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Abstract

In this paper we introduce two discrete-time, distributed optimization algorithms executed by a set of agents
whose interactions are subject to a communication graph. The algorithms can be applied to optimization problems
where the cost function is expressed as a sum of functions, and where each function is associated to an agent.
In addition, the agents can have equality constraints as well. The algorithms are not consensus-based and can be
applied to non-convex optimization problems with equalityconstraints. We demonstrate that the first distributed
algorithm results naturally from applying a first order method to solve the first order necessary conditions for
a lifted optimization problem with equality constraints; the solution of our original problem is embedded in the
solution of this lifted optimization problem. We show that,provided the agents’ initial values are sufficiently close
to a local minimizer, and the step-size is sufficiently small, under standard conditions on the cost and constraint
functions, each agent converges to the local minimizer at a linear rate. Next, we use an augmented Lagrangian idea
to derive a second distributed algorithm whose local convergence requires weaker sufficient conditions than in the
case of the first algorithm.

I. Introduction

Recent years’ technological advances in wireless networksre-fueled the interest of the research com-
munity in applications where complex tasks are executed over large networks by a large set of agents.
Such applications can include autonomous/unmanned vehicles, parallel computing, sensor networks for
monitoring and tracking, and so on. The execution of these applications over large networks makes a
centralized coordination unfeasible. As a consequence, researchers have looked for distributed strategies
where although each agent makes decisions based on limited information, the overall result is comparable
with the result obtained had a centralized strategy been used.

Multi-agent distributed optimization problems appear naturally in many distributed applications such
as network resource allocation, collaborative control, estimation and identification, and so on. In these
type of applications a group of agents has as common goal the optimization of a cost function under
limited information and resources. The limited information may be induced by the fact that an agent can
communicate with only a subset of the total set of agents, or/and by the fact that an agent is aware of
only a part of the cost function or constraint sets.

A particular formulation of a distributed optimization problem refers to the case where the optimization
cost is expressed as a sum of functions and each function in the sum corresponds to an agent. In this
formulation the agents interact with each other through a communication network, usually modeled as a
(un)directed graph. This formulation is often found in wireless network resource allocation problems [17]
or in finite horizon optimal control problems with separablecost functions [4].

A first distributed algorithm for solving an optimization problem of the type described above was
introduced in [16]. The algorithm, referred to as “distributed subgradient method”, is used to minimize a
convex function expressed as a sum of convex functions:

min
x

N∑

i=1

fi(x).

In this algorithm each agent uses a combination of the standard (sub)gradient descent step with a consensus
step to deal with the limited information about the cost function and about the actions of the agents, and
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takes the form:

xi,k+1 =

N∑

j=1

ai j x j,k−αi,kdi,k, (1)

where the indicesi andk refer to agents and discrete time, respectively,ai j are the entries of a stochastic
matrix whose structure depends on the communication graph,di,k is the (sub)gradient of functionfi(x),
computed atxi,k, andαi,k is the step-size of the (sub)gradient descent step. Under suitable assumptions
on the step-size, the cost functions and the entries of the stochastic matrix, it is shown in [16] that the
iteration (1) indeed converges to a minimizer.

Many subsequent versions of this algorithm appeared in the literature. The introduction of communica-
tion noise and errors on subgradients was addressed in [14], [18], while the case where the communication
network is modeled as a random graph was treated in [11], [13]. Analyses of asynchronous versions of
the algorithm can be found in [14], [20]. A further extension was proposed in [12], where the authors
considered state-dependent communication topologies.

A modified version of the distributed subgradient method wasintroduced in [8], [9], where the authors
change the order in which the two operations of the algorithmare performed. More specifically, first the
subgradient descent step is executed, followed by the consensus step, and takes the form

xi,k+1 =

N∑

j=1

(

ai j x j,k−α j,kd j,k

)

.

The algorithms discussed above became popular in the signalprocessing community as well, being used
for solving distributed filtering and parameter identification problems [5], [19].

In this paper we study a distributed optimization problem similar to the formulation proposed in [16].
Namely the goal is to minimize a function expressed as a sum offunctions, where each function in the
sum is associated to an agent. In addition, we assume that each agent has an equality constraint, as well.
Distributed algorithms for solving constrained optimization problems have already been studied in the
literature. The focus has been on convex problems: the cost and constraint sets are assumed convex. The
algorithms are based on a combination of a consensus step (tocope with the lack of complete information)
and a projected (sub)gradient descent step. They assume that either all agents use the same constraint
set [10], [14], [18] or each agent has its own set of constraints [15], [20]. In this paper we do not make
any convexity assumptions on the cost and constraint functions, but we assume they are continuously
differentiable. We propose two distributed, discrete-time algorithms that, under suitable assumptions on
the cost and constraint functions, guarantee convergence to a local minimizer (at a linear rate), provided
that the initial values of the agents are close enough to a (local) minimizer and a sufficiently small step-size
is used. The most interesting aspect of these algorithms is that they are not heuristic algorithms, but they
follow naturally from using a first order numerical method tosolve the first order necessary conditions of
a lifted optimization problem with equality constraints; the solution of our original problem is embedded
in the solution of this lifted optimization problem.

The paper is organized as following: in SectionII we formulate the constrained optimization problem
and introduce two distributed optimization algorithms forsolving this problem. SectionIII presents
the origins of the algorithms by demonstrating that our initial optimization problem is equivalent to a
lifted optimization problem with equality constraints. Section IV introduces a set of results used for the
convergence analysis of the two algorithms; analysis detailed in SectionsV and VI . We end the paper
with some numerical examples and conclusions.

Notation and definitions: For a matrixA, its (i, j) entry is denoted by [A] i j and its transpose is given
by A′. If A is a symmetric matrix,A ≻ 0 (A � 0) means thatA is positive (semi-positive) definite. The
nullspace and range ofA are denoted by Null(A) and Range(A), respectively. The symbol⊗ is used to
represent the Kronecker product between two matrices. The vector of all ones is denoted by1. Let x and
Q be a vector and a set of vectors, respectively. Byx+Q we understand the set of vectors produced by
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addingx to each element ofQ, that is,x+Q, {x+y | y ∈ Q}. Let ‖ · ‖ be a vector norm. By‖x−Q‖ we
denote the distance between the vectorx and the setQ, that is,‖x−Q‖ , infy∈Q‖x−y‖. Let f : Rn→R

be a function. We denote by∇ f (x) and by∇2 f (x) the gradient and the Hessian off at x, respectively.
Let F : Rn×Rm→R be a function of variables (x,y). The block descriptions of the gradient and of the
Hessian ofF at (x,y) are given by∇F(x,y)′ =

(

∇xF(x,y)′,∇yF(x,y)′
)

, and

∇2F(x,y) =

(

∇2
xxF(x,y) ∇2

xyF(x,y)
∇2

xyF(x,y) ∇2
yyF(x,y)

)

,

respectively. Let{Ai}
N
i=1 be a set of matrices. By diag(Ai , i = 1, . . . ,N) we understand a block diagonal

matrix, where theith block matrix is given byAi . We say that the setX is anattractor for the dynamics
xk+1= f (xk), if there existsǫ > 0, such that for anyx0 ∈Sǫ, with Sǫ = {x | ‖x−X‖ < ǫ}, limk→∞ ‖xk−X‖= 0.

