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Distributed Algorithms for Optimization Problems
with Equality Constraints

lon Matei, John S. Baras

Abstract

In this paper we introduce two discrete-time, distribut@diraization algorithms executed by a set of agents
whose interactions are subject to a communication grapé.aldorithms can be applied to optimization problems
where the cost function is expressed as a sum of functiortswdere each function is associated to an agent.
In addition, the agents can have equality constraints ab Weé algorithms are not consensus-based and can be
applied to non-convex optimization problems with equatinstraints. We demonstrate that the first distributed
algorithm results naturally from applying a first order nwthto solve the first order necessary conditions for
a lifted optimization problem with equality constraintbetsolution of our original problem is embedded in the
solution of this lifted optimization problem. We show thptpvided the agents’ initial values arefsciently close
to a local minimizer, and the step-size isfitiently small, under standard conditions on the cost ancstcaimt
functions, each agent converges to the local minimizer ateat rate. Next, we use an augmented Lagrangian idea
to derive a second distributed algorithm whose local caymece requires weaker figient conditions than in the
case of the first algorithm.

|. INTRODUCTION

Recent years’ technological advances in wireless netwakaeled the interest of the research com-
munity in applications where complex tasks are executed large networks by a large set of agents.
Such applications can include autonomomsnanned vehicles, parallel computing, sensor networks fo
monitoring and tracking, and so on. The execution of theg@icgiions over large networks makes a
centralized coordination unfeasible. As a consequensearehers have looked for distributed strategies
where although each agent makes decisions based on limftedhiation, the overall result is comparable
with the result obtained had a centralized strategy beed. use

Multi-agent distributed optimization problems appearunally in many distributed applications such
as network resource allocation, collaborative controlingstion and identification, and so on. In these
type of applications a group of agents has as common goal gtimiaation of a cost function under
limited information and resources. The limited informatimay be induced by the fact that an agent can
communicate with only a subset of the total set of agenigndrby the fact that an agent is aware of
only a part of the cost function or constraint sets.

A patrticular formulation of a distributed optimization fmiem refers to the case where the optimization
cost is expressed as a sum of functions and each functioreirsum corresponds to an agent. In this
formulation the agents interact with each other throughramanication network, usually modeled as a
(un)directed graph. This formulation is often found in W& network resource allocation problems][
or in finite horizon optimal control problems with separabtest functions 4].

A first distributed algorithm for solving an optimizationginlem of the type described above was
introduced in [6]. The algorithm, referred to as “distributed subgradiertimod”, is used to minimize a
convex function expressed as a sum of convex functions:

N
mXinZ f,().
i=1

In this algorithm each agent uses a combination of the stdr{dab)gradient descent step with a consensus
step to deal with the limited information about the cost tiort and about the actions of the agents, and



takes the form:

aij Xj k — @i kdi k. (1)

N
X k+1 =

j=1

where the indices andk refer to agents and discrete time, respectivalyare the entries of a stochastic
matrix whose structure depends on the communication grphs the (sub)gradient of functiofi(x),
computed atx x, anda;k is the step-size of the (sub)gradient descent step. Undibiiassumptions
on the step-size, the cost functions and the entries of thehastic matrix, it is shown inlf] that the
iteration () indeed converges to a minimizer.

Many subsequent versions of this algorithm appeared initdr@iure. The introduction of communica-
tion noise and errors on subgradients was addressed]in 8], while the case where the communication
network is modeled as a random graph was treated 1h [13]. Analyses of asynchronous versions of
the algorithm can be found inL{], [20]. A further extension was proposed in7, where the authors
considered state-dependent communication topologies.

A modified version of the distributed subgradient method wma®duced in §], [9], where the authors
change the order in which the two operations of the algoritnenperformed. More specifically, first the
subgradient descent step is executed, followed by the osuosestep, and takes the form

N

Xikel = Z (aij Xjk— aj,kdj,k)-
i—1

The algorithms discussed above became popular in the sigoedéssing community as well, being used
for solving distributed filtering and parameter identifioat problems §], [19].

In this paper we study a distributed optimization problemikir to the formulation proposed in {].
Namely the goal is to minimize a function expressed as a sufamaitions, where each function in the
sum is associated to an agent. In addition, we assume thiatag@nt has an equality constraint, as well.
Distributed algorithms for solving constrained optimiaat problems have already been studied in the
literature. The focus has been on convex problems: the caktanstraint sets are assumed convex. The
algorithms are based on a combination of a consensus stepgéowith the lack of complete information)
and a projected (sub)gradient descent step. They assurneitinvar all agents use the same constraint
set [L], [14], [1g] or each agent has its own set of constrainits,[[20]. In this paper we do not make
any convexity assumptions on the cost and constraint fomstibut we assume they are continuously
differentiable. We propose two distributed, discrete-timemtigms that, under suitable assumptions on
the cost and constraint functions, guarantee convergenaddcal minimizer (at a linear rate), provided
that the initial values of the agents are close enough tocalfloninimizer and a dticiently small step-size
is used. The most interesting aspect of these algorithnisatshey are not heuristic algorithm$ut they
follow naturally from using a first order numerical methodstave the first order necessary conditions of
a lifted optimization problem with equality constraints; the smuatof our original problem is embedded
in the solution of this lifted optimization problem.

The paper is organized as following: in Sectibrwe formulate the constrained optimization problem
and introduce two distributed optimization algorithms fwlving this problem. Sectiotll presents
the origins of the algorithms by demonstrating that ouriahibptimization problem is equivalent to a
lifted optimization problem with equality constraints.clen IV introduces a set of results used for the
convergence analysis of the two algorithms; analysis &etan Sectionsv and VI. We end the paper
with some numerical examples and conclusions.

