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Abstract. We study the stability of linear time invariant distributed consen-

sus dynamics in the presence of multiple propagation and processing delays.
We employ fixed point theory (FPT) methods and derive sufficient conditions

for asymptotic convergence to a common value while the emphasis is given in

estimating the rate of convergence. We argue that this approach is novel in the
field of networked dynamics as it is also flexible and thus capable of analyzing

a wide variety of consensus based algorithms for which conventional Lyapunov
methods are either too restrictive or unsuccessful.

1. Introduction. Distributed dynamics have, over the past decade, carried the
beacon of research in the control community. Starting from the seminal work of
Tsitsiklis [27] the subject was reheated with the work of Jadbabaie et al. [7] who
gave a rigorous proof of the leaderless co-ordination in a flocking model proposed
by Viscek et al. [28].

Since then, an enormous amount of research has been produced from different
fields of Applied Science concerning types of coordination among autonomous agents
who exchange information with application in co-operation, formation control, co-
ordination (e.g. deterministic or stochastic) and various communication conditions
(see for example [1, 11, 10, 4, 17, 9, 16, 14, 15, 12] and references therein).

All of the proposed models are mainly based on a specific type of dynamic evo-
lution of the agents’ states known as consensus schemes. Each agent evolves it’s
state by some sort of averaging of the states of it’s ’neighbours’. Each new state
lies, in the convex hull of the previous averaged ones so that the limit value is the
same for all the agents, under certain communication criteria [1].

1.1. Delayed systems and related literature. Time delays are inevitable in the
study of real-world networked systems. These are the result of either finite speed of
information propagation between agents, known as communication delays, or finite
speed of information processing, known as input delay. In both cases, delays tend
to weaken the performance of the system or in some cases destabilize it ([15]).

Furthermore it is also very important to study not only the problem of asymptotic
behavior of such distributed systems but also the rate at which this behavior is
revealed. It is very desirable to obtain mathematically tractable expressions on the
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effect of delays in the performance of these dynamical systems as a function of the
rest of the system’s parameters.

Nevertheless, there are no strong results in the literature concerning the effect of
delays in distributed consensus systems. To the best of our knowledge we mention
a number of relative results. A simple delayed consensus algorithm was proposed
and discussed in [15] where the model

ẋi(t) =
∑
j

aij(xj(t− τ)− xi(t− τ))

With τ > 0 constant and uniform for all agents, a frequency method analysis was
carried through. The authors used frequency methods to show that a necessary and
sufficient condition for convergence is τ < 2π

λN
where λN is the largest eigenvalue

of the Laplacian matrix (see section A of the Appendix). The problem with this
method is that it does not apply if the delays are multiple and incommensurate, or
if the system is time varying or even non-linear. In [27, 1] the authors consider a
discrete time version of Eq. (1) without processing delays and with time-varying
information propagation delays τ(t). On condition that the delay is uniformly
upper bounded, the strategy of attacking this problem is to extend the state space
by adding artificial agents which played no actual role in the dynamics other than
transmitting a pre-described delayed version of an agent’s state. This approach,
it is unclear how it would work in a continuous time system, unless the latter one
is discretized. Next, in [16] the authors discuss the convergence properties of a
non-linear model which has the form

ẋi =
∑
j

aijfij(xj(t− τ)− xi)

Using passivity assumptions on fij they apply invariance principles to derive delay-
independent convergence results. The main setback of that approach, however, is
that nothing can be said for either the rate of convergence to the consensus point or
the consensus point itself. Another similar argument is made in [11] for a the linear
consensus model with information propagation delays. The author is based on the
linearity argument to conclude exponential stability from asymptotic stability.

The last family of models concerns rendezvous type of algorithms. In [14] the
authors propose a second order consensus based algorithms, where agents asymp-
totically meet in a common place as their speed vanishes to zero. This algorithm is
of the form

v̇i(t) = −cvi(t) +
∑
j

aij(rj(t− τ ij )− ri(t))

The authors establish a Lyapunov-Krasovskii argument based on Invariance Prin-
ciples and give delay-dependent results. Again, nothing can be said about the rate
of convergence of this system since Invariance principles guarantee convergence.

1.2. Contribution. We contribute to the problem of delayed consensus networks
by introducing FPT techniques to the stability analysis of a fully delayed linear time
invariant consensus network, i.e. a network where each agent averages the delayed
information of it’s neighbors with the delayed version of it’s own information. This
approach stands in contrast to both frequency and Lyapunov methods used so far
in the literature [11, 16, 15].

We will exploit the solution kernels of the un-delayed algorithm Eq. (17) to
construct a solution operator which will proven to be a contraction in an especially
designed complete metric space, each member of which converges to a constant
value with prescribed rate of convergence. This rate can be explicitly stated as a
function of the system’s parameters. Then by the Contraction Mapping Principle
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(see Theorem B of the Appendix) the solution operator has a unique fixed point.
This is a de-facto solution of the stability problem.

Through examples we will outline our method and at the same time we will argue
that either a Lyapunov or a Frequency approach for the stability of the proposed
model is too restricting either on the assumptions for the communication graph or
on the assumptions of the delays and in any case sheds little light upon the critical
quantities associated with the asymptotic behavior of the solution, except for very
special cases (of particular symmetry or increased connectivity [13, 24]).

This work is an outgrowth of [26] where a simpler model was discussed in the
same framework. Here we study a more general model, a special case of which
is the aforementioned work. Here we will derive convergence results under much
milder assumptions than the ones imposed in [26] using a more elaborate form of
the solution representation and a different metric.

1.3. Lyapunov and Fixed Points. Comparing Lyapunov and FPT is of interest
in applied problems, only. It is very well known that a strong type of stability implies
the existence of a Lyapunov function. However it is the discovery of this function
the actual and in many cases of utmost difficulty problem. But once a function has
been found, there is an abundance of theorems and techniques to extract fruitful
information about properties of the solutions of the system.

In a similar vein, the problem in FPT is to find a suitable expression of the
solution that will act as a map of one functional space to another. A typical way is
to invert the differential operator using a variation of constants formula. Then an
appropriately selected topological space and a metric function need to be considered.
In our work this pair must constitute a complete metric space. Then the last two
steps is to show that the defined operator is a function that maps the metric space
into itself and it is a contraction under the defined metric. Then the Contraction
Mapping Principle guarantees the existence of a unique fixed point.

It can be easily deduced that the real problem is to come up with a clever
representation of the solution. Once such an expression is found there are numerous
of fixed point theorems and functional spaces into which one may prove the existence
of a fixed point. Then is the properties of the functional space in which the solution
has been found that reflect the properties of the solution; in our case it is the
stability and the rate of convergence. The interested reader is referred to the seminal
monograph of T.A. Burton [3].

1.3.1. Fixed Point Approach in consensus systems. Distributed consensus algorithms
attain a number of interesting properties which motivate this continuous interest
for their study. At first they do not meet the conventional definition of asymptotic
stability as any constant value xi ≡ k for all i is a solution. Investigators rather talk
about asymptotically constant solutions of such systems. Next, it is the distributed
nature of these dynamics that makes it difficult for the investigator to establish an
estimate of use on the rate of convergence to the consensus state. In the case of
linear time invariant dynamics, Algebraic Graph Theory methods gives a perfect
solution on the problem when no delays are considered. Then one can consider the
delayed system as a perturbation of the un-delayed one. This approach however
puts massive restrictions on the allowed delayed bounds (see [26]). Another way
to represent a solution is by a mere inversion of the differential operator with the
use of the Variation of Constants formula for functional differential equations. This
representation however captures local dynamical behavior only and cannot be used
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alone. It is the combination of these two representations that can be used as a
non-trivial form of solution. Let us illustrate our approach through a brief study of
the following scalar problem

Example 1.1. Fix a, τ > 0 and consider the initial value problem{
ẋ(t) = −ax(t) + ax(t− τ), t ≥ 0

x(t) = φ(t), t ∈ [−τ, 0]

where x ∈ R and without loss of generality we set φ(t0) + a
∫ 0

−τ φ(s)ds = 0. Then
two non-trivial forms of the solution are

x(t) = −a
∫ t

t−τ
x(s)ds

x(t) = e−a(t−t0)x(t0) +

∫ t

t0

e−a(t−s)ax(s− τ)ds, ∀t ≥ t0 ≥ 0

It can be shown that the first expression defines a contraction (see Appendix B) in
a complete metric space of functions that converge to a fixed constant as t → ∞
regardless of the sign of a, if |aτ | < 1 [3]. The second expression exploits the diffusive
nature (i.e. a > 0) but it is not a contraction in any metric space of interest,
exactly because the kernel e−at is not strong enough to control the magnitude of
the ”perturbation” ax(t − τ). A combination of the two solutions, however, yields
a contraction operator without the need to suppress τ , whenever a > 0. Indeed,
from the second expression take t− t0 = τ it is not hard to see that

x(t) = e−aτx(t− τ) +

∫ t

t−τ
e−a(t−s)ax(s− τ)ds =

∫ t−τ

t−2τ

a
(
e−a(t−s−τ) − e−aτ

)
x(s)ds

This form of the solution defines a contractive operator for any τ ∈ [0,∞). Then
introducing a weighted function space we can establish an estimate on the rate of
convergence that depends explicitly on a and τ .