II. Problem description

In this section we describe the setup of our problem. We present first the communication model after
which we introduce the optimization model and the two distributed optimization algorithms.

A. Communication model

A set of N agents interact with each other through communication topology modeled as an undirected
communication graphG = (V,E), whereV = {1,2, . . . ,N} is the set of nodes andE = {ei j } is the set of
edges. An edge between two nodesi and j means that agentsi and j can exchange information (or can
cooperate). We denote byNi , { j | ei j ∈ E} the set of neighbors of agenti, and byL the Laplacian of the
graphG defined as

[L] i j =






−l i j j ∈ Ni ,
∑

j∈Ni
l i j i = j,

0 otherwise,
(2)

where l i j are positive scalars chosen a priori that can be interpretedas weights put on the information
transmitted on the links (i, j). Throughout the rest of the paper we are going to assume thatthe Laplacian
L is symmetric, that is,l i j = l ji .

Remark 2.1:Let N̄ =
∑N

i=1 |Ni |, where | · | denotes the cardinality of a set. For a symmetric Laplacian
L, there exits a matrixS ∈RN̄×N so thatL = S′S and Null(L) = Null(S).

In the next sections we are going to make use of a set of properties of a (weighted) Laplacian of a
graph; properties that are grouped in the following remark.

Remark 2.2:The symmetric LaplacianL of a connected graph satisfies the following properties:
(a) The matrixL has only one eigenvalue zero and the corresponding eigenvector is 1;
(b) The nullspace ofL is given by Null(L) = {γ1 | γ ∈R};
(c) Let L = L⊗ I , where I is the n-dimensional identity matrix. Then the nullspace ofL is given by

Null(L ) = {1⊗ x | x ∈Rn};
(d) Let x be a vector inRnN. Then the orthogonal projection ofx on Null(L ′) is given byx⊥ = Jx, where

J is the orthogonal projection matrix (operator) defined as

J ,
11
′

1′1
⊗ I .
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B. Optimization model

We consider a functionf : Rn→R expressed as a sum ofN functions

f (x) =
N∑

i=1

fi(x),

and a vector-valued functionh : Rn→R
N whereh, (h1,h2, . . . ,hN)′, with N ≤ n.

We make the following assumptions on the functionsf andh and on the communication model.
Assumption 2.1:(a) The functionsfi(x) andhi(x), i = 1, . . . ,N are twice continuously differentiable;

(b) Agent i has knowledge of only functionsfi(x) andhi(x), and scalarsl i j , for j ∈ Ni ;
(c) Agent i can exchange information only with agents belonging to the set of its neighborsNi ;
(d) The communication graphG is connected and the LaplacianL of G is symmetric.

The common goal of the agents is to minimize the following optimization problem with equality
constraints

(P1) minx∈Rn f (x),

subject to: h(x) = 0,

under Assumptions2.1. Through the rest of the paper we assume that problem (P1) has at least one local
minimizer.

Let x∗ be a local minimizer of (P1) and let

∇h
(

x∗
)

,
[

∇h1
(

x∗
)

,∇h2
(

x∗
)

, . . . ,∇hN
(

x∗
)]

be a matrix whose columns are the gradients of the functionshi(x) computed atx∗. The following
assumption is used to guarantee the uniqueness of the Lagrange multiplier vectorψ∗ appearing in the
first order necessary conditions of (P1), namely

∇ f (x∗)+∇h
(

x∗
)

ψ∗ = 0.

Assumption 2.2:Let x∗ be a local minimizer of (P1). The matrix∇h(x∗) is full rank, or equivalently,
the vectors{∇hi (x∗)}

N
i=1 are linearly independent.

Together with some additional assumptions onf (x) and h(x), Assumption2.2 is also typically used to
prove local convergence of a first-order numerical method for solving the first order necessary conditions
of (P1) (see for example Section 4.4.1, page 386 of [1]). As we will see in the next sections, the same
assumption will be used to prove local convergence for two distributed algorithms used to solve (P1).

Remark 2.3:We assumed that each agent has an equality constraint of the type hi(x) = 0. All the
results presented in what follows can be easily adapted for the case where onlym≤ N agents have
equality constraints.

C. Distributed algorithms

Let x∗ be a local minimizer of (P1) and let xi,k denote agenti’s estimateof x∗, at time-slotk. We
propose the following distributed algorithm to solve the problem (P1), referred henceforth as Algorithm
(A1):

xi,k+1 = xi,k−α∇ fi(xi,k)−αµi,k∇hi(xi,k)− (3)

− α
∑

j∈Ni

(

l i jλi,k− l jiλ j,k

)

, xi,0 = x0
i ,

µi,k+1 = µi,k+αhi(xi,k), µi,0 = µ
0
i , (4)

λi,k+1 = λi,k+α
∑

j∈Ni

l i j (xi,k− x j,k), λi,0 = λ
0
i , (5)
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whereα > 0 is the step-size of the algorithm,∇ fi(xi,k) and∇hi(xi,k) denote the gradients of functionsfi(x)
and hi(x), respectively, computed atxi,k, and x0

i , µ0
i and λ0

i are given scalars. In addition, the positive
scalarsl i j are the entries of the LaplacianL of the graphG defined in (2).

A modified version of the previous algorithm, called henceforth Algorithm (A2) is given by:

xi,k+1 = xi,k−α∇ fi(xi,k)−α
[

µi,k+chi(xi,k)
]

∇hi(xi,k)

− αc
∑

j∈Ni

l i j (xi,k− x j,k)−α
∑

j∈Ni

(

l i jλi,k− l jiλ j,k

)

, xi,0 = x0
i , (6)

µi,k+1 = µi,k+αhi(xi,k), µi,0 = µ
0
i , (7)

λi,k+1 = λi,k+α
∑

j∈Ni

l i j (xi,k− x j,k), λi,0 = λ
0
i , (8)

where in addition to the parameters of Algorithm (A1), we have a new positive parameterc. As shown
later in the paper, the advantage of this algorithm is that itrequires weaker conditions to prove local
convergence, compared to Algorithm (A1).

