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Abstract

In this paper we introduce a discrete-time, distributed optimization algorithm executed by a set of agents
whose interactions are subject to a communication graph. The algorithm can be applied to optimization costs that
are expressed as sums of functions, where each function is associated to an agent. The algorithm can be applied
to continuously differentiable cost functions, it is not consensus-based and isderived naturally by solving the first
order necessary conditions of a lifted optimization problem with equality constraints. We show that, provided the
agents’ initial values are sufficiently closed to a local minimizer and the step-size is sufficiently small, each agent
converges to the local minimizer at a linear rate. In addition, we revisit two popular consensus-based distributed
optimization algorithms and give sufficient conditions so that there use is extended to non-convexfunctions as well.
We take a closer look at their rate of convergence and also show that unlike our algorithm, for a constant step-size,
the consensus-based algorithms do not converge to a local minimizer even though the agents start close enough to
the local minimizer.

I. Introduction

Recent years’ technological advances in wireless networksre-fueled the interest of the research com-
munity in applications where complex tasks are executed over large networks, by a large set of agents.
Such applications can include autonomous/unmanned vehicles, parallel computing, sensor networks for
monitoring and tracking, and so on. The execution of these applications over large networks makes a
centralized coordination unfeasible. As a consequence, researchers have looked for distributed strategies
where, although agent make decisions based on limited information, the overall result is comparable with
the result obtained had a centralized strategy been used.

Multi-agent distributed optimization problems appear naturally in many distributed applications such
as network resource allocation, collaborative control, estimation and identification, and so on. In these
type of applications a group of agents has as common goal the optimization of a cost function under
limited information and resources. The limited information may be induced by the fact that an agent can
communicate with only a subset of the total set of agents, or/and by the fact that an agent is aware of
only a part of the cost function or constraint sets.

A particular formulation of a distributed optimization problem refers to the case where the optimization
cost is expressed as a sum of functions and each function in the sum corresponds to an agent. In this
formulation the agents interact with each other subject to acommunication network, usually modeled as
a directed/undirected graph. This formulation is often found in resource allocation for wireless networks
problems [12] or in finite horizon optimal control problems with separable cost functions [2].

A first distributed algorithm for solving an optimization problem of the type described above was
introduced in [11]. The algorithm, referred to as “distributed subgradient method”, is used to minimize a
convex function expressed as a sum of convex functions:

min
x

N
∑

i=1

fi(x).

In this algorithm, in addition to the standard (sub)gradient step, each agent executes a consensus step to
deal with lack of complete information on the cost function,and is given by:

xi,k+1 =

N
∑

j=1

ai j x j,k−αi,kdi,k, (1)
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where the indicesi (or j) and k refer to agents and discrete time, respectively,ai j are the entries of a
stochastic matrix whose structure depends on the communication graph,di,k is the (sub)gradient of the
function fi(x), computed atxi,k, andαi,k is the step-size of the (sub)gradient descent step. Under suitable
assumptions on the step-size, the cost functions and the entries of the stochastic matrix, it is shown in
[11] that iteration (1) indeed converges to a minimizer.

Many subsequent versions of this algorithm appeared in the literature. The introduction of communica-
tion noise and errors on subgradients was addressed in [10], [13], while the case where the communication
network is modeled as a random graph was treated in [7], [9]. Analyses of asynchronous versions of the
algorithm can be found in [10], [15]. A further extension was proposed in [8], where the authors considered
state-dependent communication topologies.

A modified version of the distributed subgradient method wasintroduced in [5], [6], where the authors
change the order in which the two operations of the algorithmare performed. More specifically, first the
subgradient descent step is executed, followed by the consensus step, and takes the form

xi,k+1 =

N
∑

j=1

(

ai j x j,k−α j,kd j,k

)

.

The algorithms discussed above became popular in the signalprocessing community as well, being used
for solving distributed filtering and parameter identification problems [3], [14].

In this paper we study a distributed optimization problem similar to the formulation proposed in [11],
namely the goal is to minimize a function expressed as a sum offunctions, where each function in
the sum is associated to an agent. We do not make any convexityassumptions on the functions, but
we assume they are continuously differentiable. We propose a distributed, discrete-time algorithm that
guarantees convergence to a local minimizer (at a linear rate), provided that the initial values of the
agents are close enough to the minimizer and a sufficiently small step-size is used. The most interesting
aspect of this algorithm is thatit is not a heuristic algorithm, but follows naturally from solving alifted
optimization problem with equality constraints, that can be prove to be equivalent (in a sense discussed
later) with the original optimization problem. Specifically, the algorithm comes as a result of applying
a first order method to solve a set of equations representing the first order necessary conditions of the
lifted optimization problem. In addition, we revisit the consensus-based distributed optimization algorithm
introduced in [11] and [6] and provide sufficient conditions so that their use is extended to non-convex
functions as well. We show that if a constant step-size is used, unlike our algorithm, these consensus-based
algorithms do not guarantee convergence to a local minimizer, even in the case where the initial values of
the agents are close enough to the minimizer and a sufficiently small step-size is used, so that the stability
of the algorithms is ensured. Moreover, we take a closer lookto their rate of convergence.

The paper is organized as following: in SectionII we describe the setup of the optimization problem and
introduce a distributed optimization algorithm to solve it. SectionIII presents the idea behind our algorithm,
by connecting the algorithm with solving a lifted optimization problem equivalent to the original problem.
In SectionIV we state and prove a number of auxiliary results used for the local convergence analysis of
the algorithm; analysis shown in SectionV. SectionVI takes a closer look at the convergence properties
of the algorithm and qualitatively connects the connectivity of the network with the rate of convergence of
the algorithm. In SectionVII we revisit two popular consensus-based distributed optimization algorithms,
for which we give sufficient conditions for stability that can be used even when thecost functions are
non-convex. We end the paper with some numerical simulations and conclusions.