In the multi-dimensional case a number of crucial, but straightforward, modifi-
cations need to be made. Unfortunately, multiple dimensions invoke drawbacks in
the strength of the obtained results.

1.4. Organization of the paper. In Section 2, we introduce the main notations
and definitions that we will use throughout the paper. In Section 3, we define
our problem; pose the assumptions and state our main result. In section 4, we
prove our main result. The proof is an application of the Contraction Mapping
Principle and it is separated in several small steps. In Section 5, we illustrate
our results with a number of examples and simulations. A thorough discussion
on our result is held in Section 6. We analyse the effect of the assumptions, the
overall advantages and disadvantages of this approach and consequently prospects
for future work along these lines. Furthermore we propose a number of interesting
variations of our model where such techniques can be adapted together with the
necessary modifications. Fundamentals of Algebraic Graph Theory and auxiliary
results on linear consensus dynamics are provided in Appendix A. Elements of
FPT are presented in Appendices B. Auxilliary results from the theory of linear
inequalities are presented in Appendix C. All the proofs are put in Appendix D.

2. Notations and Definitions. By N < ∞ we denote the number of agents
whereas the set of agents is denoted by [N ] := {1, . . . , N}. Each agent i ∈ [N ] is
associated with a real quantity xi ∈ R. The Euclidean vector space RN is the state
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space of the system with the state vectors x = (x1, . . . , xN )T . For x ∈ RN we define
the weighted maximum norm ||x||q := maxi qi|xi| for some fixed q ∈ RN+ , together
with the corresponding induced matrix norm. By <(z) we understand the real part
of z ∈ C and by 1 we understand the N dimensional, column vector of all ones.
The subspace of RN of interest is defined by ∆ = {y ∈ RN : y = 1k, k ∈ R} and
it is called the consensus space. Following the standard framework of the theory
of retarded functional differential equations, the symbols “ ˙ ” and d

dt stand for the
right hand-side derivative [6]. Also recall the big-oh notation where r(y) = O(s(y))
implies |r(y)| ≤ B|s(y)| for some B > 0 and y > y0. The Kronecker symbol is
denoted by δij . Finally, C0(I,RN ) is the set of RN -valued continuous functions
defined in I and L1

I is the set of absolute integrable functions in I. For the rest of
the notation the reader is referred to the Appendices A and B.

By delay-dependent results we mean that the result is valid if the maximum delay
is bounded above by a number depending on the undelayed systems parameters.
By delay-independent results we mean that the result is valid regardless of the value
of the delay so long as the latter is finite.

3. The Model. Fix N < ∞ and τ ij , σ
j
i ∈ [0,∞) with τ := maxi,j{τ ij}, σ :=

maxi,j{σji } and consider the following initial value problem:

ẋi(t) =
∑
j∈Ni

aij
(
xj(t− τ ij)− xi(t− σ

j
i )
)
, t ≥ 0

xi(t) = φi(t), t ∈ [−max{σ, τ}, 0]

(1)

where Ni is the subset of [N ] for which aij ≥ 0 and φi ∈ C0([−max{σ, τ}, 0],R)
are given initial functions.

3.0.1. The Assumptions. Recall the notations and definitions from Section 2 and
from the Appendix A.

Assumption 3.1. The associated communication graph, G =
(
[N ], E,W

)
, is

routed-out branching.

Assumption 3.2. The system parameters aij , τ
i
j , σ

j
i and c satisfy

1 +

N∑
i=1

ci
∑
j∈Ni

aij
(
τ ij − σ

j
i

)
> 0

By Assumption 3.1 we conclude that e−LtL = (e−Lt−1cT )L is a function matrix
with elements that converge to zero exponentially fast with rate <{λ} (see also
Proposition A.1). Let κil be the value of the (i, l)th element of e−LtL. Define

gil(γ) := sup
t≥τ

∫ t−τ

0

|κil(t− τ − s)|eγ(t−s)ds (2)

a quantity that is well-defined for γ < <{λ} and

hl,j,i(γ) := |alj − aij |
eγτ

l
j − 1

γ
+ aij

eγmax{τij ,τ
l
j} − eγmin{τij ,τ

l
j}

γ
(3)
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Define

fij(γ) :=aije
γτij

1− e−(di−γ)τ

di − γ
− aije−(di−γ)τ e

γτij − 1

γ
+ e−diτ

∑
l6=i

hl,j,i(γ)gil(γ)+

+ e−diτ
∑
l

gij(γ)ajl
eγσ

l
j − 1

γ

if i 6= j and

−fii(γ) := 1−
∑
l6=i

ail
eγσ

l
i − 1

γ

(
1 + di

1− e−(di−γ)τ

di − γ

)
− e−diτ

∑
l 6=i

hl,i,i(γ)gil(γ)

− e−diτ
∑
l6=i

gii(γ)ail
eγσ

l
i − 1

γ

otherwise and consider the matrix F(γ) = [fij(γ)].

Assumption 3.3. There exists q ∈ R+ such that for all i ∈ [N ] so that

F(0)
1

q
< 0

where 1
q := (1/q1, . . . , 1/qN ).

We state now the main result of this paper.

Theorem 3.4. Under Assumptions 3.1, 3.2 and 3.3, all states in Eq. (1) converge
to

k =

∑N
i=1 ci

[
φi(0) +

∑
j∈Ni

aij
( ∫ 0

−τ i
j
φj(s)ds−

∫ 0

−σj
i
φi(s)ds

)]
1 +

∑N
i=1 ci

∑
j∈Ni

aij
(
τ ij − σ

j
i

) (4)

exponentially fast with rate γ ∈ (0,min{di,<{λ}}) which satisfies

F(γ)
1

q
≤ 0.

Assumption 3.1 is a minimal connectivity condition which requires that there
can be at most one i∗ ∈ [N ] with di∗ = 0, usually called the leader of the group, in
which case for c = (c1, . . . , cN )T the the left eigenvector of L = LG associated with
λ1 = 0, we have c = ei∗ . This means that i∗ remains unaffected and all other agents’
states asymptotically converge to the state of i∗. For the rest of the paper we will
quietly assume that di > 0,∀i ∈ [N ] without essentially effecting any of the derived
results. The assumptions on the boundedness of the delays and the convergence
of the disturbances are needed in order to maintain exponential convergence of the
system to the consensus state. This state is, in turn, analytically calculated from
the initial conditions and the topological structure of the graph. Imploring FPT
methods in the study of the stability of solutions of the initial value problem (1), we
extract sufficient conditions for their asymptotic behavior of it’s solutions. Although
our analysis is in principle based on the smallness of the maximum allowed delays
σ and τ (Assumption 3.3) in the Examples section we will study cases where the
stability results become delay-independent.