In Algorithms (A1) and (A2) the indexi (or j) designates an agent whilek denotes the discrete time.
It can be observed that the algorithms are indeed distributed since for updating its current estimatexi,k
agenti uses onlylocal information, that is, its own information (xi,k, µi,k, λi,k, ∇ fi(xi,k) and∇hi(xi,k)) and
information from its neighbors (x j,k, λ j,k, for j ∈ Ni). Therefore, at each time instant, agenti shares with
its neighbors the quantitiesxi,k and l i jλi,k. In the case of Algorithm (A1), equation (3) is comprised of a
standard gradient descent step and two additional terms used to cope with the local equality constraint
and the lack of complete information. The exact origin of equations (4) and (5) will be made clear in the
next sections. Intuitively however,µi,k can be seen as the price paid by agenti for satisfying the local
equality constraint, whileλi,k is the price paid by the same agent for having its estimatexi,k far away from
the estimates of its neighbors. Compared to Algorithm (A1), Algorithm (A2) adds two additional terms in
equation (6). These terms have their origin in the use of an augmented Lagrangian and ensure the local
convergence to a local minimizer under weaker conditions than the conditions used in the convergence
analysis of Algorithm (A1).

Remark 2.4:We made the assumption that the graphG is undirected. This assumption is in fact crucial
for the implementation of the algorithms (A1) and (A2) in a distributed manner. Indeed, consider a directed
graph with three nodes, where the neighborhoods of the nodesareN1 = {2}, N2 = {3} andN3 = {1}. In
this case the non-weighted Laplacian of the graph is given by

L =





1 −1 0
0 1 −1
−1 0 1




andL′ =





1 −1 −1
−1 1 0
0 −1 1




,

and the algorithm (A1) becomes

x1,k+1 = x1,k−α
[

λ1,k−λ3,k
]

−α∇ f1(x1,k)−α∇h1(x1,k),

x2,k+1 = x2,k−α
[

λ2,k−λ1,k
]

−α∇ f2(x2,k)−α∇h2(x2,k),

x3,k+1 = x3,k−α
[

λ3,k−λ2,k
]

−α∇ f3(x3,k)−α∇h3(x3,k),

µ1,k+1 = µ1,k+αh1(x1,k),

µ2,k+1 = µ2,k+αh2(x2,k),

µ3,k+1 = µ3,k+αh3(x3,k),

λ1,k+1 = λ1,k+α
[

x1,k− x2,k
]

,

λ2,k+1 = λ2,k+α
[

x2,k− x3,k
]

,

λ3,k+1 = λ3,k+α
[

x3,k− x1,k
]

.
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Note that although each agent can update its Lagrange multipliers using only information from its
neighbors, it cannot update its estimate since it requires information from agents outside its neighborhood.

In the next sections we start building the infrastructure that will allow us to prove local convergence
of Algorithms (A1) and (A2). Specifically, in the case of Algorithm (A1) we will show that if the agents’
initial values are close enough to a local minimizerx∗ and the step-sizeα is sufficiently small, under some
conditions on functionsfi(x) andhi(x), all estimatesxi,k converge to the local minimizerx∗. In addition,
if we assume thatc is sufficiently large, the agents executing Algorithm (A2) (locally) converge to a local
minimizer under weaker conditions onfi(x) and hi(x), compared to Algorithm (A1). More importantly,
we will show that algorithms (A1) and (A2) are not heuristic algorithms, but they can be traced back
to solving alifted optimization problem with additional equality constraints, whose solutionembedsthe
solution of the optimization problem (P1).

III. A n equivalent optimization problem with equality constraints

In this section we define a lifted optimization problem, fromwhose solution we can in fact extract
the solution of problem (P1). As will be made clear in what follows, Algorithm (A1) comes as a result
of applying a first-order method to solve the first order necessary conditions of the lifted optimization
problem. In addition, Algorithm (A2) comes as a result of applying a first-order method to the samefirst
order necessary conditions, but expressed in terms of an augmented Lagrangian.

Let us define the functionF : RnN→R given by

F(x) =
N∑

i=1

fi(xi),

wherex′ = (x′1, x
′
2, . . . , x

′
N), with xi ∈R

n. In addition we introduce the vector-valued functionsh :RnN→R
N

andg : RnN→R
nN, where

h(x) = (h1(x),h2(x), . . . ,hN(x))′ ,

with hi : RnN→R given byhi(x) = hi(xi), and

g(x)′ =
(

g1(x)′,g2(x)′, . . . ,gN(x)′
)

,

with gi : RnN→R
n given by

gi(x) =
∑

j∈Ni

l i j (xi − x j),

wherel i j are the entries of the LaplacianL defined in (2). The vector valued functiong(x) can be compactly
expressed as

g(x) = Lx ,

whereL = L⊗ I , with I the n-dimensional identity matrix.
We define the optimization problem

(P2) minx∈RnN F(x), (9)

subject to: h(x) = 0, (10)

g(x) = Lx = 0. (11)

The Lagrangian function of problem (P2) is a functionL : RnN×RN ×RnN→R, defined as

L (x,µ,λ) , F(x)+µ′h(x)+λ′Lx . (12)

The following proposition states that by solving (P2) we solve in fact (P1) as well, and vice-versa.
Proposition 3.1:Let Assumptions2.1 hold. The vectorx∗ is a local minimizer of (P1) if and only if

x∗ = 1⊗ x∗ is a local minimizer of (P2).
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Proof: Since the LaplacianL corresponds to a connected graph, according to Remark2.2-(c), the
nullspace ofL is given by Null(L ) = {1⊗ x | x ∈Rn}. From the equality constraint (11), we get that any
local minimizerx∗ of (P2) must be of the formx∗ = 1⊗ x∗, for somex∗ ∈Rn. Therefore, the solution of
(P2) must be searched in the set of vectors with structure given by x = 1⊗ x. Applying this constraint,
the cost function (9) becomes

F(x) =
N∑

i=1

fi(x) = f (x),

and the equality constraint (10) becomes

h(x) = h(x) = 0,

which shows that we have recovered the optimization problem(P1).
Remark 3.1:We note from the above proposition the importance of having aconnected communication

topology. Indeed, ifG is not connected, then the nullspace ofL is much richer than{1⊗ x | x ∈Rn}, and
therefore the solution of (P2) may not necessarily be of the formx∗ = 1⊗ x∗. However, the fact that we
search for a solution of (P2) with this particular structure isfundamentalfor showing the equivalence of
the two optimization problems.

IV. Auxiliary results

In this section we recall and prove a number of results concerning the optimization problems (P1) and
(P2). They will be used for analyzing the local converging properties of algorithms (A1) and (A2).

The next proposition recalls a well known result on the properties of the tangent cone to the constraint
set at a local minimizer of (P1).

Proposition 4.1:Let Assumptions2.1-(a) and2.2 hold, let x∗ be a local minimizer of (P1) and letΩ
denote the constraint set, that is,Ω = {x | h(x) = 0}. Then the tangent cone toΩ at x∗ is given by

TC(x∗,Ω) = Null
(

∇h(x∗)′
)

,

where
∇h

(

x∗
)

,
[

∇h1
(

x∗
)

,∇h2
(

x∗
)

, . . . ,∇hN
(

x∗
)]

.