Notation and definitions: For a matrixA, an entry (i, j) of this matrix is denoted by [A] i j . If A is a
symmetric matrix,A≻ 0 (A� 0) means thatA is positive (semi-positive) definite. The symbol⊗ denotes
the Kronecker product. IfA is a matrix, Null(A) and Range(A) refer to the nullspace and range ofA,
respectively. The vector of all ones is denoted by1. The set of eigenvalues of a matrixA∈Rn×n is denoted
by σ(A) =

{

σ1,A,σ2,A, . . . ,σn,A
}

, whereσi,A ≤ σ j,A if i < j. Given a vectorx, a open ball aroundx∗ of size
ǫ is denoted byB(x∗, ǫ) , {x | ‖x− x∗‖ < ǫ} while a closed ball is denoted byBc(x∗, ǫ) , {x | ‖x− x∗‖ ≤ ǫ}.
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Let S be a set of vectors. Byx+S we understand the set of vector produced by addingx to each element
of S, that is,x+S, {x+y | y∈S}. Let ‖ · ‖ be a vector norm,x a vector andS a set of vectors. By‖x−S‖
we denote the distance between the vectorx and the setS, that is,‖x−S‖ , infy∈S ‖x−y‖. Let f : Rn→R

be a function. We denote by∇ f (x) and by∇2 f (x) the gradient and the Hessian off at x, respectively.
Let {Ai}Ni=1 be a set of matrices. By diag(Ai , i = 1, . . . ,N) we understand a block diagonal matrix, where
the ith block matrix is given byAi . We say that the setX is an attractor for the dynamicsxk+1 = f (xk),
if there existsǫ > 0 so that for anyx0 ∈ Sǫ, with Sǫ = {x | ‖x−X‖ < ǫ}, limk→∞ ‖xk−X‖ = 0.

II. Problem description

In this section we describe the setup of our problem. We present first the communication model after
which we introduce the optimization model and the distributed optimization algorithm.

A. Communication model

A set of N agents interact with each through a communication topologymodeled as an undirected
communication graphG= (V,E), whereV = {1,2, . . . ,N} is the set of nodes andE = {ei j | i, j = 1, . . . ,N, i ,
j} is the set of edges. An edge between two nodesi and j means that agentsi and j can exchange
information (or can cooperate). We denote byNi , { j | ei j ∈ E} the set of neighbors of agenti, and byL
the Laplacian of graphG defined as

[L] i j =



















−l i j j ∈ Ni ,
∑

j∈Ni
l i j i = j,

0 otherwise,
(2)

where l i j are positive scalars chosen a priori that can be interpretedas weights put on the information
transmitted on the links (i, j).

In the next sections we are going to make use of a set of properties of a (weighted) Laplacian of a
graph; properties that are grouped in the following remark.

Remark 2.1:The LaplacianL of a connected graph satisfies the following properties:
(a) The matrixL has only one eigenvalue zero and the corresponding right andleft eigenvectors are1

andη, whereη is a vector with non-zero entries of the same sign;
(b) The nullspaces ofL andL′ are given by Null(L)= {γ1 | γ ∈R}, and Null(L′)= {γη | γ ∈R}, respectively;
(c) Let L = L⊗ I , whereI is then-dimensional identity matrix. Then the nullspaces ofL andL ′ are given

by Null(L ) = {1⊗ x | x ∈Rn}, and Null(L ′) = {η⊗ x | x ∈Rn}, respectively;
(d) Let x be a vector inRnN. Then the orthogonal projection ofx on Null(L ′) is given byx⊥ = Jx, where

J is the orthogonal projection matrix (operator) defined as

J ,
ηη′

η′η
⊗ I ,

with η the left eigenvector ofL corresponding to the zero eigenvalue.

B. Optimization model

We consider a functionf : Rn→R expressed as a sum ofN functions

f (x) =
N

∑

i=1

fi(x).

We make the following assumptions on the functionsfi(x) and on the communication model.
Assumption 2.1:(a) Functionsfi(x), i = 1, . . . ,N are twice continuously differentiable;

(b) Agent i has knowledge of only functionfi(x) and scalarsl i j , for j ∈ Ni;
(c) Agent i can exchange information only with agents belonging to the set of its neighborsNi ;
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(d) The communication graphG is connected.
The common goal of the agents is to minimize the following optimization problem

(P1) minx∈Rn f (x)

under Assumptions2.1. Through the rest of the paper we assume that problem (P1) has at least one local
minimizer.

C. Distributed algorithms

Let x∗ be a local minimizer of (P1) and let xi,k denote agenti’s estimateof x∗, at time-slotk. We
propose the following distributed algorithm to solve the problem (P1), referred henceforth as algorithm
(A1):

xi,k+1 = xi,k−α∇ fi(xi,k)−α
∑

j∈Ni

(

l i jλi,k− l jiλ j,k

)

, (3)

λi,k+1 = λi,k+α
∑

j∈Ni

l i j (xi,k− x j,k), (4)

whereα > 0 is the step-size of the algorithm and∇ fi(xi,k) denotes the gradient of functionfi(x) computed
at xi,k. In addition, the positive scalarsl i j are the entries of the LaplacianL of the graphG defined in (2).

Remark 2.2:Note that although the graphG is assumed undirected, the LaplacianL is not necessarily
symmetric since we may havel i j , l ji . However, if l i j , 0 then we must also have thatl ji , 0. In other
words, if agenti sends information to agentj, agent j must send information to agenti, as well. It turns
out that for a Laplacian satisfying these properties, the matrix L′L is symmetric.

In Algorithm (A1) the index i (or j) designates an agent whilek denotes the discrete time. It can
be observed that the algorithm is indeed distributed since for updating its current estimatexi,k agent i
uses onlylocal information, that is, its own information (xi,k, λi,k and∇ fi(xi,k)) and information from
its neighbors (x j,k, λ j,k, for j ∈ Ni). Therefore, at each time instant, agenti shares with its neighbors the
quantitiesxi,k and l i jλi,k. Equation (3) is comprised of a standard gradient descent step and one additional
term used to cope with the lack of complete information. The exact origin of equation (4) will be made
clear in the next sections. Intuitively however,λi,k can be interpreted as the price paid by agenti for
having its estimatexi,k far away from the estimates of its neighbors.