4. Proof of the main result. The proof is an application of the Contraction
Mapping Principle (Theorem B.2 of the Appendix B) and it is separated into several
propositions every proof of which is put in the Appendix D. Most of the quantities
to be mentioned are defined in the Appendices and are taken from there freely.
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4.1. Preparation of the solution operator. The solutions of the system (1) can
be expressed into two different ways. We will exploit both of them to create a new
one which will be our main operator. For i ∈ [N ] we write from Eq. (1):

ẋi =
∑
j∈Ni

aij
(
xj − xi

)
−
∑
j∈Ni

aij
d

dt

[ ∫ t

t−τij

xj(s)ds−
∫ t

t−σj
i

xi(s)ds

]
In vector form this equation reads

ẋ = −Lx−
∑
i,j

Aij
d

dt

∫ t

t−τij

x(s)ds+
∑
i,j

Bij
d

dt

∫ t

t−σj
i

x(s)ds

where Aij = [alkδliδkj ] and Bij = [aijδliδki]. Using the variation of constants and
the integration by parts formulae we see that the solution of (1) satisfies

x(t) = e−Ltφ(0)−
∫ t

0

e−L(t−s)
∑
i,j

[
Aij

d

ds

∫ s

s−τij

x(w)dw −Bij
d

ds

∫ s

s−σj
i

x(w)dw

]
ds

= e−Ltr0 −
∑
i,j

[
Aij

∫ t

t−τij

x(s)ds−Bij
∫ t

t−σj
i

x(s)ds

]
+

+

∫ t

0

e−L(t−s)L
∑
i,j

[
Aij

∫ s

s−τij

x(w)dw −Bij
∫ s

s−σj
i

x(w)dw

]
ds

(5)

where

r0 := φ(0) +
∑
i,j

[
Aij

∫ 0

−τij

φ(s)ds−Bij
∫ 0

−σj
i

φ(s)ds

]
(6)

An alternative way, to express the solution of (1) in vector form is

ẋ(t) = −Dx(t) +
∑
i,j

Aijx(t− τ ij ) +
∑
i,j

Bij
d

dt

∫ t

t−σj
i

x(s)ds

and inversion from t− τ to t yields

x(t) = e−Dτx(t− τ) +

∫ t

t−τ
e−D(t−s)

∑
i,j

[
Aijx(s− τ ij ) +Bij

d

ds

∫ s

s−σj
i

x(w)dw

]
ds (7)

It is our intention to combine these two forms of solution to a new one. From (7)

x(t) = e−Dτx(t− τ) +

∫ t

t−τ
e−D(t−s)

∑
i,j

[
Aijx(s− τ ij ) +Bij

d

ds

∫ s

s−σj
i

x(w)dw

]
ds

= e−Dτx(5)(t− τ) +

∫ t

t−τ
e−D(t−s)

∑
i,j

[
Aijx(s− τ ij ) +Bij

d

ds

∫ s

s−σj
i

x(w)dw

]
ds

So that for t ≥ τ

x(t) := e−Dτe−L(t−τ)r0+

+
∑
i,j

[ ∫ t−τ

t−τ−τij

(
e−D(t−τij−s) − e−Dτ

)
Aijx(s)ds+

∫ t−τij

t−τ
e−D(t−τij−s)Aijx(s)ds

]
+

+
∑
i,j

[
Bij

∫ t

t−σj
i

x(w)dwds−
∫ t

t−τ
e−D(t−s)DBij

∫ s

s−σj
i

x(w)dwds

]
+

+ e−Dτ
∫ t−τ

0

e−L(t−τ−s)L
∑
i,j

[
Aij

∫ s

s−τij

x(w)dw −Bij
∫ s

s−σj
i

x(w)dw

]
ds

(8)
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4.2. The space of solutions and the solution operator. The linearity of the
problem allows us to work in complete metric spaces and apply Banach’s Contrac-
tion Principle B.2. For asymptotic stability with prescribed convergence estimate,
though, we will need an especially designed metric space.

4.2.1. The space of solutions. Fix ψ ∈ C0([−p, τ ],RN ), γ > 0, k ∈ R. By B =
C0([−p,∞),RN ) we define the set of continuous bounded (in the sense of the supre-
mum norm) functions defined in [−p,∞) and which take values in RN . Define

M =

{
y ∈ B : y = ψ|[−p,τ ], sup

t≥τ
eγt||y(t)− 1k||q <∞

}
(9)

together with the function

ρ(y1,y2) := sup
t≥τ

eγt||y1(t)− y2(t)||q (10)

This is the space of RN -valued continuous functions each member of which agrees on
[−p, τ ] with a prescribed function φ and it converges to 1k exponentially fast with
rate γ. We can readily attach this space to our problem by picking τ = maxi,j τ

i
j ,

p = max{σ, τ}, ψ(t) = φ(t) for t ∈ [−p, 0] and ψ(t) = x(1)(t) t ∈ [0, τ ], i.e.
the unique solution of (1) in [0, τ ]. This formulation considers the existence and
uniqueness for the solution of (1) in [0, τ ] which is hardly an assumption due to the
linearity of the model. The next result is of fundamental importance.

Proposition 4.1. (M, ρ) constitutes a complete metric space.

4.2.2. The solution operator. Next we define P : M→ B as follows:

(Px)(t) =

{
ψ(t), t ∈ [−max{τ, σ}, τ ]

x(8)(t), t ≥ τ.
(11)

where x(8)(t) is the right hand-side of Eq. (8).

4.3. Stability Analysis. The next step is to prove that P maps M into itself. The
next lemma shows that this is true for specific k and γ.

Proposition 4.2. P : M→M if k is defined as in (4) and γ < <(λ).

The number k in (4) is the consensus point which is, as expected, a function only
of the parameters of the system, the initial data and it is well-defined by Assumption
3.2.

4.3.1. The Contraction Property of P. The final step is to show that P satisfies the
contraction property for some γ.

Lemma 4.3. Under Assumption 3.3, P : M → M is a contraction for some γ ∈
(0,min{di,<(λ)}).

We summarize the above results to conclude:

Proof of Theorem 3.4. This is an immediate result of Propositions 4.1, 4.2, Lemma
4.3 and Theorem B.2.
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5. Examples and Simulations.

Example 5.1. For N = 2, Eq. (1) becomes

ẋ(t) = −ax(t− σ1) + ay(t− τ1)

ẏ(t) = −by(t− σ2) + bx(t− τ2)
(Ex.1)

where with a, b so that Assumption 3.1 holds and σi, τi ≥ 0. Without loss of
generality we take τ1 ≥ τ2. Set also for convenience Λ = ab

a+b . Since c = { b
a+b ,

a
a+b}

Assumption 3.2 requires

1 + Λ
(
τ1 + τ2 − σ1 − σ2

)
> 0 (12)

Next,

e−LtL =

[
a −a
−b b

]
e−(a+b)t

The matrix G(γ) = {gij(γ)} reads

G(γ) =

[
a a
b b

]
eγτ1

a+ b− γ

whenever γ < a+ b. Then we consider the elements of F(γ)

f12 := ae−γτ1
1− e−(a−γ)τ1

a− γ − ae−(a−γ)τ1 e
γτ1 − 1

γ
+ ae−aτ1

eγτ1 − 1

γ

a

a+ b− γ e
γτ1 + e−aτ1

abeγτ1

a+ b− γ
eγσ2 − 1

γ

−f11 :=

(
1− ae

γσ1 − 1

γ

(
1 +

a

a− γ (1− e−(a−γ)τ1)
)
− e−aτ1Λ

(eγτ2 − 1

γ
+
a

b

eγσ1 − 1

γ

))
f21 := be−γτ2

1− e−(b−γ)τ1

b− γ − be−(b−γ)τ1 e
γτ2 − 1

γ
+ be−bτ1

eγτ2 − 1

γ

b

a+ b− γ e
γτ1 + e−bτ1

abeγτ1

a+ b− γ
eγσ1 − 1

γ

−f22 :=

(
1− be

γσ2 − 1

γ

(
1 +

b

b− γ (1− e−(b−γ)τ1)
)
− e−bτ1Λ

(eγτ1 − 1

γ
+
b

a

eγσ2 − 1

γ

))
and for γ ↓ 0, the elements of F(0)

f12 :=
(
1− e−aτ1 − Λτ1e

−aτ1 + e−aτ1Λσ2

)
−f11 :=

(
1− aσ1

(
2− e−aτ1

)
− e−aτ1Λ

(
τ2 +

a

b
σ1

))
f21 :=

(
1− e−bτ1 − Λτ2e

−bτ1 + e−bτ1Λσ1

)
−f22 :=

(
1− bσ2(2− e−bτ1)− e−bτ1Λ

(
τ1 +

b

a
σ2

))
Then Assumption 3.3 requires to find q1, q2 > 0 so that

f12
1

q2
< (−f11)

1

q1
and f21

1

q1
< (−f22)

1

q2

a set of linear inequalities which is consistent if and only if

f11f22 > f12f21 (13)

whenever fii < 0, fij > 0. Eqs. (12) and (13) describe the allowed bounds for the
processing and propagation delays.

As a numerical application we take a = 0.5 and b = 1.3, τ1 = 1 τ2 = 0.2 and
σ1 = σ2 = 0.215. Then Eq. (13) remains consistent for γ ≤ 0.045 which is our
estimate for the rate of convergence. Next we focus on two extreme cases:
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No propagation delays. In this case the bounds are rightfully much stricter. As the
necessary condition by Assumption 3.2 suggests it is impossible to obtain stability
for any bounded σ. The conditions imposed are

σ1 + σ2 <
1

Λ

by Assumption 3.2 and

1 + 2abσ1σ2 >
2(a2σ1 + b2σ2) + ab(σ1 + σ2)

a+ b

from condition (13). More specifically, for σ1 = σ2 = σ we ask

σ <
1

2

a+ b

ab
, and σ2 − a2 + b2 + (a+ b)2

2ab(a+ b)
σ +

1

2ab
> 0.