Let x∗ = 1⊗ x∗ denote a local minimizer of (P2) and let∇h(x∗) denote the matrix

∇h(x∗) ,
[

∇h1(x∗),∇h2(x∗), . . . ,∇hN(x∗)
]

.

The vectors∇hi(x∗) are the gradients of the functionshi(x) at x∗ with a structure given by

∇hi(x∗)′ =

=





0, . . . ,0
︸ ︷︷ ︸

n zeros

, . . . ,0, . . . ,0
︸ ︷︷ ︸

n zeros

, ∇hi(x
∗)′

︸   ︷︷   ︸

ith component

,0, . . . ,0
︸ ︷︷ ︸

n zeros

, . . . ,0, . . . ,0
︸ ︷︷ ︸

n zeros





, (13)

as per the definition of the functionhi(x).
The second result of this section is concerned with the nullspace of the matrix

[

∇h(x∗),L ′
]

, which will
be used to characterize the tangent cone at a local minimizerof (P2).

Proposition 4.2:Let Assumptions2.1 and2.2 hold. The nullspace of the matrix
[

∇h(x∗),L ′
]

is given
by

Null
([

∇h(x∗),L ′
])

=
{(

0′,v′
)′
| v ∈ Null

(

L ′
)}

.

Proof: Let u ∈RN andv ∈RnN be two vectors. To characterize the nullspace of
[

∇h(x∗),L ′
]

we need
to check for what values ofu andv the equation

∇h(x∗)u+L ′v = 0 (14)
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is satisfied. Using the definition of∇hi(x∗) shown in (13), equation (14) can be equivalently written as

∇hi(x
∗)ui +

∑

j∈Ni

(

l i jvi − l ji v j

)

= 0, i = 1, . . . ,N,

whereui are the entries ofu andvi aren-dimensional sub-vectors ofv.
Summing the above equations overi we obtain that

N∑

i=1

ui∇hi(x
∗) = 0,

and since∇h(x∗) is assumed full rank we must have thatu = 0 and the result follows.
We now have all the machinery necessary to characterize the tangent cone at a local minimizer of (P2).

Proposition 4.3:Let Assumptions2.1-(a) and2.2 hold, letx∗ = 1⊗ x∗ be a local minimizer of (P2) and
let Ω denote the constraint set, that is,Ω = {x | h(x) = 0,Lx = 0}. Then the tangent cone toΩ at x∗ is
given by

TC(x∗,Ω) = Null
([

∇h(x∗),L ′
]′
)

=

=
{

1⊗z | z∈ Null
(

∇h(x∗)′
)

= TC(x∗,Ω)
}

.

Proof: All we have to show is that any vector in Null
([

∇h(x∗),L ′
]′
)

belongs to TC(x∗,Ω) as well,

since it is well known that (the closure of the convex hull of)TC(x∗,Ω) is included in Null
([

∇h(x∗),L ′
]′
)

.

Let u be a vector in Null
([

∇h(x∗),L ′
]′
)

and therefore it must satisfy

∇h(x∗)′u = 0 andLu = 0. (15)

From the second equation of (15), u must be of the formu = 1⊗ u, for someu ∈ Rn. From the first
equation of (15), using the definition of∇hi(x∗) in (13) together with the particular structure ofu, we
obtain that

∇hi(x
∗)′u= 0 ∀i = 1, . . . ,N,

or equivalently
u ∈ Null

(

∇h(x∗)′
)

.

We need to show that a vectoru = 1⊗u, with u ∈ Null (∇h(x∗)′) belongs to TC(x∗,Ω). More explicitly,
using the definition of the tangent cone, we must find a function o : R→R

nN, with limt→0,t>0
o(t)

t = 0, so
that

x∗+ tu+o(t) ∈Ω ∀t > 0.

Choosingo(t) = 1⊗o(t), whereo : R→R
n is a function so that limt→0,t>0

o(t)
t = 0, we note that

g
(

x∗+ tu+o(t)
)

= 0 ∀t > 0,

and therefore, all we are left to do is to check that

h
(

x∗+ tu+o(t)
)

= 0 ∀t > 0, (16)

as well. Making the observation thatx∗+ tu+o(t) = 1⊗ (x∗+ tu+o(t)), (16) is equivalent to showing that

h
(

x∗+ tu+o(t)
)

= 0 ∀t > 0. (17)

However, we showed previously thatu ∈ Null (∇h(x∗)′), and therefore by Proposition4.2 u ∈ TC(x∗,Ω),
as well. Therefore there exits a functiono(t) so that (17) is satisfied, which shows that indeed

TC
(

x∗,Ω
)

= Null
([

∇h(x∗),L ′
]′
)

,
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and consequently TC(x∗,Ω) is a closed and convex subspace.
Let x∗ = 1⊗ x∗ denote a local minimizer of (P2). From the theory concerning optimization problems

with equality constraints (see for example Chapter 3, page 15 of [21], or Chapter 3, page 253 of [1]), the
first order necessary conditions for (P2) ensure the existence ofλ∗0 ∈R, µ∗ ∈RN andλ∗ ∈RnN so that

λ∗0∇F(x∗)+∇h(x∗)µ∗+∇g(x∗)λ∗ =

= λ∗0∇F(x∗)+∇h(x∗)µ∗+L ′λ∗ = 0.

Note that sinceL is not full rank, and therefore the matrix
[

∇h(x∗),L ′
]

is not full rank as well, the
uniqueness ofµ∗ and λ∗ cannot be guaranteed. The following result characterizes the set of Lagrange
multipliers verifying the first order necessary conditionsof (P2).

Proposition 4.4 (first order necessary conditions for(P2)): Let Assumptions2.1 and 2.2 hold and let
x∗ = 1⊗ x∗ be a local minimizer for problem (P2). There exist unique vectorsµ∗ andλ∗ ∈ Range(L ) so
that

∇F(x∗)+∇h(x∗)µ∗+L ′λ = 0,

for all λ ∈ {λ∗+λ⊥ | λ⊥ ∈ Null (L ′)}.
Proof: By Lemma 11 , page 50 of [21] we have that∇F(x∗) is orthogonal on TC(x∗,Ω) and therefore,

by Proposition4.3, ∇F(x∗) must belong to Range
([

∇h(x∗),L ′
])

. Consequently, there exist the vectorsµ∗

andλ so that
−∇F(x∗) = ∇h(x∗)µ∗+L ′λ. (18)

Noting thatRnN can be written as a direct sum between the nullspace ofL ′ and the range ofL , there
exist the orthogonal vectorsλ∗ ∈Range(L ) andλ⊥ ∈Null (L ′) so thatλ= λ∗+λ⊥. Note that we can replace
λ⊥ by any vector in Null(L ′) and (18) still holds. The only thing left to do is to prove the uniqueness of
µ∗ andλ∗. We use a contradiction argument. Let ˜µ , µ∗ and λ̃ , λ∗ with λ̃ ∈Range(L ) be two vectors so
that (18) is satisfied. Hence we have that

−∇F(x∗) = ∇h(x∗)µ∗+L ′λ∗ and −∇F(x∗) = ∇h(x∗)µ̃+L ′λ̃,

and therefore
0= ∇h(x∗)

(

µ∗− µ̃
)

+L ′
(

λ∗− λ̃
)

.