Notation and definitionsFor a matrixA, its (i, j) entry is denoted byAlj; and its transpose is given
by A'. If Ais a symmetric matrixA > 0 (A > 0) means tha# is positive (semi-positive) definite. The
nullspace and range & are denoted by Nulf) and Range}), respectively. The symbab is used to
represent the Kronecker product between two matrices. €htowr of all ones is denoted Wy Let x and
Q be a vector and a set of vectors, respectively.ByQ we understand the set of vectors produced by



addingx to each element o), that is,x+Q = {x+y | ye Q}. Let|-|| be a vector norm. Byix— Q|| we
denote the distance between the veot@nd the sel, that is,||x— Q|| = infyeqlIX—Vil. Let f : R" > R

be a function. We denote byf(x) and by V?f(x) the gradient and the Hessian bfat x, respectively.
Let F: R"xR™— R be a function of variablesx(y). The block descriptions of the gradient and of the
Hessian ofF at (x.y) are given byVF(x.y)' = (VxF(x.y)". VyF(xy)’), and

VEF(X.Y) Vin(x,y))
VZF(xy) VZF(xy) )’
respectively. Lel{Ai}i'il be a set of matrices. By diag( i = 1,...,N) we understand a block diagonal

matrix, where thé™" block matrix is given byA;. We say that the seX is anattractor for the dynamics
xk+1 = F(Xk), if there exists > 0, such that for anyg € S¢, with S, = {X | || X—X]| < €}, limk5 e || Xk—X]|| = 0.

VZF(x.Y) :(

[l. PROBLEM DESCRIPTION

In this section we describe the setup of our problem. We ptefast the communication model after
which we introduce the optimization model and the two disttéd optimization algorithms.

A. Communication model

A set of N agents interact with each other through communicationlémyomodeled as an undirected
communication graplg = (V,&), whereV ={1,2,...,N} is the set of nodes ané = {g;} is the set of
edges. An edge between two nodeand ] means that agenisand j can exchange information (or can
cooperate). We denote by; = {j | gj € &} the set of neighbors of agentand byL the Laplacian of the
graphgG defined as

—ljj j €N,
[L]ij =3 Zjenlij T=1, (2)
0 otherwise
wherelj; are positive scalars chosen a priori that can be interprasedieights put on the information
transmitted on the links,(j). Throughout the rest of the paper we are going to assumehataplacian
L is symmetric, that isljj = I ;.
Remark 2.1:Let N = Zi’11|_Ni|, where|-| denotes the cardinality of a set. For a symmetric Laplacian
L, there exits a matris € RNN so thatL = S’S and NulllL) = Null(S).
In the next sections we are going to make use of a set of piepast a (weighted) Laplacian of a
graph; properties that are grouped in the following remark.
Remark 2.2:The symmetric Laplaciah of a connected graph satisfies the following properties:
(a) The matrixL has only one eigenvalue zero and the corresponding eigemvied ;
(b) The nullspace ot is given by NullQ) = {y1 | y € R};
(c) LetL =L®l, wherel is the n-dimensional identity matrix. Then the nullspace lofis given by
Null(L) ={Il®x | xe R"};
(d) Letx be a vector irR™N. Then the orthogonal projection &fon Null(L’) is given byx, = Jx, where
J is the orthogonal projection matrix (operator) defined as

11’

J2
11

®l.




B. Optimization model
We consider a functiorf : R" — R expressed as a sum bif functions

N
0= %,
i=1

and a vector-valued functiom: R" — RN whereh 2 (hy,hy,...,hy)’, with N <n.
We make the following assumptions on the functidnandh and on the communication model.
Assumption 2.1:(a) The functionsf;(x) andh;(x), i=1,...,N are twice continuously tlierentiable;
(b) Agenti has knowledge of only function§(x) andhj(x), and scalars;j, for j € Nj;
(c) Agenti can exchange information only with agents belonging to #teo$ its neighborsV;;
(d) The communication grapg is connected and the Laplacidnof G is symmetric.
The common goal of the agents is to minimize the followingiraation problem with equality
constraints

(P1)  minkern  f(X),
subject to: h(x) =0,

under Assumption&.1 Through the rest of the paper we assume that probRmhas at least one local
minimizer.
Let x* be a local minimizer of R1) and let

Vh(x") 2 [Vhy(X"),Vha(X),...,Vhy (X)]

be a matrix whose columns are the gradients of the functlg(t9 computed atx*. The following
assumption is used to guarantee the uniqueness of the Igegranltiplier vectory™ appearing in the
first order necessary conditions d#;(, namely

Vf(x')+Vh(x")y* = 0.

Assumption 2.21et x* be a local minimizer of R1). The matrixVh(x*) is full rank, or equivalently,
the vectorgVh; (x*)}; are linearly independent.
Together with some additional assumptions ) and h(x), Assumption2.2 is also typically used to
prove local convergence of a first-order numerical methedsédving the first order necessary conditions
of (P1) (see for example Section 4.4.1, page 386 1Jj.[As we will see in the next sections, the same
assumption will be used to prove local convergence for tvabrituted algorithms used to solvBs|.

Remark 2.3:We assumed that each agent has an equality constraint ofypleehi(x) = 0. All the
results presented in what follows can be easily adaptedhercase where onlyn < N agents have
equality constraints.

C. Distributed algorithms

Let x* be a local minimizer of B1) and letx;x denote agent’s estimateof x*, at time-slotk. We
propose the following distributed algorithm to solve thelgem @;), referred henceforth as Algorithm

(A1):

Xiker = Xik—aV (%K) —auikVhi(Xik) - (3)
- OzZ(hjﬂi,k—hiﬂj,k), Xi0=X,
JEN
Hixer = pix+ahi(ig), pio=pd, (4)
Aiks1 = ﬂi,k+az|ij(xi,k—xj,k), dio= A, %)

JEN



wherea > 0 is the step-size of the algorithr¥i fi(x; k) andVhi(x k) denote the gradients of functiorfigx)
and hi(x), respectively, computed at, andx?, 10 and A° are given scalars. In addition, the positive
scalarsljj are the entries of the Laplacidnof the graphGg defined in ).