No processing delays. If we ignore the processing delays, the requirement of As-
sumption 3.2 is automatically satisfied while from condition (13) it is simplified
to (

1− Λτ1e
−bτ1

)(
1− Λτ2e

−aτ1
)
>
(
1− e−aτ1 − Λτ1e

−aτ1
)(

1− e−bτ1 − Λτ2e
−bτ1

)
Consequently, so long as the above inequality is satisfied, there are always q1, q2 > 0
and hence a weighted metric ρ so that the operator as defined in (11) is a contraction
in (M, ρ).

Note that the above inequality does not hold for any a, b, τ1, τ2. It is true however
either when a = b > 0 and arbitrary τ1, τ2 ≥ 0 or when τ1 = τ2 and arbitrary
a, b ≥ 0. This allows us to establish bounds around any nominal value w∗ in the
vicinity of which for any given τ1, τ2 there exists a radius r so that a, b can lie in
B(w∗, r) and similarly for τ1, τ2. In our numerical example we take σ1 = σ2 = 0
and the rate estimate we get is γ = 0.4545.

Remark 5.2. In [26] we considered Eq. 1 with σ = 0 and we used an operator
based exclusively on the solution expression of Eq. (5). Then under the L1 norm,
|| · ||1 we derived the following contraction condition

Ãτ

(
1 +

√
N ||L||1
λ2

)
< 1 (14)

where Ã =
∑N
i=1

∑
j∈Ni

aij and aij = aji. It should be intuitively clear that Eq. 14

is much stricter than the condition (3.3) and we will illustrate this difference within
this example. Applying the bound (14) stability is ensured if

τ <
1

2(1 +
√

2)a

Remark 5.3. Taking a = b and τi = σi we can compare our results with [15] where
the necessary and sufficient condition is

τ <
2π

λN
=
π

a

while our bounds ask

τ <
1

2a

Remark 5.4. We conclude this example by mentioning a candidate Lyapunov
functional in the case τ1 = τ2 = τ .

V (x, y) = bx2 + ay2 + ab

∫ t

t−τ
x2(s) + y2(s)ds
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This is a functional on R2 it is obviously continuous and

V̇ = −ab[(x− yt)2 + (y − xt)2]

Then the set, S, such that V̇ (t) ≡ 0 is the one where x(t) = y(t−τ) and y(t) = x(t−
τ) for all t. The largest subset of S that is invariant with respect to these dynamics
is ∆. Then standard Invariance Theory arguments yield asymptotic convergence
to the consensus subspace (Section 5.3 of [6]) independent of the magnitude of the
delay (but without any estimate on the rate of convergence).

Example 5.5 (A Delayed Complete Graph.). Let (1) with aij ≡ θ, σji ≡ 0 τ ij = τi.
Under this communication scheme every agent is connected with everyone else with
identical connectivity weight and they receive the signals with propagation delay
that depends on agent i only. The complete graph on N agents has the edge set
E = {(i, j) : i 6= j}. The Laplacian of this graph has the spectrum λ1 = 0, λi =
Nθ|Ni=2. Then

[e−LtL]ij =

{
θN−1N e−Nθt, i = j

θ−1N e−Nθt, i 6= j

and di ≡ (N − 1)θ and the left eigenvector of L is c = 1
1
N . Assumption 3.2 is

automatically satisfied whereas for Assumption 3.3 we have

fij(0) =
1

N − 1
(1− e−(N−1)θτ )− θτie−(N−1)θτ +

θ

N2
e−(N−1)θτ

∑
l6=i

(max{τi, τl} −min{τi, τl})

fii(0) = −1 +
θ

N2
e−(N−1)θτ

∑
l 6=i

τl

We will apply Theorem (C.1) and for this we will need the following condition. Let
for i ∈ [N ], Ni denote the number of l 6= i such that τl ≥ τi. We ask that

1 +
N2 + 2Ni −N

N
θτi −

N − 1

N2
θ

[ ∑
l:τl≥τi

τl −
∑

l:τl<τi

τl

]
> 0 (15)

Note that this condition is satisfied if for example τi ≡ τ . From Theorem (C.1)
we choose m = 2N , ai :=

(
fi1, . . . , fiN

)
for i = 1, . . . , N , ai < 0 elementwise for

i = N + 1, . . . , 2N , αi = 0 for i = 1, . . . , N and αi < 0 for i = N + 1, . . . , 2N . Then
for the sake of contradiction if the second case holds there exist ξi|2Ni=1 ≥ 0 so that at

least one of ξ|i≤N is positive and
∑2N
i=1 αiξi =

∑2N
i=N+1 αiξi ≤ 0 and ξi|i≥N+1 ≥ 0.

From the second condition

2N∑
i=1

aiξi = 0⇒
N∑
j=1

fijξj +

N∑
j=1

aijξj = 0, ∀i

Since the second part of the last equation is non-positive from the imposed condition
(15) it can be verified that it implies

∑
j fij < 0 for all i, hence a contradiction

because not all ξ|i≤N can be zero. So there exists a set of positive numbers (i.e. a
weighted metric) to satisfy the Assumption 3.3.

Example 5.6 (Uniform Delays in a topological Star Graph). We consider the star
graph among N agents and we enumerate the central node of the graph to be the
first agent. We take the communication weights identically equal to the unity. It
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can be shown that

[e−LtL]ij =


(N − 1)e−Nt, i = j = 1

−e−Nt, i = 1, j 6= 1orj = 1, i 6= 1
1

N−1
e−Nt + N−2

N−1
e−t, i = j, i 6= 1

1
N−1

e−Nt − 1
N−1

e−t, o.w.

so that gii(0) = N−1
N and gij(0) = 1

N otherwise. Assumption 3.2 asks for

1 +
1

N

∑
j 6=1

(τ1j − σj1) +
1

N

∑
j 6=1

(τ j1 − σ
1
j ) > 0, i ∈ [N ]

In particular if τ ij ≡ τ and σji ≡ 0 the condition is automatically satisfied. Finally,
for Assumption 3.3 we calculate the elements of F(0)

f1j =

{
−1 + N−1

N
τe−(N−1)τ j = 1

1
N−1

(1− e−(N−1)τ )− τe−(N−1)τ + N−1
N

τe−(N−1)τ o.w.

and for i > 1

fij =


−1 j = i

1− e−τ − τe−τ + τ
N
e−τ j = 1

τ
N
e−τ o.w.

A simple calculation shows that
∑
j fij < 0 and the argument proceeds as in the

Example 5.5.

Let us now turn to a numerical example where FPT methods suffer from the
asymmetry of the delays and the weighted topology and hence the derived conditions
ask for a very small bound on the maximum allowed delay τ .

Example 5.7. Consider a weighted graph with 4 nodes and the symmetric Lapla-
cian matrix L

L =


6.3 0 −2 −4.3
0 4.8 −3 −1.8
−2 −3 6.1 −1.1
−4.3 −1.8 −1.1 7.2


We also assume the distribution of delays:

T1 =


0 0.6241 0.9880 0.7962

0.5211 0 0.0377 0.0987
0.2316 0.3955 0 0.2619
0.4889 0.3674 0.9133 0

 τ

with the control parameter τ . We calculate the allowed bound for Eq. (14) <(λ) =

4.534, ||L||1 = 14.400, Ã = 24.400 and we obtain τ(14) < 0.0057. Now we will Apply
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Theorem 3.4. We execute the following calculations.

e−LtL =


−20.66 −11.80 8.07 24.39
−11.80 −2.51 4.84 9.47

8.07 4.84 −3.15 −9.76
24.39 9.47 −9.76 −24.10

 e−4.53t+

+


0.06 −0.37 0.61 −0.3
−0.37 1.82 −3.01 1.56
0.61 −3.01 5.00 −2.60
−0.30 1.56 −2.60 1.34

 e−8.23t+

+


26.88 12.17 −10.67 −28.38
12.17 5.50 −4.84 −12.83
−10.67 −4.84 4.25 11.26
−28.38 −12.83 11.26 29.95

 e−11.63t

where we used Putzer’s Algorithm [18] and MAPLE. Next for τmax = 0.988τ the
matrix G(0) is approximated as

G(0) =


2.454 1.603 0.993 2.999
1.603 0.413 0.494 1.215
0.993 0.494 0.535 1.502
2.999 1.215 1.502 2.826


also and with the use of MAPLE we calculate F(0) as a function of τ :