By Proposition4.2 we have that

Null
([

∇h(x∗),L ′
])

=
{(

0′,v′
)′
| v ∈ Null

(

L ′
)}

,

and thereforeµ∗ = µ̃ andλ∗ = λ̃ sinceλ∗− λ̃ ∈ Range(L ), and the result follows.
Under the assumption that the matrix∇h(x∗) is full rank, the first order necessary conditions of (P1)

are given by

∇ f (x∗)+∇h(x∗)ψ∗ = 0,

h(x∗) = 0,

where the vectorψ∗ is unique (see for example Proposition 3.3.1, page 255, [1]). An interesting question
is whether or not there is a connection betweenψ∗ andµ∗ shown in the first order necessary conditions
of (P2). As proved in the following, the two vectors are in fact equal.

Proposition 4.5:Let Assumptions2.1 and2.2 hold, letx∗ = 1⊗ x∗ be a local minimizer of (P2) and let
ψ∗ andµ∗ be the unique Lagrange multiplier vectors corresponding tothe first order necessary conditions
of (P1) and (P2), respectively. Thenψ∗ = µ∗.

1The result states that given a local minimizerx∗ of a function f (x), h′∇ f (x∗) ≥ 0 for all h ∈ TC(x∗,Ω). When TC(x∗,Ω) is a (closed,
convex) subspace, orthogonality follows.
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Proof: By Proposition4.4, there exist two unique vectorµ∗ andλ∗ ∈ Range(L ) so that

∇F(x∗)+∇h(x∗)µ∗+L ′λ∗ = 0.

Using the structure of∇F(x∗), h(x∗) andL ′, the above equation can be equivalently expressed as

∇ fi(x
∗)+µ∗i ∇hi(x

∗)+
∑

j∈Ni

(

l i jλ
∗
i − l jiλ

∗
j

)

, i = 1, . . . ,N, (19)

whereµ∗i are the scalar entries ofµ∗ andλ∗i are then-dimensional sub-vectors ofλ∗. Summing up equations
(19) over i, we obtain

N∑

i=1

∇ fi(x
∗)+

N∑

i=1

∇hi(x
∗)µ∗i = 0.

Equivalently,
∇ f (x∗)+∇h(x∗)µ∗ = 0,

which is just the first order necessary condition for (P1). But sinceµ∗ must be unique, it follows that
µ∗ = ψ∗.

The convergence properties of algorithms (A1) and (A2) depend on the spectral properties of a particular
matrix; properties analyzed in the following result.

Lemma 4.1:Let Assumptions2.1and2.2hold, letα be a positive scalar, and letx∗ be a local minimizer
of (P2). Then the eigenvalues of the matrix

B =





H ∇h(x∗) L ′

−∇h(x∗)′ 0 0
−L 0 1

α
J




,

have positive real parts, whereH is a positive definite matrix andJ , 11
′

1′1
⊗ I .

Proof: Let β be an eigenvalue ofB and let(u′,v′,z′)′ , 0 be the corresponding eigenvector, where
u, v and z are complex vectors of appropriate dimensions. Denoting byû, v̂ and ẑ the conjugates ofu,
v andz, respectively we have

Re(β)
(

‖u‖2+ ‖v‖2+ ‖z‖2
)

= Re






(

û′, v̂′, ẑ′
)

B





u
v
z










=, (20)

Re

{

û′Hu + û′L ′z− ẑ′Lu + û′∇h(x∗)v− v̂′∇h(x∗)′u+ ẑ′
1
α

Jz
}

= Re

{

ûTHu + ẑ′
1
α

Jz
}

.

SinceJ = 11
′

1′1
⊗ I is a semi-positive definite matrix andH is positive definite we have that

Re(β)
(

‖u‖2+ ‖v‖2+ ‖z‖2
)

> 0,

as long asu , 0 or z < Range(L ) and therefore Re(β) > 0. In the caseu = 0 andz ∈ Range(L ) we get

B





0
v
z




= β





0
v
z




,

from where we obtain
∇h(x∗)v+L ′z= 0.

But from Proposition4.2, we have thatv = 0 andz ∈ Null(L ′) and sincez ∈ Range(L ) as well, it must
be thatz= 0. Hence we have a contradiction since we assumed that(u′,v′,z′) , 0′ and therefore the real
part ofβ must be positive. In addition, it can be easily checked that the matrixB hasn eigenvalues equal
to 1

α
and their corresponding eigenspace is

{
(0′,0′,z′)′ | z ∈ Null (L ′)

}

.
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V. Convergence analysis of Algorithm (A1)

In this section we analyze the convergence properties of Algorithm (A1). Since the matrixL is not full
rank, we cannot apply directly existing results for regular(local) minimizers, such as Proposition 4.4.2,
page 388, [1]. Still, for a local minimizer and Lagrange multipliers pair (x∗,µ∗,λ∗), with λ∗ ∈ Range(L ),
we show that if the initial values(x0,µ0, (I −J)λ0) are close enough to (x∗,µ∗,λ∗), for a small enough
step-size and under some conditions on (the Hessians of) thefunctions fi(x) and hi(x), i = 1, . . . ,N, the
vectorsxk and µk do indeed converge tox∗ and µ∗, respectively. However, although under the same
conditionsλk does converge, it cannot be guaranteed that it converges to the uniqueλ∗ ∈ Range(L ) but
rather to a point in the set{λ∗+Null (L ′)}.

To find a solution of problem (P2) the first thing we can think about is solving the set of necessary
conditions:

∇F(x)+LTλ+∇h(x)µ = 0, (21)

h(x) = 0, (22)

Lx = 0. (23)

Solving (21)-(23) does not guarantee finding local minimizer, but at least they are among the solutions
of the above nonlinear system of equations. An approach for solving (21)-(23) consists of using a first
order method (see for instance Section 4.4.1, page 386, [1]), which is given by

xk+1 = xk−α
[

∇F(xk)+∇h(xk)µk+L ′λk
]

, (24)

µk+1 = µk+αh(xk), (25)

λk+1 = λk+αLx k, (26)

whereα > 0 is chosen to ensure the stability of the algorithm. By reformulating the above iteration in
terms of then-dimensional components of the vectorsxk andλk, and in terms of the scalar components
of the vectorµk, we recover Algorithm (A1), which shows thedistributedandnon-heuristicnature of the
algorithm.