A modified version of the previous algorithm, called henciéflgorithm (A2) is given by:

Xikr1 = Xik—aVTi(Xik) —a|uik+chi(X k] Vhi(Xik)

= ac ) lij(xik=xiK) - Y (ljik=ljidix), Xo= X (6)
JEN JeN
Hixe1 = pix+ahi(xig), pio=pl, (7)
dike1 = Aix+a Z lij (X k= Xjx)s Aio= A2, (8)
JeN

where in addition to the parameters of Algorithi#y), we have a new positive parameterAs shown
later in the paper, the advantage of this algorithm is thaeduires weaker conditions to prove local
convergence, compared to AlgorithrAa].

In Algorithms (A1) and A2) the indexi (or j) designates an agent whikedenotes the discrete time.
It can be observed that the algorithms are indeed distidbsitece for updating its current estimatg,
agenti uses onlylocal information, that is, its own informationk, uik, dik, Vfi(Xi k) andVhi(x x)) and
information from its neighborsx{, 1jx, for j € Nj). Therefore, at each time instant, ageshares with
its neighbors the quantities x andljj k. In the case of AlgorithmA;y), equation 8) is comprised of a
standard gradient descent step and two additional ternt taseope with the local equality constraint
and the lack of complete information. The exact origin ofaguns @) and 6) will be made clear in the
next sections. Intuitively howeveg; x can be seen as the price paid by agefdr satisfying the local
equality constraint, whil@;  is the price paid by the same agent for having its estiratéar away from
the estimates of its neighbors. Compared to Algoriti#),( Algorithm (A2) adds two additional terms in
equation 6). These terms have their origin in the use of an augmentedabggn and ensure the local
convergence to a local minimizer under weaker conditioms tthe conditions used in the convergence
analysis of Algorithm Ap).

Remark 2.4:We made the assumption that the grgpls undirected. This assumption is in fact crucial
for the implementation of the algorithm84) and @A) in a distributed manner. Indeed, consider a directed
graph with three nodes, where the neighborhoods of the nades/; = {2}, N> = {3} and N3 ={1}. In
this case the non-weighted Laplacian of the graph is given by

1 -1 0 1 -1 -1
L= 0 1 -1]andl’=|{-1 1 0 |,
-1 0 1 0O -1 1

and the algorithmA;) becomes

Xikel = Xk —@[Ark—Azk] —aVi(Xyk) —aVhi(x1 k),
Xokt1 = Xek—a[dzk—Ark] —aVfa(x2k) —aVha(Xok),
X3ke1 = Xak—a[Azk—Azk] —aVf3(X3K) —aVhs(X3k),
Miksl = Mik+ahi(Xik),

Hok+1l = Hok+aha(Xok),

M3kl = p3k+ahs(X3k),

Arkrr = Ark+a[Xek— Xk,

Adoki1 = Aopk+alxek—Xs3kl,

A3p+1 = Azk+a[Xak—Xik]-



Note that although each agent can update its Lagrange mersipusing only information from its
neighbors, it cannot update its estimate since it requirEsmation from agents outside its neighborhood.
In the next sections we start building the infrastructurat tvill allow us to prove local convergence
of Algorithms (A1) and (A2). Specifically, in the case of AlgorithmA{) we will show that if the agents’
initial values are close enough to a local minimizéand the step-size is suficiently small, under some
conditions on functiond;(x) and h;j(x), all estimatess; x converge to the local minimizet*. In addition,
if we assume that is suficiently large, the agents executing Algorith#y) (locally) converge to a local
minimizer under weaker conditions oi(x) and h;(x), compared to AlgorithmA;). More importantly,
we will show that algorithmsAj;) and @A2) are not heuristic algorithmsbut they can be traced back
to solving alifted optimization problem with additional equality constraintvhose solutioembedshe
solution of the optimization problenfy).

I1l. AN EQUIVALENT OPTIMIZATION PROBLEM WITH EQUALITY CONSTRAINTS

In this section we define a lifted optimization problem, fravhose solution we can in fact extract
the solution of problemR7). As will be made clear in what follows, AlgorithmA{) comes as a result
of applying a first-order method to solve the first order nsags conditions of the lifted optimization
problem. In addition, AlgorithmAy) comes as a result of applying a first-order method to the daste
order necessary conditions, but expressed in terms of amentgd Lagrangian.

Let us define the functio : R"N — R given by

N
FO) = ) filx),
i=1

wherex’ = (X}, %),...,Xy), with x; € R". In addition we introduce the vector-valued functionsR"™N — RN
andg: R"N - R"N, where
h(x) = (h2(x), h2(x)......hn (X)),

with hi : R™ — R given byh;(x) = hi(x), and

9(x)" = (91(x)", G2(x)’; ..., an(X)"),
with gi : R"N — R" given by
gi(x) = Z lij (% = X;),
JEN;
whereljj are the entries of the Laplaciandefined in g). The vector valued functiog(x) can be compactly

expressed as
g(x) = Lx,

whereL = L®]I, with | the n-dimensional identity matrix.
We define the optimization problem

(P2) mingegpan  F(X), (9)
subject to: h(x) =0, (20)
g(x)=Lx =0. 11D

The Lagrangian function of probleniP{) is a function£: R"™ xRN x R™N — R, defined as
L(X,u,A) = FX)+u'h(x)+A'Lx. (12)

The following proposition states that by solving.] we solve in fact P1) as well, and vice-versa.
Proposition 3.1:Let Assumptiong2.1 hold. The vectorx® is a local minimizer of Py) if and only if
x*=1®Xx* is a local minimizer of Py).



Proof: Since the Laplaciar corresponds to a connected graph, according to Re&kc), the
nullspace ofL is given by NullL) = {1 ®x | xe R"}. From the equality constrainfi{), we get that any
local minimizerx* of (P,) must be of the fornx* = 1 ® x*, for somex* € R". Therefore, the solution of
(P2) must be searched in the set of vectors with structure giwer b 1 ® x. Applying this constraint,
the cost functionq) becomes

N
FO) = Y i) = f(x).
i=1

and the equality constrainl@) becomes
h(x) = h(x) =0,

which shows that we have recovered the optimization prokemi [ |

Remark 3.1:We note from the above proposition the importance of havingramected communication
topology. Indeed, iG is not connected, then the nullspacelofs much richer thafl ® x | xe R"}, and
therefore the solution ofR2) may not necessarily be of the forri = 1 ® X*. However, the fact that we
search for a solution ofRz) with this particular structure ifundamentafor showing the equivalence of
the two optimization problems.