Remark 2.3:We made the assumption that the graphG is undirected. This assumption is in fact crucial
for the implementation of the algorithm (A1) in a distributed manner. Indeed, consider a directed graph
with three nodes, where the neighborhoods of the nodes areN1 = {2}, N2 = {3} andN3 = {1}. In this case
the non-weighted Laplacian of the graph is given by

L =



















1 −1 0
0 1 −1
−1 0 1



















andL′ =



















1 −1 −1
−1 1 0
0 −1 1



















,

and the algorithm (A1) becomes

x1,k+1 = x1,k−α
[

λ1,k−λ3,k
]−α∇x f1(x1,k),

x2,k+1 = x2,k−α
[

λ2,k−λ1,k
]−α∇x f2(x2,k),

x3,k+1 = x3,k−α
[

λ3,k−λ2,k
]−α∇x f3(x3,k),

λ1,k+1 = λ1,k+α
[

x1,k− x2,k
]

,

λ2,k+1 = λ2,k+α
[

x2,k− x3,k
]

,

λ3,k+1 = λ3,k+α
[

x3,k− x1,k
]

.

Note that although agenti can updateλi,k using only information from its neighbors, the estimate of the
minimizer xi,k cannot be updated since it requires information from agentsoutside his neighborhood.

In the next sections we start building the infrastructure that will allow us to prove local convergence
of Algorithm (A1).
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III. A n equivalent optimization problem with equality constraints

In this section we define a lifted optimization problem, fromwhose solution we can in fact extract the
solution of problem (P1). As made clear in what follows, Algorithm (A1) comes as a result of applying
a first-order method to solve the first order necessary conditions of the lifted optimization problem.

Let us define the functionF : RnN→R given by

F(x) =
N

∑

i=1

fi(xi),

wherex′ = (x′1, x
′
2, . . . , x

′
N), with xi ∈Rn. In addition we introduce the vector-valued functiong :RnN→R

nN,
where

g(x)′ =
(

g1(x)′,g2(x)′, . . . ,gN(x)′
)

,

with gi : RnN→R
n given by

gi(x) =
∑

j∈Ni

l i j (xi − x j),

wherel i j are the entries of the LaplacianL defined in (2). The vector-valued functiong(x) can be compactly
expressed as

g(x) = Lx ,

whereL = L⊗ I , with I the n-dimensional identity matrix.
We define the optimization problem

(P2) minx∈RnN F(x), (5)

g(x) = Lx = 0. (6)

The following proposition states that by solving (P2) we solve in fact (P1) as well, and vice-versa.
Proposition 3.1:Let Assumptions2.1 hold. The vectorx∗ is a local minimizer of (P1) if and only if

x∗ = 1⊗ x∗ is a local minimizer of (P2).
Proof: Since the LaplacianL corresponds to a connected graph, according to Remark2.1-(c), the

nullspace ofL is given by Null(L ) = {1⊗ x | x ∈ Rn}. From the equality constraint (6), we get that any
local minimizerx∗ of (P2) must be of the formx∗ = 1⊗ x∗, for somex∗ ∈Rn. Therefore, the solution of
(P2) must be searched in the set of vectors with structure given by x = 1⊗ x. Applying this constraint,
the cost function (5) becomes

F(x) =
N

∑

i=1

fi(x) = f (x),

which shows that we have recovered the optimization problem(P1).
Remark 3.1:We note from the above proposition the importance of having aconnected communication

topology. Indeed, ifG is not connected, then the nullspace ofL is much richer than{1⊗ x | x ∈Rn}, and
therefore the solution of (P2) may not necessarily be of the formx∗ = 1⊗ x∗. However, the fact that we
search a solution of (P2) of this particular structure isfundamentalfor showing the equivalence of the
two optimization problems.
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IV. Auxiliary results

In this section we recall and prove a number of results concerning the optimization problem (P2). They
will be used for addressing the local converging propertiesof Algorithm (A1).

Our first result characterizes the tangent cone at a local minimizer of (P2) and it is going to be used
to formulate the first order necessary conditions of (P2).

Proposition 4.1:Let Assumption2.1 hold, letx∗ = 1⊗ x∗ be a local minimizer of (P2) and letΩ denote
the constraint set, that is,Ω = {x | Lx = 0}. Then the tangent cone toΩ at x∗ is given by

TC(x∗,Ω) = Null (L ) .

Proof: All we have to show is that any vector in Null(L ) belongs to TC(x∗,Ω) as well, since it is
well known that (the closure of the convex hull of) TC(x∗,Ω) is included in Null(L ). Let u ∈ Null (L )
and therefore

Lu = 0. (7)

From equation (7), u must be of the formu = 1⊗u, for someu ∈Rn.
We need to show that a vectoru = 1⊗u, with u∈Rn belongs to TC(x∗,Ω). More explicitly, using the

definition of the tangent cone, we must find a functiono : R→R
nN, with limt→0,t>0

o(t)
t = 0, so that

x∗+ tu+o(t) ∈Ω ∀t > 0.

Choose an arbitrary functiono : R→ R
n that satisfies limt→0,t>0

o(t)
t = 0. Settingo(t) = 1⊗o(t), we note

that x∗+ tu+o(t) = 1⊗ (x∗+ tu+o(t)) and therefore

g
(

x∗+ tu+o(t)
)

= L
(

x∗+ tu+o(t)
)

= 0 ∀t > 0.