The following theorem addresses the local convergence properties of Algorithm (A1), which, under
some assumptions on the functionsfi(x) and hi(x), states that provided the initial values used in the
Algorithm (A1) are close enough to a solution of the first order necessary conditions of (P2), and a small
enough step-sizeα is used, the sequence{xk,µk,λk} converges to this solution.

Theorem 5.1:Let Assumptions2.1 and 2.2 hold and let(x∗,µ∗,λ∗) with λ∗ ∈ Range(L ), be a local
minimizer-Lagrange multipliers pair of (P2). Assume also that∇2

xxL (x∗,µ∗,λ∗) is positive definite. Then
there exits ¯α, such that for allα ∈ (0, ᾱ], the set(x∗,µ∗,λ∗+Null (L ′)) is an attractor of iteration (24)-
(26) and if the sequence{xk,µk,λk} converges to the set(x∗,µ∗,λ∗+Null (L ′)), the rate of convergence of
‖xk−x∗‖, ‖µk−µ

∗‖ and
∥
∥
∥λk−

[

λ∗+Null (L ′)
]∥∥
∥ is linear.

Proof: Using the Lagrangian function defined in (12), iteration (24)-(26) can be equivalently expressed
as 



xk+1
µk+1
λk+1




= M̄α(xk,µk,λk), (27)

with

M̄α(x,µ,λ) =





x−α∇xL(x,µ,λ)
µ+α∇µL(x,µ,λ)
λ+α∇λL(x,µ,λ)




.

It can be easily checked that(x∗,µ∗,λ∗+Null (L ′)) is a set of fixed points ofM̄α. Let us now consider
the transformatioñλ = (I −J)λ, whereJ = 11

′

1′1
⊗ I . This transformation extracts the projection ofλ on the
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nullspace ofL ′ from λ and thereforẽλ is the error betweenλ and its orthogonal projection on Null(L ′).
Under this transformation, iteration (27) becomes





xk+1
µk+1

λ̃k+1




=Mα(xk,µk, λ̃k)

with

Mα(x,µ, λ̃) =





x−α∇xL(x,µ, λ̃)
µ+α∇µL(x,µ, λ̃)

(I −J) λ̃+α∇λ̃L(x,µ, λ̃)




,

where we used the fact that (I −J)λ̃ = (I −J)λ andL ′J = JL = 0. Clearly(x∗,µ∗,λ∗) is a fixed point forMα

and if
(

xk,µk, λ̃k

)

converges to(x∗,µ∗,λ∗), we in fact show that(xk,µk,λk) converges to(x∗,µ∗,λ∗+Null (L ′)).
The derivative of the mapping∇Mα (x,µ,λ) at (x∗,µ∗,λ∗) is given by

∇Mα

(

x∗,µ∗,λ∗
)

= I −αB,

where

B =





∇2
xxL (x∗,µ∗,λ∗) ∇h(x∗) L ′

−∇h(x∗)′ 0 0
−L 0 1

α
J




.

By Lemma 4.1 we have that the real parts of the eigenvalues ofB are positive and therefore we can
find an ᾱ so that for allα ∈ (0.ᾱ] the eigenvalues of∇Mα (x∗,µ∗,λ∗) are strictly within the unit circle.
Using a similar argument as in Proposition 4.4.1, page 387, [1], there exist a norm‖ · ‖ and a sphereSǫ ={

(x′,µ′,λ′)′ | ‖(x′,µ′,λ′)′−
(

x∗′,µ∗′,λ∗′
)′
‖ < ǫ

}

for someǫ > 0 so that the induced norm of∇Mα (x,µ,λ) is
less than one within the sphereSǫ . Therefore, using the mean value theorem, it follows thatMα (x,µ,λ)
is a contraction map for any vector in the sphereSǫ . By invoking the contraction map theorem (see for
example Chapter 7 of [7]) it follows that

(

xk,µk, λ̃k

)

converges to(x∗,µ∗,λ∗) for any initial value inSǫ .

Let us know reformulate the above theorem so that the local convergence result can be applied to
problem (P1).

Corollary 5.1: Let Assumptions2.1 and2.2 hold and let(x∗,ψ∗) be a local minimizer-Lagrange mul-
tiplier pair of (P1). Assume also that∇2 fi(x∗)+ψ∗i ∇

2hi(x∗) are positive definite for alli = 1, . . . ,N. Then
there exits ¯α, such that for allα ∈ (0, ᾱ], (x∗,ψ∗) is a point of attraction for iteration (3) and (4), for all
i = 1, . . . ,N, and if the sequence

{

xi,k,µi,k
}

converges to(x∗,ψ∗), then the rate of convergence of‖xi,k− x∗‖
and ‖µi,k−ψ

∗‖ is linear.
Proof: By Proposition3.1 we have thatx∗ = 1⊗ x∗ is a local minimizer of (P2) with corresponding

Lagrange multipliers(µ∗,λ∗+Null (L ′)), with λ∗ ∈Range(L ). In addition, by Proposition4.5 we have that
µ∗ = ψ∗. Using the definition of the Lagrangian function introducedin (12), we discover that

∇2
xxL

(

x∗,µ∗,λ∗
)

= diag
(

∇2 fi(x
∗)+ψ∗i ∇

2hi(x
∗), i = 1, . . . ,N

)

.

But since we assumed that∇2 fi(x∗)+ψ∗i ∇
2hi(x∗) ≻ 0 for all i, it follows that∇2

xxL (x∗,µ∗,λ∗) ≻ 0 as well.
Using Theorem5.1, the result follows.

Remark 5.1:In the previous corollary the matrices∇2 fi(x∗)+ψ∗i ∇
2hi(x∗) were assumed to be positive

definite for all i = 1, . . . ,N. If we apply directly results from the optimization literature (see for instance
Proposition 4.4.2, page 388, [1]) concerning convergence of first-order methods used to compute local
minimizers and their corresponding Lagrange multipliers,we only require

∑N
i=1∇

2 fi(x∗)+ψ∗i ∇
2hi(x∗) to

be positive definite, and not each element of the sum. Obviously the assumption in Corollary5.1 does
imply the latter, but is not necessary. It appears that this additional constraint onfi(x) and hi(x) is the
price paid for being able to prove local convergence of the distributed algorithm.
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VI. Convergence analysis of Algorithm (A2)

In the previous section we gave sufficient conditions for local convergence to a local minimizerusing
Algorithm (A1). By using an augmented Lagrangian on problem (P2), we reformulate the first order
necessary conditions for (P2). Applying as in the case of Algorithm (A1) a first order method to solve
the reformulated first order necessary conditions, we obtain algorithm (A2), for which local convergence
can be proven under more relaxed conditions than in the case of Algorithm (A1).

