Path Optimization and Trusted Routing in MANET: *An Interplay Between Ordered Semirings*

Kiran Somasundaram John Baras CCSIT 2011, Jan 4th

Motivation

- Trust is a critical objective for routing in MANETs
- Unlike traditional metrics, trust metrics live in abstract ordered sets
 - Consequently, trust metrics cannot be trivially combined with other routing metrics such as delay.

 Multi-criteria optimization techniques are needed for trusted routing

Contributions

- Modeling the Delay-Trust routing problem as a Pareto optimality problem.
 - Combining shortest path and spanning tree solutions

- General optimization principle in combining (min,sum) and (min,max) algebras
 - Polynomial time algorithms

Pareto optimality

Delay-Trust routing

Pareto optimality

Delay-Trust routing

Vector valued function

 \mathcal{X}

Decision Set

 \mathcal{Y}

Objective Set

 $f:\mathcal{X} o \mathcal{Y}$

Vector valued map

For the bi-objective case

$$\underline{f} = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$$

 $\mathcal{Y} = S1 \times S2$

Where S1 and S2 are two ordered sets.

Note: The orders might no be commensurable

Minimality, Non-Dominance, Efficiency

 $\underline{f}: X \to \mathbb{R}^n$ is a vector-valued function.

 $x^* \in X$ is efficient if there exists no other $x \in X$ such that $\underline{f}(x) < \underline{f}(x^*)$. $\underline{f}(x^*)$ is said to be non-dominated

ε-relaxed Haimes method

- Relax all but one of the objectives
- With the other objectives as constraints, solve a single objective function.

$$\min_{x \in X} f_1(x)$$

$$subject to f_2(x) \le \varepsilon$$

Pareto optimality

Delay-Trust routing

Pareto Optimal Trusted Routing

- Consider two objectives for routing
 - Delay additive along a path p

$$f_1(p) = \sum_{(u,v)\in p} d(u,v)$$

Dual Trust – bottleneck along a path p

$$f_2(p) = \max_{(u,v)\in p} t(u,v)$$

Pareto Optimal Trusted Routing

- Consider two objectives for routing
 - Pareto optimal Delay Trust problem

$$\begin{bmatrix} f_1(p) \\ f_2(p) \end{bmatrix} = \begin{bmatrix} \sum_{(u,v)\in p} d(u,v) \\ \max_{(u,v)\in p} t(u,v) \end{bmatrix}$$

$$\min_{p \in P_{ij}}^{Pareto} \left[egin{array}{c} f_1(p) \ f_2(p) \end{array}
ight]$$

Pareto Optimal Trusted Routing

- Two objectives for routing Two classical problems
 - Delay shortest path problem (min,+)

$$\min_{p \in P_{ij}} f_1(p) = \min_{p \in P_{ij}} \sum_{(u,v) \in p} d(u,v)$$

Dual Trust – spanning tree problem – (min,max)

$$\min_{p \in P_{ij}} f_2(p) = \min_{p \in P_{ij}} \max_{(u,v) \in p} t(u,v)$$

Pareto optimality

Delay-Trust routing

Hamies method for Trusted Routing

Hamies method for Trusted Routing

$$\min_{p \in P_{ij}}^{Pareto} \begin{bmatrix} \sum_{(u,v) \in p} d(u,v) \\ \max_{(u,v) \in p} t(u,v) \end{bmatrix}$$

$$\min_{p \in P_{ij}} \max_{(u,v) \in p} t(u,v)$$

$$subject to \qquad \sum_{(u,v) \in p} d(u,v) \le \varepsilon$$

Hamies method for Trusted Routing

$$\min_{p \in P_{ij}} \sum_{(u,v) \in p} d(u,v)$$

$$subject to \qquad \max_{(u,v) \in p} t(u,v) \le \varepsilon$$

Constraint

$$\max_{(u,v)\in p} t(u,v) \le \varepsilon$$

$$\Rightarrow \forall (u,v)\in p, \quad t(u,v) \le \varepsilon$$

Edge Exclusion

Haimes method – Two stage recipe

Summary

 Delay-Trust routing problem can be modeled as a Pareto optimal routing problem.

- Haimes method can be used to solve for Pareto optimality.
 - First solve the (min,max) problem and then the (min,+) problem
 - \circ O(|V|³) solution