Consequentlyu ∈ TC(x∗,Ω) and TC(x∗,Ω) is a closed and convex subspace.
Let x∗ = 1⊗ x∗ denote a local minimizer of (P2). From the theory concerning optimization problems

with equality constraints (see for example Chapter 3, page 15 of [17], or Chapter 3, page 253 of [1]), the
first order necessary conditions for (P2) ensure the existence ofλ∗0 ∈R andλ∗ ∈RnN so that

λ∗0∇F(x∗)+L ′λ∗ = 0.

Note that sinceL is not full rank, the uniqueness ofλ∗ cannot be guaranteed. The following result
characterizes the set of Lagrange multipliers verifying the first order necessary conditions of (P2).

Proposition 4.2 (first order necessary conditions for(P2)): Let Assumptions2.1hold and letx∗ =1N⊗
x∗ be a local minimizer for problem (P2). There exists a unique vectorλ∗ ∈ Range(L ) so that

∇F(x∗)+L ′λ = 0,

for all λ ∈ {λ∗+λ⊥ | λ⊥ ∈ Null (L ′)}.
Proof: By Lemma 11 , page 50 of [17] we have that∇F(x∗) is orthogonal on the nullspace ofL and

therefore∇F(x∗) must belong to Range(L ′). Consequently, there exists a vectorλ ∈RnN so that

−∇F(x∗) = L ′λ. (8)

Note theRnN can be written as a direct sum between the nullspace ofL ′ and the range ofL , that is
R

nN = Null (L ′)⊕Range(L ). Consequently, there exist the orthogonal vectorsλ∗ ∈ Range(L ) and λ⊥ ∈
Null (L ′) so thatλ = λ∗ +λ⊥. Note that we can replaceλ⊥ by any vector in Null(L ′) and (8) will still
hold. The only thing left is to prove the uniqueness ofλ∗. We use a contradiction argument. Letλ̃ be
another vector in Range(L ) so that any vector of the formλ = λ̃+Null (L ′) satisfies (8). Hence we have
that −∇F(x∗) = L ′λ∗, and−∇F(x∗) = L ′λ̃ which gives 0= L ′

(

λ
∗− λ̃

)

. On the one hand, this means that

1The results states that for anyh ∈ TC(x∗,Ω), we haveh′∇xF(x∗) ≥ 0, but sinceTC(x∗,Ω) is a subspace, orthogonality follows.
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λ
∗− λ̃ ∈Null (L ′). On the other hand, since Range(L ) is closed under addition,λ∗− λ̃ ∈Range(L ), as well.

Therefore,λ∗− λ̃ must be the zero vector, or equivalentlyλ∗ = λ̃ and the result follows.
Remark 4.1:From the above Proposition4.2, given thatx∗ is a local minimizer of (P2), we have

that ∇F(x∗) is orthogonal on the nullspace ofL . Equivalently,∇F(x∗)′h = 0 for any h ∈ Null(L ), or
h′

[

∑N
i=1∇ fi(x∗)

]

= 0 for anyh∈Rn, wherex∗ =1⊗x∗ andh= 1⊗h. Consequently,
∑N

i=1∇ fi(x∗)=∇ f (x∗)=
0, that is, we have recovered (as expected) the first order necessary optimality condition for (P1).

In the next section, we are going to make use of the spectral properties of a particular type of matrix;
properties analyzed in the next result.

Proposition 4.3:Let Assumptions2.1-(d) hold and letα and H be a positive scalar and a positive-
definite matrix, respectively. Then the eigenvalues of the matrix

B =
(

H L ′

−L 1
α
J

)

(9)

have positive real parts, whereJ = ηη
′

η′η ⊗ I , with η the left eigenvector ofL, corresponding to the zero
eigenvalue. In addition, there are a number ofn eigenvalues equal to 1/α and they correspond to the
eigenspace

{

x | x = (0′, x′ ⊗η′)′ , x ∈Rn}.
Proof: Let β be an eigenvalue ofB and let(u′,v′)′ , 0 be the corresponding eigenvector, whereu

and v are complex vectors of appropriate dimensions. Denoting byû and v̂ the conjugates ofu and v,
respectively, we have

Re(β)
(

‖u‖2+ ‖v‖2
)

= Re

{

û′Hu + û′L ′v− v̂′Lu + v̂′
1
α

Jv
}

=

Re
{

û′Hu
}

+Re

{

v̂′
1
α

Jv
}

. (10)

SinceJ , ηη
′

η′η ⊗ I is semi-positive definite andH is positive definite we have that

Re(β)
(

‖u‖2+ ‖v‖2
)

> 0, ∀ u , 0.

Therefore for allu , 0 we have that Re(β) > 0. In the caseu = 0 we get

B
(

0
v

)

= β

(

0
v

)

,

from where we obtainL ′v = 0 and 1
α
Jv = βv. But this means thatv = η⊗v for somev ∈Rn which leads

to
1
α

Jv =
1
α

v = βv,

where the second equality followed from the fact that the projection of v on Null(L ′) is v itself and
consequentlyβ = 1/α. Therefore all eigenvalues ofB have positive real parts, 1/α is an eigenvalue ofB
and its corresponding eigenspace is{x | x′ = (0′, x′⊗η′) , x ∈Rn}. In addition, there are a number ofn
eigenvalues equal to 1/α since every eigenvalue ofL appearsn times in the matrixL due to the Kronecker
product properties.

We are ending this section by recalling a immediate result onthe spectral properties of a continuous
Hessian.

Proposition 4.4:Let F(x) be twice continuously differentiable and assume that its Hessian is positive
definite atx∗, that is,∇2F(x∗) ≻ 0. Then there exist positive scalarsθ, ml andmu, with ml ≤mu, so that

∇2F(x) ≻ 0 ∀x ∈ Bc(x∗, θ), (11)

and
mlI � ∇2F(x) �muI ∀x ∈ Bc(x∗, θ). (12)

Proof: Follows from the continuity of∇2F(x).
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V. Convergence analysis of Algorithm (A1)

In this section we analyze the convergence properties of Algorithm (A1). Since the matrixL is not
full rank, we cannot directly apply existing results for regular (local) minimizers, such as Proposition
4.4.2, page 388, [1]. Still, for a local minimizer and Lagrange multiplier pair(x∗,λ∗), with λ∗ ∈Range(L ),
we show that if the initial valuex0 is close enough tox∗, for a small enough step-size and under some
conditions on (the Hessians of) the functionsfi(x), i = 1, . . . ,N, the sequence{xk} does indeed converge to
x∗. However, although under the same conditions the sequence{λk} does converge, it cannot be guaranteed
to converge to the uniqueλ∗ ∈ Range(L ) but rather to a point in the set{λ∗+Null (L ′)}.