Let S be a matrix as in Remark2.1 and letS= S⊗ I . It follows thatL = S′S. We define the following
augmented Lagrangian for problem (P2):

Lc(x,µ,λ) = F(x)+µ′h(x)+λ′Lx +
c
2
‖h(x)‖2+

c
2

x′S′Sx, (28)

wherec is a positive scalar. The gradient and the Hessian ofLc(x,µ,λ) are given by

∇xLc(x,µ,λ) = ∇F(x)+∇h(x)µ+L ′λ+c∇h(x)h(x)+cLx , (29)

and

∇2
xxLc(x,µ,λ) = ∇2F(x)+

N∑

i=1

µi∇
2hi(x)+cL+

+c
N∑

i=1

(

hi(x)∇2hi(x)+∇hi(x)∇hi(x)′
)

, (30)

respectively. Note that in the additional quadratic cost wedo not includex′L ′Lx but x′Lx , since doing so
would prevent the distributed implementation of the first order method. It turns out that the introduction
of x′Lx is enough to obtain the desired behavior of the Hessian∇2

xxLc(x∗,µ∗,λ∗).
Let (x∗,µ∗,λ∗), with λ∗ ∈ Range(L ) be a local minimizer-Lagrange multipliers pair of (P2). Then the

gradient and the Hessian ofLc(x,µ,λ) computed at(x∗,µ∗,λ∗) are given by

∇xLc(x∗,µ∗,λ∗) = ∇xL(x∗,µ∗,λ∗) = 0, (31)

and

∇2
xxLc(x∗,µ∗,λ∗) = ∇2F(x∗)+

N∑

i=1

µi∇
2hi(x∗)+c∇h(x∗)∇h(x∗)′+cS′S. (32)

The first order necessary conditions for (P2), reformulated in terms ofLc(x,µ,λ) become

∇F(x)+∇h(x)µ+L ′λ+c∇h(x)h(x)+cLx = 0, (33)

∇h(x) = 0, (34)

Lx = 0. (35)

A first order numerical method that can be used to solve the necessary conditions (33)-(35) takes the form

xk+1 = xk−α
[

∇F(xk)+∇h(xk)µk+

+ c∇h(xk)h(xk)+L ′λk+cLx k
]

, (36)

µk+1 = µk+αh(xk), (37)

λk+1 = λk+αLx k, (38)

which is basically the compact form of Algorithm (A2).
The following result addresses the local converges properties of the iteration (36)-(38).
Theorem 6.1:Let Assumptions2.1 and 2.2 hold and let(x∗,µ∗,λ∗) with λ∗ ∈ Range(L ), be a local

minimizer-Lagrange multipliers pair of (P2). Assume also thatx′∇2
xxL (x∗,µ∗,λ∗)x> 0 for all x ∈TC(x∗,Ω).

Then there exists ¯c > 0 so that for allc > c̄ we can find ¯α(c) such that for allα ∈ (0, ᾱ(c)], the set
(x∗,µ∗,λ∗+Null (L ′)) is an attractor of iteration (36)-(38). In addition, if the sequence{xk,µk,λk} converges
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to the set(x∗,µ∗,λ∗+Null (L ′)), the rate of convergence of‖xk−x∗‖, ‖µk−µ
∗‖ and

∥
∥
∥λk−

[

λ∗+Null (L ′)
]∥∥
∥

is linear.
Proof: First note that the assumption on the Hessian ofL (x,µ,λ) basically means thatx∗ is a strictly

local minimizer of (P2). Proceeding as in the case of the proof of Theorem5.1, iteration (36)-(38) can
be compactly expressed as





xk+1
µk+1
λk+1




= M̄α,c(xk,µk,λk), (39)

with

M̄α,c(x,µ,λ) =





x−α∇xLc(x,µ,λ)
µ+α∇µLc(x,µ,λ)
λ+α∇λLc(x,µ,λ),




,

or, expressing (38) in terms of the error betweenλk and its projection on Null(L ′), we further have




xk+1
µk+1

λ̃k+1




=Mα,c(xk,µk, λ̃k)

with

Mα,c(x,µ, λ̃) =





x−α∇xLc(x,µ, λ̃)
µ+α∇µLc(x,µ, λ̃)

(I −J) λ̃+α∇λ̃Lc(x,µ, λ̃)




,

and λ̃k = (I −J)λk. Clearly (x∗,µ∗,λ∗) is a fixed point forMα,c and we have that

∇Mα,c
(

x∗,µ∗,λ∗
)

= I −αBc,

where

Bc =





∇2
xxLc (x∗,µ∗,λ∗) ∇h(x∗) L ′

−∇h(x∗)′ 0 0
−L 0 1

α
J




.

Since Null(S) =Null(L ), it can be easily checked that Null
([

∇h(x∗),L ′
]′
)

=Null
([

∇h(x∗),S′
]′
)

. Using the

assumption thatx′∇2
xxL (x∗,µ∗,λ∗)x > 0 for all x ∈ TC(x∗,Ω) = Null

([

∇h(x∗),L ′
]′
)

, together with the fact
that

∇2
xxLc

(

x∗,µ∗,λ∗
)

= ∇2
xxL

(

x∗,µ∗,λ∗
)

+c∇h(x∗)∇h(x∗)′+cS′S,

it is shown in [6] that there exists a positive scalar ¯c such that∇2
xxLc (x∗,µ∗,λ∗)≻ 0 for all c≥ c̄. Therefore,

according to Lemma4.1, the real parts of the eigenvalues ofBc are positive and consequently we can
find an ᾱ(c) so that for allα ∈ (0, ᾱ(c)] the eigenvalues of∇Mα,c (x∗,µ∗,λ∗) are strictly within the unit
circle. Mimicking the last part of the proof of Theorem5.1, we find thatMα,c (x,µ,λ) is a contraction
map within a sphere centered at(x∗,µ∗,λ∗), and the result follows from the contraction map theorem.

The following corollary gives conditions that ensure localconvergence to a local minimizer of (P1) for
each agent following Algorithm (A2).

Corollary 6.1: Let Assumptions2.1 and2.2 hold and let(x∗,ψ∗) be a local minimizer-Lagrange multi-
plier pair of (P1). Assume also thatx′

[

∇2 fi(x∗)+ψ∗i ∇
2hi(x∗)

]

x> 0 for all x ∈ TC(x∗,Ω). Then there exits
c̄> 0 so that for allc≥ c̄ we can find ¯α(c) such that for allα ∈ (0, ᾱ(c)], (x∗,ψ∗) is a point of attraction
for iteration (6)-(8), for all i = 1, . . . ,N. In addition, if the sequence

{

xi,k,µi,k
}

converges to(x∗,ψ∗), then
the rate of convergence of‖xi,k− x∗‖ and ‖µi,k−ψ

∗‖ is linear.
Proof: By Proposition3.1 we have thatx∗ = 1⊗ x∗ is a local minimizer of (P2) with corresponding

Lagrange multipliers(µ∗,λ∗+Null (L ′)), with λ∗ ∈Range(L ). In addition, by Proposition4.5 we have that
µ∗ = ψ∗. Using the definition of the Lagrangian function introducedin (12), we have

∇2
xxL

(

x∗,µ∗,λ∗
)

= diag
(

∇2 fi(x
∗)+ψ∗i ∇

2hi(x
∗), i = 1, . . . ,N

)

.
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In Proposition4.3 we showed that

TC(x∗,Ω) =
{

1⊗z | z∈ TC(x∗,Ω)
}

,

and therefore the assumptionx′
[

∇2 fi(x∗)+ψ∗i ∇
2hi(x∗)

]

x> 0 for all x ∈ TC(x∗,Ω) is equivalent to

x′∇2
xxL

(

x∗,µ∗,λ∗
)

x > 0 ∀x ∈ TC(x∗,Ω).