F := [F1 : F2 : F3 : F4]

where

F1 =


6.76τe−6.22τ − 1

2.78τe−4.74τ

0.32(1− e−6.02τ ) + 3.25τe−6.02τ

0.59(1− e−7.11τ ) + 9.55τe−7.11τ

 ,F2 =


3.16τe−6.22τ

1.38τe−4.74τ − 1
0.49(1− e−6.02τ ) + 2.72τe−6.02τ

0.25(1− e−7.11τ ) + 5.68τe−7.11τ



F3 =


0.31(1− e−6.22τ ) + 6.00τe−6.22τ

0.62(1− e−4.74τ ) + 11.39τe−4.74τ

3.52τe−6.02τ − 1
0.16(1− e−7.11τ ) + 4.67τe−7.11τ

 ,F4 =


0.69(1− e−6.22τ ) + 15.16τe−6.22τ

0.38(1− e−4.74τ ) + 5.47τe−4.74τ

0.19(1− e−6.02τ ) + 3.38τe−6.02τ

10.91τe−7.11τ − 1


then

∑
j

fij =


31.08τe−6.22τ − e−6.22τ

21.02τe−4.74τ − e−4.74τ

9.35τe−6.02τ − e−6.02τ

30.81τe−7.11τ − e−7.11τ


and the first τ such that

∑
i fij = 0 is τ∗ = 0.0414, so stability is ensured for τ < τ∗ with

the same argument as in the Example 5.5. This is an improvement of the bound in Eq.
(14) by almost an order of 10.

Example 5.8. [A simulation example] Consider the weighted network

L =

 0.2 −0.2 0
−0.1 0.1 0
−0.4 0 0.4


and the distribution of the processing and propagation delays

Σ(σ) =

 0 σ
2

0
σ
6

0 0
σ
10

σ
7

0

 , T (τ) =

 0 τ
10

0
7τ
10

0 0
τ τ

6
0


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Figure 1. Numerical investigations for Example 5.8. The initial
conditions are φ1(t) = sin(8t) + 3t, φ2(t) = 3 sin(800t) + 3, φ3(t) =
sin(4t) + 5. The rate function y(t) = |y0|e−0.2t. The simulations
was done with the use of the ddesd function in MATLAB.

Then

e−LtL =

 0.2e−0.3t −0.2e−0.3t 0
−0.1e−0.3t 0.1e−0.3t 0

−1.2e−0.4t + 0.8e−0.3t 0.8e−0.4t − 0.8e−0.3t 0.4e−0.4t


and

G(γ, τ) =

 0.2
0.3−γ

0.2
0.3−γ 0

0.1
0.3−γ

0.1
0.3−γ 0

0.8
0.3−γ −

0.4
0.4−γ

0.8
0.3−γ −

0.8
0.4−γ

0.4
0.4−γ

 eγτ .
For τ = 2, σ = 0.4 the matrix F(0.2) is calculated to be

F(0.2) =

−0.539 0.441 0
0.221 −0.934 0
6.198 0.175 −0.952


and then we can pick q1 = 1, q2 = 1, q3 ∈ (0, 0.145) to apply Theorem 3.4. The
simulation results are depicted in Fig. 1 (see captions for details).

6. Discussion. In this work, we developed a Lyapunov-free argument to the study
the stability of a linear distributed consensus system with multiple delays. Our main
goal was to establish explicit estimates on the rate of convergence of the solutions,
as functions of the system’s parameters.

6.1. The FPT Method. This fixed point theory approach consists of three crucial
steps. The expression of the solution form in a non-trivial way that will define the
solution operator, the choice of a suitable function space and an associated metric
and the selection of an appropriate fixed point theorem. Proving the existence of
a fixed point of a solution operator in a metric space with prescribed convergence
properties is a de-facto solution of the stability problem.
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6.1.1. The solution operator. We studied the dynamics of system (1) by combining
two forms of it’s solution. The first form, Eq. (5), is a perturbation of the un-delayed
system. This way we exploit the valuable kernel e−Lt that describes the global
dynamics of the distributed algorithm. The second one, Eq. (7), characterizes the
dynamical behavior of the system in a local manner. It expresses the rate at which
each agent converges to the weighted sum of the delayed states of it’s neighboring
agents. This representation illustrates the dissipative averaging of the algorithm
but sheds no light on the global dynamics. Due to the processing delays, Eq. (7)
is in turn a perturbation with respect to the model with only propagation delays.
Combining these representations in the same manner as in the Example 1.1, we
obtained a new form of the solutions that includes both of these valuable features.

6.1.2. Metric Space and Distance Function. Given the initial conditions φ and the
system parameters, we considered the unique solution of (1) on [−max{τ, σ}, τ ]
and defined a space of functions each member of which agrees on [−max{τ, σ}, τ ].
This extension of the solution is due to the way we combined the two solution
operators (5) and (7) and has no effect in the study of the stability of solutions.
Next, each member of this function space converges exponentially fast to a constant
value k according to a weighted metric with weights q and exponent rate γ. We
proved that this pair is, for arbitrary but fixed parameters, a complete metric space
in Proposition 4.1. Next, based on the defined solution operator (8), we adapted
our metric space so that the operator maps this space into itself. In particular,
the rate cannot be faster than the local and global exponential rates di and <{λ}
respectively. Also due to, Eq. (5), the convergence point has a closed form, explicitly
defined from the the system parameters and the initial data. Another point of
interest is that only if k is finite, the conclusion that our metric space is complete
and this is guaranteed by Assumption 3.2. An assumption that in fact puts an
upper bound on the difference between the propagation and processing delays.

We turn our attention now to the metric function ρ as defined in Eq. (10). This
is a generalized weighted l∞-type metric. The supremum over t is necessary for
our space to be complete. We chose to work on the maximum over i ∈ [N ] metric
because we are dealing with integral equations of a primarily asymmetric system.
These types of metrics are typical in distributed systems (see [11] or [13]). We intro-
duced the weights qi > 0 as a design feature in an attempt to capture the geometry
of the state space of solutions as it depends on aij σ

j
i and τ ij . This idea is motivated

by Lyapunov’s first method in the stability analysis of the general linear system
ẋ = Ax, where one the investigator is asked to derive the classical Lyapunov matrix
P in the Lyapunov equation. This way we essentially transformed the contraction
problem into a linear inequality problem and applied existence theorems from Con-
vex Analysis in order to ensure that we can find an appropriate metric to make
our operator a contraction one, see Appendix C. Example 5.1 clearly illustrates this
point.

6.1.3. Fixed Point Theorem. The linear nature of the problem we chose the simplest
existence and uniqueness theorem, the Contraction Mapping Principle (B.2) that
applies function spaces of great flexibility such as the complete metric spaces.

6.2. Advantages. In the pros of this method one may account that we need not
deal with the difficult task for finding a Lyapunov function which is a generalized
metric. As it is already stated the derivation of a Lyapunov function for these
systems is limited to the case of no processing delays or with increased connectivity.
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The interested reader may consult [24] where an attempt to derive a Lyapunov
function similar to Example 5.1 is made. In either case one can hope only for
convergence results. This is many real world phenomena is not satisfactory as it is
of great importance the question of what is the rate of convergence and how is this
affected by the various delays.

The derivation of the solution operator is a metric-free process. Metrics are used
in the last but crucial step of proving that the operator is a contraction and they
are of course of utmost importance. The whole process allows for the investigator to
attain an overall control of the system dynamic behavior and in every step, fruitful
information are extracted such as the consensus point and the rate of convergence.
The latter one is a function that depends explicitly on the systems parameters. This
question cannot be addressed by conventional Lyapunov or frequency methods.

6.3. Disadvantages. FPT methods appear to give a lot information and are able
to handle distributed systems in utmost generality; yet at the same time these
methods ask for a lot, in terms of computations and analysis. For the sake of
justice, we should also mention a number of drawbacks on account of this approach.
The points made in this subsection obviously outline the framework of the future
work on this problem.

At first one notices that it is a lengthy method. It requires several different steps
each of which involves tedious algebraic calculations. The deeper is one willing to dig
to sharpen their results, the more calculation they are forced to make. In particular,
the process of deriving the contraction property can be very painful exactly because
the method will take any supplementary information the investigator is willing to
provide. This difficulty lies in the heart of distributed algorithms exactly because a
global governing kernel does not exist, other than this of the completely undelayed
linear time invariant model which Algebraic Graph Theory provides.