In trying to find the solution for problem (P2) the first thing we can think about is solving the set of
necessary conditions:

∇F(x)+L ′λ = 0, (13)

Lx = 0. (14)

Solving (13) and (14) does not guarantees finding local minimizers, but at least they are among the
solutions of the above nonlinear system of equations. We canuse a first order method to solve (13) and
(14) (see for instance Section 4.4.1, page 386, [1]), given by:

xk+1 = xk−α
[∇F(xk)+L ′λk

]

, (15)

λk+1 = λk+αLx k. (16)

Expressing the above algorithm for each of then-dimensional components of the vectorsxk andλk, we
in fact recover algorithm (A1), which shows thenon-heuristicanddistributednature of the algorithm.

The following theorem addresses the local convergence properties of Algorithm (A1).
Theorem 5.1:Let Assumptions2.1 hold, let (x∗,λ∗) be a local minimizer and Lagrange multiplier pair

of (P2), with λ∗ ∈ Range(L ). Assume also that∇2F(x∗) ≻ 0. Then there exist positive integersθ > 0 and
ᾱ > 0 so that under iteration (15)-(16)

lim
k→∞
‖xk−x∗‖ = 0, (17)

lim
k→∞
‖λk−

[

λ
∗+Null(L ′)

]‖ = 0 (18)

for all x0 ∈ Bc(x∗, θ) andα ∈ (0, ᾱ]. In addition, the rate of convergence is linear.
Proof: From the Assumption2.1-(a), according to the mean value theorem there exists a positive

integerϕ ∈ (0,1) so that the gradient ofF(x) at xk can be expressed as

∇F(xk) = ∇F(x∗)+∇2F(yk)(xk−x∗),

whereyk , ϕx∗+ (1−ϕ)xk. Subtractingx∗ from the right- and left-hand sides of equation (15), and using
the above expansion of the gradient∇F(xk) we obtain

xk+1−x∗ = xk−x∗−α∇2F(yk)(xk−x∗)−α∇F(x∗)−αL ′λk,

or

xk+1−x∗ = xk−x∗−α∇2F(yk)(xk−x∗)−α∇F(x∗)

− αL ′λk−αL ′λ∗+αL ′λ∗.

From the above we get

xk+1−x∗ = xk−x∗−α
[

∇2F(yk)(xk−x∗)+L ′(λk−λ∗)
]

, (19)

where the last equality followed from the first order necessary conditions. Proceeding in a similar manner,
we subtractλ∗ from the left- and right-hand sides of (16) and observing thatLx ∗ = 0, we obtain

λk+1−λ∗ = λk−λ∗+αL (xk−x∗). (20)
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Defining z1,k , xk−x∗ andz2,k , λk−λ∗, equations (19) and (20) can compactly written as
(

z1,k+1
z2,k+1

)

=

(

z1,k
z2,k

)

−α
(

∇2F(k) L ′

−L 0

)(

z1,k
z2,k

)

, (21)

where∇2F(k) is the Hessian ofF(x) computed at a point on a line betweenx∗ andxk.
We note that the set of fixed points of iteration (21) is given by the set

{

(0′,v′)′ | v ∈ Null (L ′)
}

, where
Null (L ′) , {η⊗ λ | λ ∈ Rn}. Therefore if convergence is achieved,xk will converge tox∗ and λk will
converge to some point in the setλ∗+Null(L ′).

In the following, we are going the reformulate iteration (21) so that the vector0 becomes the fixed
point. Let us definẽz2,k , (I −J)z2,k. SinceJz2,k is the projection ofz2,k on Null(L ′), the vectorz̃2,k is
the error betweenz2,k and its projection on Null(L ′). As a consequence, in terms ofz̃2,k, iteration (21)
becomes

(

z1,k+1
z̃2,k+1

)

=

(

z1,k
z̃2,k

)

−α
(

∇2F(k) L ′

−L 1
α
J

)(

z1,k
z̃2,k

)

, (22)

where we used the fact that (I −J)z̃2,k = (I −J)Lz2,k andL ′J = 0. Therefore if the vector0 is an attractor
for (22), the set

{

(0′,v′)′ | v ∈ Null (L ′)
}

is an attractor for the iteration (21). By Proposition4.3, the
eigenvalues of the matrix

B(x∗) =
(

∇2F(x∗) L ′

−L 1
α
J

)

have positive real parts and in addition there are a number ofn eigenvalues equal to 1/α, which correspond
to the eigenspace{(0′,v′)′ | v ∈ Null (L ′)}. By Proposition4.4 we can find a positive scalarθ so that
∇2F(x) ≻ 0 for all x ∈ Bc(x∗, θ). Using again Proposition4.3, we can infer that the matrixB(x) has all
its eigenvalues with positive real parts for allx ∈ Bc(x∗, θ), and consequently there exists a positive scalar
ᾱ > 0 so that the eigenvalues of the matrix

Θ(x) , I −αB(x), α ∈ (0, ᾱ]

are within the unit circle. In addition, the matrixΘ(x) has a number ofn eigenvalues equal to zero
corresponding to the eigenspace

{

(0′,v′)′ | v ∈ Null (L ′)
}

.
Therefore, there exists a matrix induced norm and 0< γ < 1 so that‖Θ(x)‖ ≤ γ for all x ∈ Bc(x∗, θ).