V. AUXILIARY RESULTS

In this section we recall and prove a number of results comaegrthe optimization problems() and
(P2). They will be used for analyzing the local converging pmtigs of algorithms A;) and Ao).

The next proposition recalls a well known result on the proee of the tangent cone to the constraint
set at a local minimizer ofHy).

Proposition 4.1: Let Assumption2.1-(a) and2.2 hold, let x* be a local minimizer of ;) and letQ
denote the constraint set, that = {x | h(x) = 0}. Then the tangent cone 1@ at x* is given by

TC(X", Q) = Null (Vh(x"Y'),

where
Vh(x*) 2 [Vhy(X"),Vha(X),...,Vhy (X)].

Let x* = 1® X" denote a local minimizer ofR) and letVh(x*) denote the matrix
Vh(x*) £ [Vhy(x"), Vha(x"),..., Vhn(X)].

The vectorsvh;(x*) are the gradients of the functiohg(x) at x* with a structure given by

Vhi(x*)' =
-10,...,0,...,0,...,0, Vhi(x*) .0,....,0,...,0,....0|, (13)
—— —_—— —— —— ——
n zeros N Zeros jth component N Zeros n zeros

as per the definition of the functidm(x).
The second result of this section is concerned with the padls of the matrixVh(x*),L"], which will
be used to characterize the tangent cone at a local minirafzg®,).
Proposition 4.2: Let Assumption®2.1 and 2.2 hold. The nullspace of the matrp¥h(x*),L’] is given
by
Null ([Vh(x*),L"]) = {(0".v')’ | v e Null(L")}.

Proof: Let ue RN andv e R"N be two vectors. To characterize the nullspac¢Wf(x*),L’] we need
to check for what values af andv the equation

Vh(x*)Ju+L'v=0 (14)



is satisfied. Using the definition &fh;(x*) shown in (L3), equation {4) can be equivalently written as
Vh (X)u; + Z ('ijVi —|jiVj) =0,i=1...,N,
JeN;
whereu; are the entries ofi andv; are n-dimensional sub-vectors of
Summing the above equations ovewe obtain that

N
Z uiVhi(x") =0,
=

and sinceVh(x*) is assumed full rank we must have thet 0 and the result follows. [ ]
We now have all the machinery necessary to characterizeatigeeit cone at a local minimizer d?y).

Proposition 4.3: Let Assumption®.1-(a) and2.2 hold, letx* = 1® X* be a local minimizer ofP2) and
let Q denote the constraint set, that 8,= {x | h(x) = 0,Lx = 0}. Then the tangent cone @ at x* is
given by

TC(x",Q) = Null ([Vh(x"),L']') =

={1®z| ze Null(Vh(x")") = TC(X",Q)}.

Proof: All we have to show is that any vector in N({]Vh(x*),L’]’) belongs to Tqx*,Q) as well,
since it is well known that (the closure of the convex hull € (x*, Q) is included in NuI([Vh(x*),L’]').
Let u be a vector in Nulﬂ[Vh(x*),L’]’) and therefore it must satisfy

Vh(x*)’'u=0 andLu =0. (15)

From the second equation of5), u must be of the formu = 1 ®u, for someu € R". From the first
equation of 15), using the definition oVh;(x*) in (13) together with the particular structure af we
obtain that

Vh(xX')u=0Vi=1,...,N,

or equivalently
u € Null (Vh(x")").

We need to show that a vectar= 1 ®u, with ue Null (Vh(x")") belongs to Tx*, Q). More explicitly,
using the definition of the tangent cone, we must find a funatioR — R"N, with Iimt_)o,t>o$ =0, so
that

X*+tu+o(t) e Q Vt> 0.

Choosingo(t) = 1®o(t), whereo: R — R" is a function so that Iimo,t>0$ =0, we note that
g(x* +tu+0(t)) =0 ¥Vt >0,
and therefore, all we are left to do is to check that
h(x* +tu+o(t)) =0 Vt> 0, (16)
as well. Making the observation that +tu+o(t) = 1 ® (X* + tu+o(t)), (16) is equivalent to showing that
h(x" +tu+o(t)) =0 Vvt > 0. a7)

However, we showed previously thate Null (Vh(x*)’), and therefore by Propositioh2 ue T C(x",Q),
as well. Therefore there exits a functioft) so that (7) is satisfied, which shows that indeed

TC(x".€) = Null ([Vh(x*),L']).



and consequently TQ*, Q) is a closed and convex subspace. [ ]

Let x* =1 ®x" denote a local minimizer ofR>). From the theory concerning optimization problems
with equality constraints (see for example Chapter 3, pagefI21], or Chapter 3, page 253 of]), the
first order necessary conditions fd?y) ensure the existence af € R, u* € RN and A* € R"™N so that

AVF(X) + Vh(X")u™ + Vg(x") A" =
= AgVF(X") + Vh(X")u" +L"2" = 0.

Note that sincel is not full rank, and therefore the matr[¥h(x*),L’] is not full rank as well, the
uniqueness oft* and A* cannot be guaranteed. The following result characteriesset of Lagrange
multipliers verifying the first order necessary conditiafgP).

Proposition 4.4 (first order necessary conditions {&%)): Let Assumption2.1 and 2.2 hold and let
x*=1®x" be a local minimizer for problemPg). There exist unique vectogs’ and A* € Rangell) so
that

VF(X") + Vh(x*)u* +L’'2=0,

for all Ae{A*+A, | A, e Null(L")}.