Next, although our result is stated in utmost generality by allowing fully dis-
tributed delays and weights under the regime of minimal connectivity, we encounter
serious difficulties in proving delay independence results when we neglect processing
delays. There is a number of different factors which contribute to this problem. The
first factor comes from the solution operator. We effectively considered Eq. (1) as a
perturbation to the original un-delayed system. It is only reasonable then to expect
delay dependent results (see also [26]). On the other hand, the dimensionality of
the problem forced us to make use of the l∞ norm. Under this norm one encounters
the overall dynamics from the point of view of the local dynamical dynamical be-
havior of an arbitrary agent. This is a serious defect which we managed to partially
remedy by introducing the weights q. We tested the results of this approach in the
Examples (5.1),(5.5) and (5.6) where we managed to obtain semi-delay indepen-
dent stability. Unfortunately, q imposes additional computational complexity to
the problem. It is intuitively clear, however, that the more asymmetrical a system
is the more difficult it’s analysis becomes. Example, 5.7 clearly illustrates that any
such asymmetry must be compensated with smaller and smaller maximum allowed
delay.

6.4. Variations and Extensions. We conclude this section by discussing a num-
ber of important extensions that can be similarly handled by the theory developed
in this paper.

6.4.1. Time-Varying Dynamics. We chose a simple linear time invariant communi-
cation topology, already known in literature because it is our purpose to focus on
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the effect of delays. Time varying systems can just as easily be handled with FPT
methods. While a Lyapunov function would require for the connectivity weights to
satisfy aij(t) ≥ 0 for every t and

∫∞
aij(s)ds = ∞, FPT arguments require only

the latter condition. It is a standard advantage of FPT methods over Lyapunov,
where only averaging conditions are needed and pointwise [3]. In time varying
communication schemes one should, similarly, assume that the undelayed governing
kernel, which is a principal transition matrix, converges to a consensus state. For a
preliminary introduction to FPT methods and time-varying consensus systems the
interested reader is referred to [23]. That model can also include the interesting case
of time-switching network topologies such as these discussed in[7] in a unified frame-
work with the case of static time varying topologies. This is because FPT methods
are primarily dealing with integral equations which allow these discontinuities in
the signals. The only extra consideration is some mild technical consideration on
the switching signal and the integration by parts formulae.

6.4.2. Noise. State-independent disturbances are a classic tool to model uncertain-
ties in the structure of our system or to model exogenous noise effects. In particular
one may choose to study the model

ẋi(t) =
∑
j

aij
(
xj(t− σ)− xi(t− τ)

)
+ fij(t), t ≥ t0

In the study of consensus solutions one can simply ask fij ∈ L1. The analysis is
then straightforward as the noisy term fij contributes nothing in the derivation of
the contraction condition. In particular for fij ∈ L1 the consensus point is defined
as

k =

∑
i ci
[
φi(0) +

∑
j∈Ni

aij
( ∫ 0

−τij
φj(s)ds−

∫ 0

−σj
i
φj(s)ds

)
+
∑
j∈Ni

∫∞
t0
fij(s)ds

]
∑
i ci
[
1 +

∑
j∈Ni

aij
(
τ ij − σ

j
i

)]
Furthermore, fij can also be T -periodic functions of time and then one can prove
consensus to a periodic solution (synchronization) by carefully adapting the metric
space. We also comment that fij can be stochastic perturbations and such modeling
approach is considered for a non-linear model in [22].

6.4.3. Distributed Delays. Uncertainties in the delays are typically modeled by con-
sidering distributions instead of constant values τ, σ. In [26] we considered uncer-
tainty in the delays of a simplified version of (1)

ẋi(t) =
∑
j

aij

∫ t

t−τ
pij(s− t)xj(s)ds−

∑
j

aijxi(t) (16)

with aij = aji and for some distribution functions
∫ 0

−τ pij(s)ds = 1 for all j ∈ Ni.
The result we derived is:

Theorem 6.1. [26] Consider the sum B̃ =
∑N
i=1

∑
j∈Ni

b̃ij where b̃ij are defined
by

b̃ij =

{
0 if j /∈ Ni
aij
∫ 0

−τ |pij(s)|(e
−ds − 1)ds if j ∈ Ni

Under Assumption 3.1 and aij = aji, if

B̃
edτ − 1

d

(
1 +

√
N ||L||
λ2 − γ

)
< 1
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then the solutions of (16) converge to

k(16) :=

∑
i φi(0) +

∑
i,j aij

∫ 0

−τ pij(s)
∫ 0

s
φj(w)dwds

N +
∑
i,j aij

∫ 0

−τ pij(s)(−s)ds
exponentially fast with rate γ. Note the similarities of the contraction condition of
the above result with Eq. (14).

6.4.4. Non-Linearities. Non-Linearities are as inevitable as are delays and within
the context of the model in question they can appear either in the connectivity
weights, the delayed arguments or even the noise components. Such mathematical
models are beyond the scopes of this work and thus we will only make a few com-
ments. Despite the lengthy process of deriving the solution operator, the linearity
of the problem allowed us to work on complete metric spaces. Non-linear systems
would require strong Lipschitz conditions, otherwise one would seek to prove ex-
istence of fixed points in compact linear spaces using more involved fixed point
theorems such as these of Schauder or Krasnoselskii [21, 3]; in which case, however,
crucial features such as uniqueness are to be sacrificed. For a treatement of non-
linear distributed consensus systems with delays and FPT methods by means of the
Contraction Mapping Principle the interested reader is referred to [22] and [25].

7. Conclusions and Future Work. In this work, we examined a delayed and
perturbed version of distributed continuous time consensus algorithms using clas-
sical Fixed Point Theory arguments. We explained why Lyapunov-based methods
can easily become very complex or of limited applicability in such types of systems.
Using the Contraction Mapping Principle, we established sufficient delay-dependent
conditions for asymptotic stability to a consensus state and at the same time we
approximated the rate of convergence. Although in the existing literature, delay-
independent asymptotic results exist, these results treat the case of negligible pro-
cessing delays. In addition, none of these results calculated the rate of convergence,
which is very important in real-life applications. We showed that Fixed Point The-
ory can handle such cases with remarkable flexibility. A number of important steps
are to be made among which the most imminent one is to improve the results to
become definitively delay-independent in the case of no processing delays with the
accompanying estimate on the rate of convergence.

Appendix A. Algebraic Graph Theory and Agreement Dynamics [5, 2, 10].
The mathematical object that is most widely used to model the communication
structure among N agents is the weighted directed graph. This is defined as the
triple G = ([N ], E,W ) where [N ] is the set of nodes, E is a subset of [N ]×[N ] which
defines the established communication connections among nodes and W is a set of
non-negative numbers so that aij ∈W models the strength of the connection from
node j to node i, with the convention that aij = 0 if and only if (j, i) /∈ E. This
is a directed graph and in this work we will be interested in sufficiently connected
graphs, i.e. graphs that are routed-out branching. A rooted out branching graph
is a graph that contains a spanning tree (i.e. there exists a node in [N ] from
which one can reach any other node). Given E, each agent i has a neighbourhood
of nodes, to which it is adjacent. We denote by Ni the subset of [N ] such that
(j, i) ∈ E. In the routed-out branching graph there can be at most one node,
named i, with di = 0. This is called the leader of G as it is not affected by
anyone while it affects eventually the rest of the nodes. If all nodes are affected by
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others the communication topology is called as leaderless. The notation
∑
i,j stands

for
∑N
i=1

∑
j∈Ni

. A matrix representation of G is through the adjacency matrix

A = [aij ], the degree matrix D = Diag[di], di :=
∑
j∈Ni

aij and the Laplacian

L := D−A. We will also use the symbol d+i = mini∈[N ]{di : di > 0}. The spectrum
of L is denoted by {λ1, λ2, . . . , λN} and we set <(λ) := mini≥2{<(λi)}. Let also c
be the left eigenvector of L normalized so that cT1 = 1.

A.1. Agreement Dynamics. We consider the initial value problem

ẋ = −Lx, x(0) = x0 (17)

It’s dynamics can be analysed by standard linear algebra tools (see for example [8]),
much of which is summarized in the following result.

Proposition A.1. Let G be a routed-out branching graph and denote by L it’s
Laplacian matrix. The following properties hold:

1. Lp = 0 if and only if p ∈ ∆.
2. The spectrum of L, {λi}|Ni=1, can be enumerated so that λ1 = 0 and <(λi) > 0,

i ≥ 2.
3. The left eigenvector of L, c is unique, up to normalization and non-negative

elementwise.
4. There exists J > 0 : ||e−Lt − 1cT || ≤ Je−<(λ)t.
5. e−LtL is a Laplacian matrix which asymptotically vanishes exponentially fast

with rate no worse than <(λ).