Consequently,Θ is a contraction map and from the contraction map theorem (see for example Chapter 7
of [4]) z1,k and z̃2,k converge to zero and the rate of convergence is linear, for all z1,0 ∈ Bc(0, θ).

Remark 5.1:The above theorem shows that the algorithm (A1) converges to a local minimizer provided
that the initial valuex0 is sufficiently close to the local minimizer and the step-sizeα is sufficiently
small. However, the algorithm cannot guarantee convergence to the unique Lagrange multiplier vector
λ
∗ ∈ Range(L ). It is not difficult to show that if the sequence{λk} converges then limk→∞ λk = λ

∗+Jλ0,
where the last term is the projection ofλ0 on Null(L ′).

The following corollary reformulates Theorem5.1 so that it can be applied to problem (P1) directly.
Corollary 5.1: Let Assumptions2.1hold, letx∗ be a local minima of (P1) and assume that∇2 fi(x∗) ≻ 0

for all i = 1, . . . ,N. Then there exist positive integersθi > 0 for i = 1, . . . ,N, andᾱ > 0 so that under algorithm
(A1)

lim
k→∞
‖xi,k− x∗‖ = 0 ∀i (23)

for all xi,0 ∈ Bc(x∗, θi) andα ∈ (0, ᾱ], and in addition the rate of convergence is linear.
Proof: Since∇2 fi(x∗)≻ 0 we have that∇2F(x∗)= diag

(

∇2 fi(x∗), i = 1, . . . ,N
)

≻ 0 and the result follows
from Theorem5.1, whereθi can be chosen asθi = 1√

N
θ, with θ being given by Theorem5.1.

The above corollary shows that provided the agents’ initialvalues xi,0 are close enough to a local
minimizer x∗ and the step-sizeα is sufficiently small, agents executing algorithm (A1) solves problem
(P1) in a distributed manner.
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For strongly convex functions, we can formulate immediately the following corollary.
Corollary 5.2: Let Assumptions2.1 hold, let fi(x), i = 1, . . . ,N be strongly convex functions, and let

x∗ be the unique global minimizer of (P1). Then there exits ¯α > 0 so that for allα ∈ (0, ᾱ], the sequence
{xi,k} generated by Algorithm (A1) converges linearly tox∗, that is

lim
k→∞
‖xi,k− x∗‖ = 0 ∀i. (24)

Proof: Since the functionsfi(x) are strongly convex, there exist positive scalarsmi so that∇2 fi(x) �
mi I , for all x and i. This implies that∇2F(x) �mini{mi}I for all x. Consequently the matrix

(

∇2F(k) L ′

−L 1
α
J

)

,

of equation (22) has its eigenvalues with positive real parts for allk. In addition the positive real parts are
uniformly bounded away from zero, since∇2F(x) �mini{mi}I for all x. The result follows by mimicking
the steps of Theorem5.1, whereθ can be chosen arbitrarily large.

VI. Comments on the convergence rate of algorithm (A1)

In the previous section we established that under suitable conditions, Algorithm (A1) can solve problem
(P1) in a distributed manner, and the convergence rate of the algorithm is linear. In this section we take
a closer look at the rate of convergence, and in particular wewould like to connect the convergence rate
with the parameters of the problem and in particular with theconnectivity of the communication network.

Algorithm (A1) can be regarded as a first order approximation of the following continuous-time, linear
dynamics:

ẋ = −∇F(t)−L ′λ, (25)

λ̇ = Lx , (26)

where∇F(t) is the gradient ofF(x) computed atx(t). In fact the differential equations (25) and (26) are a
continuous-time, distributed algorithm for solving the problem (P1). Similarly, the discrete-time dynamics
(21) is the first order approximation of the continuous-time dynamics

(

ż1
ż2

)

= −
(

∇2F(t) L ′

−L 0

) (

z1
z2

)

, (27)

where we recall thatz1(t) = x(t)−x∗ andz2(t) = λ(t)−λ∗. Therefore, the rate of convergence of Algorithm
(A1) is dictated by the spectral properties of the matrix

M (t) =

(

H(t) L ′

−L 0

)

, (28)

where H(t) , ∇2F(t) is a positive definite matrix with eigenvalues lower and upper bounded by two
positive numbers,ml andmu, respectively, along the trajectory ofx(t), as ensured by Proposition4.4. In
the previous section we proved the convergence of the Algorithm (A1) by studying the spectral properties
of the matrix

M̄ (t) =

(

H(t) L ′

−L 1
α
J

)

. (29)

As shown in the next proposition, with the exception of the eigenvalues corresponding to the eigenspace
{x | x′ = (0′,v′) ,v ∈ Null (L ′)}, the eigenvalues ofM (t) and M̄ (t) are the same. That is, it is enough to
focus only on the non-zero eigenvalues ofM (t). For notational simplicity, in the following proposition,
the time dependence is omitted.

Proposition 6.1:Let β , 1
α

be an eigenvalue of̄M . Thenβ is an eigenvalue ofM as well andM has
n zero eigenvalues corresponding to the eigenspace

{

(0′,v′)′ | v ∈ Null (L ′) = η⊗v,v ∈Rn}.



11

Proof: Let β , 1
α

be an eigenvalue of̄M with corresponding eigenvector (u′,v′)′, that is
(

H L ′

−L 1
α
J

)(

u
v

)

= β

(

u
v

)

. (30)

In the proof of Proposition4.3 we showed thatβ , 1
α

if and only if v <Null(L ′). But this means that there
must existv1 ∈ Range(L ) andv2 ∈ Null(L ′) so thatv = v1+v2 andv1 , 0. From (30) we get

Hu +L ′v = Hu +L ′v1 = βu. (31)

Recalling the fact thatJ is the orthogonal projection operator on Null(L ′), again from (30) we obtain

−Lu +
1
α

v2 = βv1+βv2.