Proof: By Lemma 1 , page 50 of §1] we have thaWF(x*) is orthogonal on T(x*, Q) and therefore,
by Propositiond.3 VF(x*) must belong to Randgvh(x*),L’]). Consequently, there exist the vectpr's
and A so that

—VF(X*) = Vh(x*)u" +L’A. (18)

Noting thatR"N can be written as a direct sum between the nullspade’ aind the range ok, there
exist the orthogonal vectos € RangdL) andA, € Null(L’) so thatd = A"+ A, . Note that we can replace
/lL by any vector in Nul{L’) and (8) still holds. The only thing left to do is to prove the uniqess of
p* and 2*. We use a contradiction argument. et and 1 # A* with 1€ RangdL) be two vectors so
that (L8) is satisfied. Hence we have that

—VF(x*) = Vh(x")u* +L’A* and — VF(X*) = Vh(x*)ji+ L',
and therefore
0=Vh(x*)(u" i) +L’ (1" - 2).
By Proposition4.2 we have that
Null ([Vh(x*),L"]) = {(0".v')" | ve Null (L")},

and thereforg:* = i and A* = A sinceA* — 1 € RangdL), and the result follows. [ |
Under the assumption that the mati(x*) is full rank, the first order necessary conditions Bf X
are given by

V(X)) +Vh(xX)y* =0,
h(x*) =0,

where the vectoy™ is unique (see for example Proposition 3.3.1, page 285, An interesting question
is whether or not there is a connection betw@érand u* shown in the first order necessary conditions
of (P2). As proved in the following, the two vectors are in fact equa

Proposition 4.5: Let Assumption®.1and2.2 hold, letx* = 1® x* be a local minimizer of ;) and let
Y andu® be the unique Lagrange multiplier vectors correspondiniipéofirst order necessary conditions
of (P1) and P»), respectively. Thew™ = u*.

IThe result states that given a local minimizérof a function f(x), W'V f(x*) > 0 for all he TC(x*,Q). When TC(x*,Q) is a (closed,
convex) subspace, orthogonality follows.
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Proof: By Proposition4.4, there exist two unique vect@gr* and A* € Rangel.) so that
VFE(X") + Vh(x*)u" +L’2" = 0.
Using the structure oVF(x*), h(x*) andL’, the above equation can be equivalently expressed as
VA + Vi) + > (i =154), i=1,...N, (19)
JEN
wherey; are the scalar entries pf andA; are then-dimensional sub-vectors df. Summing up equations
(19) overi, we obtain

ZN:Vfi(X*) + thi(X*)ui* - 0.
i=1 i=1

Equivalently,
V(X)) + Vh(X*)u* =0,

which is just the first order necessary condition f&%)( But sinceu™ must be unique, it follows that
”* — l//* [ |
The convergence properties of algorithmg)(and A2) depend on the spectral properties of a particular
matrix; properties analyzed in the following result.
Lemma 4.1:Let Assumption®.1and2.2hold, leta be a positive scalar, and It be a local minimizer
of (P2). Then the eigenvalues of the matrix

H  Vhx) L’
B:[—Vh(x*)' 0 0 ]
-L o i
11’

have positive real parts, wheke¢ is a positive definite matrix and= 373 ®1.

Proof: Let 8 be an eigenvalue dB and let(u’,v’,Z’)" # 0 be the corresponding eigenvector, where
u, v andz are complex vectors of appropriate dimensions. Denotingi,by and Z the conjugates of,
v and z, respectively we have

u
Re) (Ilull®+IVI> +112I1%) = Re{(a’,vcz’)s[ v ]} =, (20)

z

1
Re{O'Hu +0'L'z-=Z'Lu +0'Vh(X*)v = V' Vh(x*)'u + 2’—Jz}
04

. 1
= Re{uTHu +z’—Jz}.
o

SinceJ = %’@I is a semi-positive definite matrix artd is positive definite we have that
Re) (IIull?+ IvI*+1zI*) > O,
as long asu # 0 or z¢ Rangel) and therefore Rg] > 0. In the casas =0 andz € Rangell) we get

THEH

Vh(x*)v+L’z=0.

But from Proposition4.2, we have thatv = 0 andz € Null(L”) and sincez € Rangell) as well, it must
be thatz = 0. Hence we have a contradiction since we assumedthat’,z’) # 0’ and therefore the real
part of 3 must be positive. In addition, it can be easily checked thatmatrixB hasn eigenvalues equal
to % and their corresponding eigenspacd(®,0,2') | ze Null (L")}. [ |

from where we obtain
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V. CONVERGENCE ANALYSIS OF ALGORITHM (A1)

In this section we analyze the convergence properties obitgm (A;). Since the matrixk is not full
rank, we cannot apply directly existing results for regylacal) minimizers, such as Proposition 4.4.2,
page 388, ]. Still, for a local minimizer and Lagrange multipliers pdx*,u*, 2*), with A* € RangeL),
we show that if the initial value$xo,uo, (I —J)Ap) are close enough tox{(,u*,1*), for a small enough
step-size and under some conditions on (the Hessians ofuttations fj(x) and hj(x), i = 1,...,N, the
vectorsxx and ux do indeed converge t&* and u*, respectively. However, although under the same
conditionsAx does converge, it cannot be guaranteed that it convergdgetartiqued* € Rangel) but
rather to a point in the sd¢fl* + Null (L”)}.

To find a solution of problemR?>) the first thing we can think about is solving the set of neasss
conditions:

VF(X)+LTA+Vh(X)u = O, (21)
h(x) = 0, (22)
Lx = O. (23)

Solving 1)-(23) does not guarantee finding local minimizer, but at leasy #r®@ among the solutions
of the above nonlinear system of equations. An approachdiming (21)-(23) consists of using a first
order method (see for instance Section 4.4.1, page 386,Which is given by

Xke1 = Xk—a[VF(Xk) + Vh(Xiuk+L ], (24)
Hks1 = Mkt ah(Xg), (25)
A1 = A+alxy, (26)

wherea > 0 is chosen to ensure the stability of the algorithm. By mefaiating the above iteration in
terms of then-dimensional components of the vectogsand Ax, and in terms of the scalar components
of the vectorug, we recover Algorithm A1), which shows thealistributedand non-heuristicnature of the
algorithm.