Proof. For (1 ), (2 ) see Propositions 3.8 and 3.11 of [10] respectively. For (3 ) we
work as follows: from (2 ) we have that rank(L) = N − 1. Then if c1, c2 are two
left eigenvectors of L associated with the zero eigenvalue then c1 = εc2 for some
ε > 0. From the normalization condition cT1 1 = εc21 = 1 so that in fact c1 = c2
and uniqueness follows. To conclude it suffices to show that the elements of c are
of the same sign. Assume, for the sake of contradiction that the result does not
hold and without loss of generality let c1, c2, . . . , cr be the negative components of
c. Then cT1 = 1 implies r ≤ N − 1. Next, cTL = 0 gives

N∑
j=1

aijci =

r∑
j=1

ajicj +

N∑
j=r

ajicj , i = 1, . . . , N

Take the sum of the first r equations and after cancelling the common terms observe
that the resulting equation has negative left hand-side and positive right hand side,
a contradiction. The zero terms of c were neglected as they play no role in the
proof. For (4 ), consider the Jordan canonical form of L := PJ(L)P−1 so that
e−Lt = Pe−J(L)tP−1 =. For the Jordan blocks, we know that J(λ1) = J(0) = 0 so
that both LP = PJ and P−1L = JP−1 have a zero first row. So the first row of
P−1 is the left eigenvector c, canonicalized so that cT1 = 1 and the first column of
L is the right eigenvector of L chosen to be 1. The projection of any vector ζ onto
∆ is 1cT ζ. Let L have q ≤ N distinct eigenvalues. Again λ1 = 0 and <{λi} > 0 for
i ≥ 2. Since any ζ ∈ CN can be written as ζ = w1 + · · ·+ wq where wj ∈ M(λj),
the generalized eigenspace for λj and in particular, w1 = 1cT ζ. Then by standard
calculations

e−Ltζ = 1cT ζ +

ρ∑
j=2

e−λjt

r(−λj)−1∑
k=0

(−L+ λjI)k
tk

k!
wj (18)

and the rest of the proof follows exactly as in Theorem 5.8 of [8].
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For the last one, observe that e−LtL is a Laplacian by the definition of the expo-
nential of a matrix and the fact that any power of a Laplacian matrix is Laplacian
and whereas the sum of two Laplacian matrices is a Laplacian matrix. Finally since
e−LtL = (e−Lt − 1cT )L we get that that ||Le−Lt|| ≤ ||L||Je−<(λ)t.

Remark A.2. In case of an undirected network the Laplacian is a symmetric
positive semi-definite matrix with real spectrum: {0 < λ2 ≤ · · · ≤ λN} making the
analysis significantly simpler (see [24, 26]). Then, c = 1

1
N and the convergence to

cTx0 is exponential with rate λ2.

Remark A.3. From Proposition A.1 we can conclude on the form e−LtL = [κij(t)]ij
where

∑
j 6=i κij = −κii and κij(t)→ 0 exponentially fast. These functions are cal-

culated from the connectivity weights and are assumed known.

Appendix B. Metric Spaces and Fixed Point Theory. An arbitrary metric
space is defined axiomatically.

Definition B.1. A pair (M, ρ) is a metric space if M is a set and ρ : M×M→ [0,∞)
such that when x, y, z are in M then

• ρ(x, z) ≥ 0, ρ(y, y) = 0 and ρ(y, z) = 0 implies y = z.
• ρ(y, z) = ρ(z, y) and
• ρ(y, z) ≤ ρ(y, x) + ρ(x, z)

Proof of Proposition 4.1. It is trivial to show that ρ as defined in Eq. (10) is a
metric function according to Definition (B.1). It then suffices to show that a Cauchy
sequence in M has a limit in M. Let {φi} be such a sequence. Then

||φj(t)− φi(t)|| ≤ eγt||φj(t)− φi(t)|| ≤ ρ(φi, φj)

implies that φj(t) is a Cauchy sequence in (RN , || · ||) for all t, so φj(t) → φ(t).
We will show that φ ∈ M and this is the result of the following claims. The
first claim is to prove that φ is continuous: Given ε > 0 there exists Q such that
supt≥t0 ||φi(t)− φj(t)|| < ε for j, i > Q. Fix such j > Q and let i→∞ from above

we get ||φ(t) − φj(t)|| < ε for all t. So φk ⇒ φ and thus φ is continuous.4 The
second claim is that φ is bounded. Indeed,

||φ(t)|| ≤ sup
t
||φ(t)− φj(t)||+ sup

t
||φj(t)|| <∞

The third claim is that φ→ ∆: For any ε > 0 take Q > 0 such that j > Q implies
||φ(t) − φj(t)|| < ε

2 Fix j > Q and t > T such that supt≥T ||φ(t) − φj(t)|| < ε
2 for

j > Q and ||φj(t)− limt φj(t)|| < ε
2 for t > T . Then

||φ(t)− lim
t
φj(t)|| ≤ ||φ(t)− φj(t)||+ ||φj(t)− lim

t
φj(t)|| < ε

Finally for any R > 0 pick i, j large enough so that ρ(φi, φj) < R which implies
that ||φi(t)− φj(t)|| ≤ Re−γt and taking the limit for i, ||φ(t)− φj(t)|| ≤ Re−γt for
all t. Then

||φ(t)− 1k|| ≤ ||φj(t)− 1k||+ ||φj(t)− φ(t)|| ≤ (Rj +R)e−γt

so that supt e
γt||φ(t)− 1k|| <∞.

4the symbol ⇒ stands for uniform convergence.
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B.1. The Contraction Mapping Principle. Given two metric spaces (Mi, ρi)
for i = 1, 2 an operator P : M1 → M2 is a contraction if there exists a constant
α ∈ [0, 1) such that ∀x1, x2 ∈M1

ρ2(Px1,Px2) ≤ αρ1(x1, x2)

The next celebrated theorem, is the Contraction Mapping Principle and it’s proof
can be found in any advanced analysis or ordinary differential equations textbook
[20, 3, 8].

Theorem B.2. Let (M, ρ) be a complete metric space and P : M→M a contraction
operator. Then there is a unique x ∈M such that Px = x.

Appendix C. Theory of Linear Inequalities. We will need the following result
from [19], Section 22.

Theorem C.1. Let ai ∈ Rm and αi ∈ R for i = 1, . . . ,m and let k be an integer,
1 ≤ k ≤ m. Assume that the system

aTi ξ ≤ αi

for i = k + 1, . . . ,m is consistent. Then one and only one of the following alterna-
tives hold:

1. There exists a vector ξ ∈ Rn such that

aTi ξ < αi, i = 1, . . . , k

aTi ξ ≤ αi, i = k + 1, . . . ,m

2. There exist non-negative real numbers ζi|mi=1 such that at least one of ζi|ki=1 is
not zero and

m∑
i=1

ζiai = 0 and

m∑
i=1

ζiαi ≤ 0.

Appendix D. Proofs. From the definition of P in Eq. (11) we observe that for
t ≥ τ it can be written as the sum

P = P1 + P2 + P3 + P4 (19)

where

P1(t) := e−Dτe−L(t−τ)r0

P2(t) :=
∑
i,j

∫ t−τ

t−τ−τij

(
e−D(t−τij−s) − e−Dτ

)
Aijx(s)ds+

∑
i,j

∫ t−τij

t−τ
e−D(t−τij−s)Aijx(s)ds

P3(t) :=
∑
i,j

Bij

∫ t

t−σj
i

x(s)ds−
∫ t

t−τ
e−D(t−s)DBij

∫ s

s−σj
i

x(w)dwds

P4(t) := e−Dτ
∫ t−τ

0

e−L(t−τ−s)L
∑
i,j

[
Aij

∫ s

s−τij

x(w)dw −Bij
∫ s

s−σj
i

x(w)dw

]
ds

We proceed with the proofs of Proposition 4.2 and Lemma 4.3.