Since−Lu ∈ Range(L ) andv2 ∈ Null(L ′) and any vector inRnN admits unique projections on Range(L )
and Null(L ′), the following must be true:

−Lu = βv1, (32)
1
α

v2 = βv2. (33)

But sinceβ , 1
α

it follows that v2 = 0. Using (31) and (32), we obtain thatβ is an eigenvalue ofM with
the corresponding eigenvector (u′,v′1)′.

Proceeding in a similar way as in the proof of Proposition4.3, we obtain that

Re(β) > 0, ∀ u , 0.

For u = 0 we get
L ′v = 0, and 0= βv,

which basically says thatβ = 0 is an eigenvalue corresponding to the eigenspace
{

x | x′ = (

0′,v′
)

,v ∈ Null
(

L ′
)}

=
{

x | x′ = (

0′, x′⊗η′) , x ∈Rn} ,

which concludes the proof.
To simplify the analysis of the eigenvalues ofM (t), we apply to it the similarity transformation

Q(t) =

(

H(t) L ′

−I J̄

)

, (34)

whereJ̄=
(

1
N11

′
)

⊗ I , with 1 theN-dimensional vector of all ones andI then-dimensional identity matrix,
and obtain

M̃ (t) =

(

H(t) L ′L
−I 0

)

. (35)

It can be checked thatQ(t) is invertible and therefore can be indeed used as a similarity transformation.
Consequently,M̃ (t) has the same eigenvalues asM (t) and therefore it suffice to focus on its non-zero
eigenvalues. In addition, it is not difficult to check that the eigenspace corresponding to the zero eigenvalues
is given by

{

(0′,v′)′ | v ∈ Null(L )
}

.
Let β be a non-zero eigenvalue of matrix̃M (t) and let(u′,v′)′ be the corresponding right eigenvector

(in the following we are going to ignore the time dependence to simplify the notation). By (35), the
eigenvector must satisfy the following equations:

Hu +L ′Lv = βu (36)

−u = βv. (37)
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SinceH is positive definite and therefore invertible, we can safelymultiply (37) from the left byH and
obtain

Hu = −βHv,

from where (36) becomes
−βHv +L ′Lv = −β2v.

By multiplying the above with the hermitian ofv, we finally get

β2v̂′v−βv̂′Hv + v̂′L ′Lv = 0,

or
β2−ω1β+ω0 = 0, (38)

where

ω1 =
v̂′Hv
v̂′v

andω0 =
v̂′L ′Lv

v̂′v
.

Therefore, any non-zero eigenvalueβ must satisfy

β =
ω1±

√

ω2
1−4ω0

2
,

which shows that the eigenvalue can be both real and complex.
From the properties ofH andL ′L we get that

ml ≤ ω1 ≤mu and 0≤ ω0 ≤ σN,L′L,

and therefore ifm2
l ≥ 4σN,L′L all eigenvalues are real.

Let β be a non-zero, real eigenvalue. Noting thatω1 ≥
√

ω2
1−4ω0 we have that, as expected, all real

eigenvalues are positive. In the following, our goal is to determine lower and upper bounds on the real
eigenvalues ofM̃ (t). We approach this task by considering worst-case scenarios. Considering the previous
upper-bounds, we note that consideringω0 fixed, the following inequality holds

βmin(ω0) ≤ β ≤ βmax(ω0)

where

βmin(ω0) =
1
2

(

mu−
√

m2
u−4ω0

)

, (39)

βmax(ω0) =
1
2

(

mu+

√

m2
u−4ω0

)

. (40)

Next, we note thatβmin(ω0) is minimized whenω0 takes the smallest possible value. Similarly,βmax(ω0)
is maximized whenω0 takes the smallest possible value. We pointed out earlier thatω0 is lower bounded
by zero. Using the definition ofω0, it follows thatω0 = 0 only if v ∈Null (L ), but this is impossible since
we assumedβ to be a non-zero eigenvalues. Therefore,ω0 must be a non-zero, positive scalar.

SinceL ′L is a symmetric matrix, there exists a matrixU whose columns are orthogonal eigenvectors
of L ′L , so that

L ′L = U′ΛU,

whereΛ = Λ⊗ I , and

Λ =

































0 0 . . . 0
0 σ2,L′L . . . 0
...

...
. . .

...

0 . . . 0 σN,L′L

































,
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with σi,L′L > 0 for all i ≥ 2. Using the notation̄v = Uv, ω0 can be equivalently expressed as

ω0 =

∑N
i=2σi,L′L‖v̄i‖2

‖v̄‖2
,

where then-dimensional vector ¯vi is the ith component of̄v. A lower-bound onω0 is given by

ω0 ≥
σ2,L′L

∑N
i=2‖v̄i‖2

‖v̄‖2
= σ2,L′L (1− ǫ) ,

whereǫ = ‖v̄1‖2/‖v̄‖2. Note thatǫ , 1 since this would mean thatβ= 0, contradicting the initial assumption.
In the expression ofω0 we notice how the connectivity of the graph, expressed in terms of the second
smallest eigenvalue ofL′L, influence the real eigenvalues of the matrixM (t) and consequently the rate
of convergence. We note that the better the connectivity of the graphG, the larger the value ofσL

2 is and
consequently the larger the value ofσ2,L′L, as shown in the next proposition. Therefore, the better the
connectivity is, the larger the lower bound ofβ is.

Proposition 6.2:Let A be a matrix so thatAA′ = A′A. If (λ,a) is an eigenvalue, (right) eigenvector pair
of A then

(

λ2,a
)

is an eigenvalue, eigenvector pair ofA′A.
Proof: Let a be the right eigenvector ofA corresponding to the eigenvalueλ, that is,

Aa= λa.

We also have that
A′Aa= λA′a= AA′a,

from where we have thatA′a is an eigenvector ofA, corresponding to the eigenvalueλ. But this means
that A′a anda must be co-linear, and therefore there existsγ so thatγa= A′a, or γ‖a‖2 = a′A′a= λ‖a‖2.
Thereforeγ = λ. ConsequentlyAA′a= λA′a= λ2a= A′Aa. Therefore,λ2 is an eigenvalue ofA′A with a
the corresponding eigenvector.