The following theorem addresses the local convergenceeptiep of Algorithm A;), which, under
some assumptions on the functiofi$x) and hj(x), states that provided the initial values used in the
Algorithm (A1) are close enough to a solution of the first order necessargiwons of ,), and a small
enough step-size is used, the sequendéry, ux, Ak} converges to this solution.

Theorem 5.1:Let Assumptions2.1 and 2.2 hold and let(x*,u*,A*) with 2* € Rangel), be a local
minimizer-Lagrange multipliers pair oPg). Assume also tha¥, £ (x*,u*,2*) is positive definite. Then
there exitsa, such that for alle € (0,a], the set(x*,u*,2* + Null(L")) is an attractor of iteration2)-
(26) and if the sequenc, uk, Ak} converges to the séx*, u*, 4" + Null (L”)), the rate of convergence of
Ik = X", Il — 1l @and || A = [A* + Null (L")]|| is linear.

Proof: Using the Lagrangian function defined b2, iteration @4)-(26) can be equivalently expressed

Xk+1
Hk+1

/lk+ 1

as

= M o (Xk» 1k AK), (27)

with
_ X —aVyL(X,u,A)
Mo (X,u, ) = ( u+aVL(X,u,A) )
A+aV L p,A)

It can be easily checked th@t",u*, 4" +Null (L") is a set of fixed points oM,. Let us now consider
the transformationl = (I —J) A, whered = %@I. This transformation extracts the projection.obn the
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nullspace ofL’ from A and thereforel is the error betweer and its orthogonal projection on Ngll”).
Under this transformation, iteratio27) becomes

Xk+1
Hk+1

/lk+ 1

= Mo (Xk» 1 Ak)

with ~
) X—aVyL(X,p,A)
Mo, ) =|  p+aVuLix,p,d) |,
(I =) A+ aV3L(X, 1, )

where we used the fact thdt4J)A = (1 =J)A andL’J = JL = 0. Clearly (x*, u*, 2*) is a fixed point forM ,
and if(xk,uk,/lk) converges t@x*, u*, A*), we in fact show thafx, ux, Ax) converges t@x*, u*, 2" + Null (L")).
The derivative of the mappingM,, (x,u, ) at (x*,u*,A*) is given by

VM, (X, 1, %) = | —aB,
where

B=|  —-Vhx 0 0

-L o I

By Lemma4.1 we have that the real parts of the eigenvaluedBaddre positive and therefore we can
find ana so that for alla € (0.a] the eigenvalues oVM,, (x*,u*,A*) are strictly within the unit circle.
Using a similar argument as in Proposition 4.4.1, page 397tHere exist a nornfi-|| and a spher&, =
{(x’,y’,/l’)’ |, )Y = (X1, %) || < e} for somee > 0 so that the induced norm &M, (x,u, A) is
less than one within the sphef&. Therefore, using the mean value theorem, it follows tHat(x, u, 1)
is a contraction map for any vector in the sphé&e By invoking the contraction map theorem (see for
example Chapter 7 of7]) it follows that (xk,uk,/lk) converges tdx*,u*,A*) for any initial value inS..

[ |

Let us know reformulate the above theorem so that the locatargence result can be applied to
problem @1).

Corollary 5.1: Let Assumption2.1 and2.2 hold and let(x*,y*) be a local minimizer-Lagrange mul-
tiplier pair of (P1). Assume also tha¥? fi(x*)+¢;“V2hi(x*) are positive definite for ali=1,...,N. Then
there exitsa, such that for allkr € (0,a], (X*,¢*) is a point of attraction for iteration3j and @), for all
i=1,...,N, and if the sequenck x, uik} converges tqx*,y*), then the rate of convergence |p§ x — X'||
and ||ui k — ¥ is linear.

Proof: By Proposition3.1 we have thak* = 1 ® x* is a local minimizer of P2) with corresponding
Lagrange multipliergu*, A* + Null (L)), with 2* € RangdL). In addition, by Propositiod.5we have that
u* =y*. Using the definition of the Lagrangian function introduded12), we discover that

VAL p*, A7) = diag(V2i(x") +; V2hi(x).i = L.....N).

V2,.L(X*,u*, A¥)  Vh(x*) L'}

But since we assumed th&f f;(x*) +y; V2hi(x*) > 0 for all i, it follows that Vi, £ (x*,u*,4*) > 0 as well.
Using Theorenb.1, the result follows. [ |

Remark 5.1:In the previous corollary the matricé& fi(x*)+¢;“V2hi(x*) were assumed to be positive
definite for alli =1,...,N. If we apply directly results from the optimization liteva¢ (see for instance
Proposition 4.4.2, page 388]]] concerning convergence of first-order methods used topceniocal
minimizers and their corresponding Lagrange multiplieve, only requirezi’ilvzfi(x*)+wi*V2hi(x*) to
be positive definite, and not each element of the sum. Obljidhe assumption in Corollar$.1 does
imply the latter, but is not necessary. It appears that tbditimnal constraint onfj(x) and h;(x) is the
price paid for being able to prove local convergence of ttstrithuted algorithm.
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VI. CONVERGENCE ANALYSIS OF ALGORITHM (Ap)

In the previous section we gavefBaient conditions for local convergence to a local minimiaemg
Algorithm (A;). By using an augmented Lagrangian on probldta),( we reformulate the first order
necessary conditions folP§). Applying as in the case of AlgorithmA{) a first order method to solve
the reformulated first order necessary conditions, we olafgorithm @y), for which local convergence
can be proven under more relaxed conditions than in the dagéorithm (Aq).

