA 

concentration. (left) Short term (right) Long term run 
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Figure 1: Standard run (left) Short term (right) Long term run 
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Model Network & Equations for Compartmental Model: 

Figure 3: Decreased AcetylCoA led to decreased levels of astrocytic 

cholesterol and free ApoE, while increasing APP levels & mildly 

increasing Aβ levels   
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Figure 5: Decreased LRP led to significantly decreased 

levels of free ApoE, decreased levels of APP, and increased 

Aβ levels  when LRP is decreased by 50% or more 
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Figure 4: Decreased AcetylCoA led to decreased levels of astrocytic 

cholesterol and free ApoE, while increasing APP levels & mildly 

increasing Aβ levels   