Proof of Proposition 4.2. The proof consists of two parts. The first one the calcu-
lation k and the second is the estimate of γ. For the first part we will need the
following result
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Lemma D.1. Let L be the weighted Laplacian matrix of a routed-out branching
graph G with c it’s normalized left eigenvector as defined in Proposition A.1. Let
z ∈ C1([0,∞),RN ) such that limt→∞ z(t) ∈ RN . Then

lim
t→∞

∫ t

0

e−L(t−s)Lz(s)ds = (I − 1cT )z(∞)

We will calculate the t limit of (Px)(t) as the sum of the four quantities defined
in (19)

For x ∈M, limt→∞ Pi(t) yields

lim
t
P1(t) = lim

t
e−Dτ

(
e−L(t−τ) − 1cT

)
r0 + e−Dτ1cT r0 = e−Dτ1cT r0

lim
t
P2(t) = e−Dτ

( ∑
j∈N1

a1j
d1

(
ed1τ

1
j − 1

)
, . . . ,

∑
j∈NN

aNj
dN

(
edNτ

N
j − 1

))T
k

− e−Dτ
( ∑
j∈N1

a1jτ
1
j , . . . ,

∑
j∈NN

aNjτ
N
j

)T
k

+

(
1− e−Dτ

( ∑
j∈N1

a1j
d1
ed1τ

1
j , . . . ,

∑
j∈NN

aNj
dN

edNτ
N
j
)T)

k

lim
t
P3(t) = e−Dτ

( ∑
j∈N1

a1jσ
j
1, . . . ,

∑
j∈NN

aNjσ
j
N

)T
k

Finally, from Lemma D.1 with z(t) =
∑
i,j

[
Aij

∫ t
t−τ i

j
x(s)ds−Bij

∫ t
t−σj

i
x(s)ds

]
we

obtain

lim
t
P4(t) = e−Dτ (I − 1cT )

( ∑
j∈N1

aij(τ
1
j − σ

j
1), . . . ,

∑
j∈NN

aNj(τ
N
j − σ

j
N )
)T
k

Take w =
(∑

j∈N1
aij(τ

1
j −σ

j
1), . . . ,

∑
j∈NN

aNj(τ
N
j −σ

j
N )
)T

and cancel the common
terms to obtain

lim
t

(Px)(t) = 1k + e−Dτ1

(
cT r0 − k − cTwk

)
= 1k

if k is defined as in (4). For the second part, Proposition A.1 implies
∣∣∣∣(e−Lt −

1cT
)
r0
∣∣∣∣ = O(tr(λ)−1e−<(λ)t) whereas for x ∈Mγ,k the rest of the terms of (Px)(t)

are of order O(eγt). Then supt≥p e
γt||(Px)(t)− 1k|| is finite for any γ < <(λ).

Proof of Lemma D.1. Set zc(t) := z(t)− 1cT z(t). Then

Q(t) : =

∫ t

0

e−L(t−s)Lz(s)ds =

∫ t

0

(
e−L(t−s) − 1cT

)
Lzc(s)ds

=

∫ t

0

d

ds

(
e−L(t−s) − 1cT

)
zc(s)ds =

∫ t

0

d(e−L(t−s))zc(s)ds

= zc(t)− (e−Lt − 1cT )zc(0)−
∫ t

0

(e−L(t−s) − 1cT )żc(s)ds

The result follows from Assumption 3.1 and hence the observation that the integral
vanishes it is a convolution of an L1 function with a function that tends to zero.
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Proof of Lemma 4.3. Take x1,x2 ∈M. Then

ρ((Px1), (Px2)) = sup
t≥τ

eγt||(Px1)(t)− (Px2)(t)||q

≤
4∑
l=1

sup
t≥τ

eγt||(Plx1)(t)− (Plx2)(t)||q

The contribution of each Plx1 − Plx2 is studied separately. At first, P1x1 − P1x2

contributes nothing. For the rest we work as follows.
P2. We estimate the upper bound of eγtqi|(P2x1)(i)(t)− (P2x2)(i)(t)|. Observe that

e−di(t−s−τ
i
j ) − e−diτ is non-negative for s ∈ [t − τ − τ ij , t − τ ] and for convenience

set x12(s) := x1(s)− x2(s) and ρ := supt≥τ e
γt||x12(t)||q.∣∣∣∣ ∫ t−τ

t−τ−τij

(
e−di(t−s−τ

i
j ) − e−diτ

)
aijx

(j)
12 (s)ds+

∫ t−τij

t−τ
e−di(t−s−τ

i
j )aijx

(j)
12 (s)ds

∣∣∣∣ ≤
≤
[ ∫ t−τ

t−τ−τij

(
e−di(t−s−τ

i
j ) − e−diτ

)
aije

−γsds+

∫ t−τij

t−τ
e−di(t−s−τ

i
j )aije

−γsds

]
1

qj
ρ

⇒ where the two integrals give

eγt
∫ t−τ

t−τ−τij

(
e−di(t−s−τ

i
j ) − e−diτ

)
aije

−γsds =
aij

di − γ

(
edi(τ

i
j−τ)+γτ − e−(di−γ)τ+γτij

)
−

− aij
γ
e−(di−γ)τ

(
eγτ

i
j − 1

)
eγt
∫ t−τij

t−τ
e−di(t−s−τ

i
j )aije

−γsds =
aij

di − γ

(
eγτ

i
j − edi(τ

i
j−τ)+γτ

)
Check that the first and last term cancel and that summing over j ∈ Ni we obtain
the following estimate

qi
∑
j∈Ni

[
aije

γτij
1− e−(di−γ)τ

di − γ
− aije−(di−γ)τ e

γτij − 1

γ

]
1

qj
ρ (20)

Remark D.2. As γ ↓ 0, the last expression becomes

qi
∑
j∈Ni

aij

[
1− e−diτ

di
− τ ije−diτ

]
1

qj
ρ

P3. Similar manipulation as above yields

qie
γt

∣∣∣∣ ∑
j∈Ni

aij

∫ t

t−σj
i

x
(i)
12 (s)ds

∣∣∣∣+ eγt
∣∣∣∣ ∑
j∈Ni

aij

∫ t

t−τ
die
−di(t−s)

∫ s

s−σj
i

x
(i)
12 (s)(s)ds

∣∣∣∣
≤
∑
j∈Ni

aij
eγσ

j
i − 1

γ
ρ+

∑
j∈Ni

aij
eγσ

j
i − 1

γ
di

1− e−(di−γ)τ

di − γ
ρ

Note here that in this case the weights qi’s are canceled and so we get the estimate∑
j∈Ni

aij
eγσ

j
i − 1

γ

(
1 + di

1− e−(di−γ)τ

di − γ

)
ρ (21)

Remark D.3. As γ ↓ 0, the last expression becomes∑
j∈Ni

aijσ
j
i

(
2− e−diτ

)
ρ
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P4. Finally,

P4(t) := e−Dτ
∫ t−τ

0

e−L(t−τ−s)L
∑
l,m

[
Alm

∫ s

s−τlm

x12(w)dw −Blm
∫ s

s−σm
l

x12(w)dw

]
ds

Let κij be the (i, j)th element of e−LtL so that κii = −
∑
j 6=i κij . A careful calcu-

lation for on the ith row of e−LtL
∑
l,mAlm

∫ s
s−τ l

m
x12(w)dw yields

N∑
l=1

κil

N∑
j=1

alj

∫ s

s−τlj

x
(j)
12 (w)dw =

κii

N∑
j=1

aij

∫ s

s−τij

x
(j)
12 (w)dw +

N∑
l6=i

κil

N∑
j=1

alj

∫ s

s−τlj

x
(j)
12 (w)dw =

∑
l 6=i

κil

[ N∑
j=1

(
alj

∫ s

s−τlj

x
(j)
12 (w)dw − aij

∫ s

s−τij

x
(j)
12 (w)dw

)]
=

∑
l 6=i

κil

[ N∑
j=1

((
alj − aij

) ∫ s

s−τlj

x
(j)
12 (w)dw + aij

∫ s−min{τlj ,τ
i
j}

s−max{τlj ,τ
i
j}

x
(j)
12 (w)dw

)]
Recall the notations gil and hl,j,i as in Eq. (2) and (3) respectively. Then the first
bound is

qie
−diτ

∑
l6=i

N∑
j=1

hl,j,i(γ)gil(γ)
1

qj
ρ

The second bound is

qie
−diτ

N∑
l=1

N∑
j=1

gil(γ)alj
eγσ

j
l − 1

γ

1

ql
ρ

We add them both to obtain

qie
−diτ

[∑
l 6=i

N∑
j=1

hl,j,i(γ)gil(γ)
1

qj
+

N∑
l=1

N∑
j=1

gil(γ)alj
eγσ

j
l − 1

γ

1

ql

]
ρ (22)

Remark D.4. As γ ↓ 0, the last expression becomes

qie
−diτ

[∑
l6=i

N∑
j=1

hl,j,i(0)gil(0)
1

qj
+

N∑
l=1

N∑
j=1

gil(0)aljσ
j
l

1

ql

]
ρ

Combine Remarks D.2,D.3,D.4 and reorder the weights qi to obtain the condition
of Assumption 3.3.
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