Let S be a matrix as in Remark.1 and letS= S]. It follows thatL = S'S. We define the following
augmented Lagrangian for problerfyf:

Lot 2) = F(X) + @/ h(x) + XL + g||h(x)||2 ; gx’S’Sx, (28)
wherec is a positive scalar. The gradient and the Hessia gk, u, 1) are given by
VuLc(X, 1, A) = VF(X) + Vh(x)u + L’ 2+ cVh(X)h(x) + cLx, (29)
and \
Vi Le(Xopt, A) = VZF(X)+ Y piV2hi(x) +cL+
i=1

N

+¢ ) (NiE)V2hi(x) + Vhi()Vhi(x)'), (30)
i=1

respectively. Note that in the additional quadratic costdeenot includex’L’Lx butx’Lx, since doing so
would prevent the distributed implementation of the firsddlesrmethod. It turns out that the introduction
of X’Lx is enough to obtain the desired behavior of the HeSSBL (X", u*, 1*).

Let (x*,u*,2*), with * € Rangell) be a local minimizer-Lagrange multipliers pair d?2). Then the
gradient and the Hessian d.(x,u, ) computed a(x*,u*,A1*) are given by

VX£C(X*’”*’/"*) = VXL(X*’”*’/"*) = 03 (31)
and N
V2 Lo(X 1", %) = VE(X') + Z wiV2hi(X*) + cVh(x*)Vh(x*)’ +cS'S. (32)
i=1
The first order necessary conditions fé), reformulated in terms of’¢(x,u, 1) become

VFE(X) + Vh(X)u + L’ A+ cVh(x)h(x) + cLx =0, (33)

Vh(x) =0, (34)

Lx =0. (35)

A first order numerical method that can be used to solve thessacy conditions3@)-(35) takes the form

Xir1 = Xe—a[VF(Xi) + Vh(Xi)p+

+ cVh(xk)h(xk) + L’ A+ cLxy], (36)

Hie1 = pcctah(Xi), (37)

A1 = A+alxy, (38)

which is basically the compact form of Algorithmi{).

The following result addresses the local converges prigsedf the iteration 36)-(38).

Theorem 6.1:Let Assumptions2.1 and 2.2 hold and let(x*,u*,2*) with 2* € Rangel), be a local
minimizer-Lagrange multipliers pair oPg). Assume also that' V2, £ (x*,u*, 1) x> 0 for all x e TC(x*, ).
Then there exist€ > 0 so that for allc > ¢ we can finda(c) such that for alla € (0,a(c)], the set
(x*,pu*, A+ Null (L")) is an attractor of iteratior3g)-(38). In addition, if the sequende, ux, Ak} converges
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to the set(x*,u*, 2" + Null (L"), the rate of convergence i —x"[|, ik — || and || — [A* + Null (L)]|
is linear.

Proof: First note that the assumption on the Hessiad ¢f, i, 1) basically means that* is a strictly
local minimizer of P2). Proceeding as in the case of the proof of Theofefn iteration 36)-(38) can
be compactly expressed as

Xk+1
( Hk+1

/lk+ 1

= M q.c(Xks 1k AK) (39)

with
o X— an.Ec(X,IJ,/l)
M (l,C(X,IJ, /l) = H + av‘uLC(X’IJ’ /l) )
A+ a/V/ILC(X’”? /l)’

or, expressing38) in terms of the error betweely and its projection on Nu(L’), we further have

Xk+1
Hk+1

Ak+1

= M g.c(Xko ik, Ak)

with ~
- X—= QVXLC(X?”’ /3)
MocXp,A)=|  p+aVyLc(X,p,d) |,
(1 =3 A+ aV;L(X u, )
and A = (I = J)A. Clearly (x*,u*, 2*) is a fixed point forM «.c and we have that
VM g c (X", 1", %) = | —aBe,

where

Be = —Vh(x*) 0 0

-L 0o 1
Since Null§) = Null(L), it can be easily checked that N(Vh(x*),L"]") = Null ([Vh(x"),S']'). Using the

assumption that' V2, £ (x",u*,2*)x > 0 for all x e TC(x*,€) = Null ([Vh(x*),L']’), together with the fact
that

ViLe (X, 1", 2%)  Vh(x) L’]

V2 Lo (X 1", %) = V2, L(X*, 1", 27) + cVh(x")Vh(x*)’ +cS'S,

it is shown in [] that there exists a positive scalasuch thatv2, £ (x*,u*,2*) > 0 for all ¢ > ¢. Therefore,
according to Lemmat.1, the real parts of the eigenvalues B are positive and consequently we can
find an a(c) so that for alla € (0,a(c)] the eigenvalues oVM,, ¢ (X*,u*, A*) are strictly within the unit
circle. Mimicking the last part of the proof of Theorehl, we find thatM, ¢ (x,u, 1) is a contraction
map within a sphere centered (at, u*,2*), and the result follows from the contraction map theoremn.

The following corollary gives conditions that ensure locahvergence to a local minimizer dP{) for
each agent following AlgorithmAp).

Corollary 6.1: Let Assumption2.1 and2.2 hold and let(x*,%*) be a local minimizer-Lagrange multi-
plier pair of (P1). Assume also that’ |V2fi(x*) + ¢} V2hi(x*) x> O for all xe TC(x*, Q). Then there exits
c > 0 so that for allc > ¢ we can finda(c) such that for alle € (0,a(c)], (x*,¥*) is a point of attraction
for iteration @)-(8), for all i = 1,...,N. In addition, if the sequencf; k,uik} converges tdx*,y*), then
the rate of convergence ¢k — x*|| and ||uik— || is linear.

Proof: By Proposition3.1 we have thak* = 1 ® x* is a local minimizer of P2) with corresponding
Lagrange multipliergu*, A* +Null (L)), with A* € Rang€L ). In addition, by Propositiod.5we have that
p* =y*. Using the definition of the Lagrangian function introduged12), we have

V2 L(K 1 A) = diag(V2(x') + 4 V2hi(x).i = L.....N).
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In Proposition4.3 we showed that
TC(X*,Q)={1®z| ze TC(X",Q)},
and therefore the assumptioxh[V2 fi (X*) +wi*V2hi (x*)] x> 0 for all xe TC(x*,Q) is equivalent to
X'V2, L (X", 1", ) x > 0 ¥x € TC(X*, Q).