Using Theorem6.1, the result follows.
Remark 6.1:Algorithms (A1) and (A2) are part of the general class of methods, called Lagrangian

methods (see for example Section 4.4.1, page 386, [1]). They are based on a first order method, and
therefore they achieve a linear rate of convergence. The optimization literature includes more sophisticated
methods for solving constrained optimization problems, such as the multipliers methods or the sequential
quadratic programming methods (see for instance [2], [3]); methods that can achieve superior convergence
rates. They are based on a sequence of unconstrained minimization problems that in our case would need
to be solved at each iteration in a distributed manner. In other words, unlike Algorithms (A1) and (A2),
they have two layers of iterations: one layer is used to compute the estimate of the minimizer while the
second one is used to update the Lagrange multipliers. Still, using the approach introduced in this paper
(that is, minimizing the lifted constrained optimization problem), it turns out that each of the unconstrained
optimization problems can be solved in a distributed manner. This is mainly due to the separability of the
augmented Lagrangian (28). We are currently working on extending the augmented Lagrangian method
so that it can be implemented in a distributed manner. The extension of the method is based on dealing
with the fact that the Lagrange multipliers corresponding to the equality constraintLx = 0 are not unique
and therefore, the (local) minimizer is not regular.

VII. Numerical example

In this section we test our algorithm on an distributed optimization problem with equality constraints.
Figure 1 shows a flow network, where each node is an agent having to decide on the values of the in
and out flows so that so that the demandsd1 and d2 ate the end nodes are met. Each agent has a local
cost function and the flows must be computed so that the sum of the local cost functions is minimized.
In addition, the flows must satisfy the conservation of flows law. The local cost and constraint functions
are shown in TableI.

TABLE I: Cost and equality constraint functions

Local cost functions Local equality constraint functions
f1(x) = x′Q1x h1(x) = x1− x4− x5
f2(x) = x′Q2x h2(x) = x2− x6− x7
f3(x) = x′Q3x h3(x) = x3− x8− x9
f4(x) = x′Q4x h4(x) = x5+ x6− x10
f5(x) = x′Q5x h5(x) = x7+ x8− x11
f6(x) = x′Q6x h6(x) = x10− x12− x13
f7(x) = x′Q7x h7(x) = x11− x14− x15
f8(x) = x′Q8x h8(x) = x1+ x12− x16
f9(x) = x′Q9x h9(x) = x13+ x14− x17− x18
f10(x) = x′Q10x h10(x) = x9+ x15− x19
f11(x) = x′Q11x h11(x) = x16+ x17−d1
f12(x) = x′Q12x h12(x) = x18+ x19−d2

The (undirected) communication network follows with fidelity the flow network and is shown in Figure
2. The matricesQi in the cost functions are defined asQi = diag(vi), where the entries of the vectorvi are
defined as follows: ifx j is an in/out flow of nodei, thenvi j = vmin, otherwisevi j = vmax, with vmin < vmax.

Figure3 shows the numerical simulation of Algorithm (A1) for α= 0.025,vmin= 1 andvmax= 50. For the
numerical simulation we used the non-weighted Laplacian ofthe graph shown in Figure2. For each agent
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Fig. 1: Flow network

Fig. 2: Communication network

we plot the distance between the current estimatexi,k and the minimizerx∗. The numerical simulations do
show that these quantities converge to zero and reflects the presence of complex eigenvalues of the matrix
B, defined in (4.1). Next, we test the influence of the spectral properties of the matrix L, which are a
reflection of the connectivity of the communication graph. We increase the eigenvalues ofL by multiplying
the matrix with a positive scalar. Figure4 shows the results produced by Algorithm (A1) when 20L is used
as Laplacian. Larger eigenvalues of the Laplacian induces the need for smaller values of the step-sizeα to
preserve the stability of the algorithm (and hence more iterations to achieve convergence).We note that the
quantities plotted are considerably closer compared to thefirst numerical simulations. This phenomenon
was observed again when we increased the value of the constant multiplying the Laplacian from 20 to
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Fig. 3: Simulation of Algorithm (A1) for α = 0.025, vmin = 1, vmax= 50 and Laplacian L.

40, as shown in Figure5. An intuitive explanation for this phenomenon is that thereis more “weight” put
on the dynamics reflecting the constraint that forces the estimates to have the same value. In other words,
the values of the estimates tend to converge to a common valuefaster than the convergence rate to the
minimizer. A similar phenomenon was observed in the case of the consensus-based distributed algorithms,
when the connectivity of the graph is improved (by making thesecond largest eigenvalue (in modulus)
of the stochastic matrix small).
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Fig. 4: Simulation of Algorithm (A1) for α = 0.001, vmin = 1, vmax= 40 and Laplacian 20L.

Figures6, 7 and 8 present numerical simulations of Algorithm (A2) under similar parameters used in
the numerical simulations of Algorithm (A1).
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Fig. 5: Simulation of Algorithm (A1) for α = 0.0002,vmin = 1, vmax= 40 and Laplacian 40L.
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Fig. 6: Simulation of Algorithm (A2) for α = 0.025, vmin = 1, vmax= 50, LaplacianL andc= 20.

VIII. Conclusions

We presented two multi-agent distributed algorithm for solving a particular type of optimization prob-
lems with equality constraints. In this problem, the cost function is expressed as a sum of functions
and each agent is aware of only one function of the sum and has its own local equality constraint.
We demonstrated the non-heuristic nature of the algorithmsby showing that they came as a result of
applying a first order numerical method to solve the first order necessary conditions of a lifted optimization
problem; optimization problem whose solution embeds the solution of our original problem. In addition, we
presented a convergence analysis of the two algorithms and gave sufficient conditions for local convergence.
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Fig. 7: Simulation of Algorithm (A1) for α = 0.001, vmin = 1, vmax= 40, Laplacian 20L andc= 20.
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Fig. 8: Simulation of Algorithm (A2) for α = 0.0002,vmin = 1, vmax= 40, Laplacian 40L andc= 40.
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