Using Theoren®t.1, the result follows. [ |
Remark 6.1:Algorithms (A1) and @A2) are part of the general class of methods, called Lagrangian
methods (see for example Section 4.4.1, page 33, They are based on a first order method, and
therefore they achieve a linear rate of convergence. The@gattion literature includes more sophisticated
methods for solving constrained optimization problemshsas the multipliers methods or the sequential
guadratic programming methods (see for instange] B]); methods that can achieve superior convergence
rates. They are based on a sequence of unconstrained mationiproblems that in our case would need
to be solved at each iteration in a distributed manner. lerotords, unlike AlgorithmsA;) and @),
they have two layers of iterations: one layer is used to cdmthe estimate of the minimizer while the
second one is used to update the Lagrange multipliers, @sithg the approach introduced in this paper
(that is, minimizing the lifted constrained optimizatioroplem), it turns out that each of the unconstrained
optimization problems can be solved in a distributed manfais is mainly due to the separability of the
augmented Lagrangia2§). We are currently working on extending the augmented Lagjesn method
so that it can be implemented in a distributed manner. Thensidn of the method is based on dealing
with the fact that the Lagrange multipliers correspondimghte equality constrairitx = 0 are not unique
and therefore, the (local) minimizer is not regular.

VII. N UMERICAL EXAMPLE

In this section we test our algorithm on an distributed opaton problem with equality constraints.
Figure 1 shows a flow network, where each node is an agent having taeeci the values of the in
and out flows so that so that the demanldsand d, ate the end nodes are met. Each agent has a local
cost function and the flows must be computed so that the surheofotal cost functions is minimized.

In addition, the flows must satisfy the conservation of floews.|The local cost and constraint functions
are shown in Tablé.

TABLE [: Cost and equality constraint functions

Local cost functions| Local equality constraint functions
f1(¥) = X' Q1x h1(X) = X1 — X4 = X5

f2(%) = X' Qax ha(X) = X2 — X6 — X7

f3(x) = X' Q3x h3(X) = X3 — Xg— X9

f4(x) = X' Qgx h4(X) = X5+ X — X10

f5(x) = X' Qsx hs(X) = X7 +Xg— X11

fo(X) = X' Qex he(X) = X10— X12— X13

f7(X) = X' Q7x h7(X) = X11— X14— X15

fg(X) = X' Qgx hg(X) = X1 + X12— X16

fg(x) = X' Qgx ho(X) = X13+ X14— X17— X18
f1o(X) = X' Q10X h10(X) = Xg + X15— X19
f11(X) = X' Q11X h11(X) = X6+ 17—y
f12(X) = X' Q12X h12(X) = X18+ X19— o

The (undirected) communication network follows with fidglihe flow network and is shown in Figure
2. The matrice); in the cost functions are defined @ = diag{;), where the entries of the vectarare
defined as follows: if; is an irfout flow of nodei, thenvi; = Vimin, otherwisevij = Vmax, With Vmin < Vmax-

Figure3 shows the numerical simulation of AlgorithrAy) for @ = 0.025,Vmin = 1 andvmax= 50. For the
numerical simulation we used the non-weighted Laplaciathefgraph shown in Figur2 For each agent
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Fig. 2: Communication network

we plot the distance between the current estinxgteand the minimizex*. The numerical simulations do
show that these quantities converge to zero and reflectsréisemce of complex eigenvalues of the matrix
B, defined in 4.1). Next, we test the influence of the spectral properties ef rthatrix L, which are a
reflection of the connectivity of the communication graplte Werease the eigenvaluesloby multiplying

the matrix with a positive scalar. Figudeshows the results produced by Algorithdy ] when 2Q is used

as Laplacian. Larger eigenvalues of the Laplacian induoesi¢ed for smaller values of the step-siz®
preserve the stability of the algorithm (and hence moraiitens to achieve convergence).We note that the
guantities plotted are considerably closer compared tditbienumerical simulations. This phenomenon
was observed again when we increased the value of the comstatiplying the Laplacian from 20 to
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Fig. 3: Simulation of Algorithm A1) for @ = 0.025, Vmin = 1, Vmax= 50 and Laplacian L.

40, as shown in FigurB. An intuitive explanation for this phenomenon is that thisrenore “weight” put

on the dynamics reflecting the constraint that forces thenasts to have the same value. In other words,
the values of the estimates tend to converge to a common Yadter than the convergence rate to the
minimizer. A similar phenomenon was observed in the casbetonsensus-based distributed algorithms,

when the connectivity of the graph is improved (by making sleeond largest eigenvalue (in modulus)
of the stochastic matrix small).

25

N

S 15

i — i = 1

0.5

0 100 200 300 400 500 600 700 800 900 1000

Fig. 4. Simulation of Algorithm A1) for @ = 0.001, Vmin = 1, Vmax= 40 and Laplacian 20

Figures6, 7 and 8 present numerical simulations of Algorithmy) under similar parameters used in
the numerical simulations of AlgorithmAg).
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Fig. 5: Simulation of Algorithm A1) for @ = 0.0002,Vnmin = 1, Vmax= 40 and Laplacian 40
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Fig. 6: Simulation of Algorithm A2) for a = 0.025, Vmin = 1, Vmax = 50, LaplacianL andc = 20.

VIII. CoNcLUSIONS

We presented two multi-agent distributed algorithm forvsa a particular type of optimization prob-
lems with equality constraints. In this problem, the costchion is expressed as a sum of functions
and each agent is aware of only one function of the sum and teagwin local equality constraint.
We demonstrated the non-heuristic nature of the algoritbgnshowing that they came as a result of
applying a first order numerical method to solve the first praessary conditions of a lifted optimization
problem; optimization problem whose solution embeds thatiem of our original problem. In addition, we
presented a convergence analysis of the two algorithmsarelsygificient conditions for local convergence.
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Fig. 7. Simulation of Algorithm A1) for @ = 0.001, vimin = 1, Vmax = 40, Laplacian 20 andc = 20.
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Fig. 8: Simulation of Algorithm ) for a = 0.0002,Vmin = 1, Vmax = 40, Laplacian 40 and c = 40.
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