We saw earlier that ifω2
1−4ω0 < 0, the eigenvalueβ is complex, that is,

β1,2 =
ω1± j

√

4ω0−ω2
1

2
,

and we can immediately determine that
ml

2
≤ Re(β) ≤ mu

2
. (41)

In addition the absolute value ofβ is given by |β| = 4ω0 and therefore

4(1− ǫ)σ2,L′L ≤ |β| ≤ 4σN,L′L. (42)

We note from above that in the case of a complex eigenvalue, its real part is not dependent on the network.
Hence in the continuous-time version of the algorithm, (part) of the state vector may convergence faster,
but it will oscillate due to the complex part and the amplitude of oscillations depends on the network
structure throughω0. Note however, that in the discrete version of the algorithm, the absolute values of
the eigenvalues determine the rate of converge; absolute values which do contain the complex part.

When the discrete-time version of the dynamics of the estimates is used, the eigenvalues of interest are
of the form 1−αβ and we are interested in values ofα so that|1−αβ| < 1.

In the case of real eigenvalues, from (39) we have that

0< α <
2
β
≤ 4

mu+

√

m2
u−4(1− ǫ)σ2,L′L

, (43)
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which shows that a better connectivity allows for a larger interval from whichα can be chosen to ensure
the stability of the algorithm.

In the case of complex eigenvalues we have

|1−αβ|2 = [

1−αRe(β)
]2
+α2Im(β)2 = 1−2αRe(β)+α2|β|2.

From (41) and (42) it follows that
1−2αRe(β) ≤ 1−αml,

and
|β|2 ≤ [

4σN,L′L
]2
.

Consequently
|1−αβ|2 ≤ 1−αml +α

2 [

4σN,L′L
]2
,

and a sufficient condition so that the complex eigenvalues are strictly within the unit circle is:

1−αml +α
2 [

4σN,L′L
]2
< 1, (44)

from where we have that
α <

ml
[

4σN,L′L
]2
. (45)

Inequalities (43) and (45) give in fact an estimate for the parameter ¯α whose existence is shown in
Theorem5.1, namely

ᾱ =min























4

mu+

√

m2
u−4(1− ǫ)σ2,L′L

,
ml

[

4σN,L′L
]2























.

We end this section with two observations. First, we can observe that an improved connectivity (reflected
by a large value ofσ2,L, and consequently a large value ofσ2,L′L) may potentially increase the rate of
convergence, sinceα may be chosen larger. Note however that there are limitations on the benefits of an

improved connectivity. More specifically, a large value ofσ2,L may make 4/
(

mu+

√

m2
u−4(1− ǫ)σ2,L′L

)

larger thanml/
[

4σN,L′L
]2, at which point the latter becomes the value for the estimateof ᾱ. Therefore,

improving connectivity after some threshold may not help the rate of convergence. The second observation
is that the estimate for ¯α is rather theoretical, since to actually compute this estimate we would need to
know the values ofml , mu and ǫ (so far we only showed there existence). Still, the analysisgives an
interesting insight on the tradeoffs between the connectivity of the communication graph and the rate of
convergence of the algorithm.

VII. Consensus-based distributed optimization algorithms revisited

In this section we revisit two of the most studied consensus-based distributed algorithms in the literature.
We analyze them using the setup introduced in the previous sections and give additional conditions so that
they can be applied for differentiable functions, not necessarily convex. We give estimates on their the
rate of convergence and show that, except in some very favorable cases, unlike algorithm (A1), the studied
consensus-based algorithms do not converge to a local minimizer, but rather to a neighborhood around
the minimizer; neighborhood whose diameter depends on the step-size of the algorithm. The analysis of
the two algorithms is made for constant step-size.

The first consensus-based distributed algorithm, named henceforth Algorithm (A2), was proposed in
[11] and is given by

xi,k+1 =
∑

j∈Ni∪i

ai j x j,k−α∇ fi(xi,k), (46)
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where A =
(

ai j

)

is a stochastic matrix, corresponding to the communicationgraph G, and assumed
symmetric. Using our formulation, algorithm (A2) can be reformulated as

xk+1 = Axk−α∇F(xk), (47)

whereA , A⊗ I .
The second consensus-based distributed optimization algorithm, referred to henceforth as Algorithm

(A3) and introduced in [5], [6], is expressed as

xi,k+1 =
∑

j∈Ni∪i

ai j

[

x j,k−α∇ f j(x j,k)
]

, (48)

or equivalently
xk+1 = A [xk−α∇F(xk)] , (49)

where A , A⊗ I . Note that compared to Algorithm (A2), in Algorithm (A3) matrix A multiplies the
gradient∇F(xk) as well, suggesting a change in the order the two operationsperformed by the agents
are executed: first the agents update their current estimates by advancing in the direction provided by the
gradient, followed by sharing these updates with their neighbors, and performing a convex combination
with them. Throughout the rest of this section,‖ · ‖ refers to the Euclidean norm.

A. Convergence analysis of Algorithm(A2)

In this subsection we give new (sufficient) conditions so that Algorithm (A2) can be applied for twice
differentiable, not necessarily convex cost functions. In addition, we show that except in some very
favorable conditions, for constant step-size, Algorithm (A2) does not converge to a local minimizer, even
though the agents start with initial values close to the minimizer and use a small enough step-size so that
the algorithm converges.

Let x∗ be a local minimizer of (P2). Then the gradient ofF(x) can be expressed as

∇F(x) = ∇F(x∗)+∇2F(y)(x−x∗),

where∇2F(y) is the Hessian ofF(x) computed aty, a point betweenx andx∗. In this case algorithm (A2)
becomes

xk+1 = Axk−α
[

∇F(x∗)+∇2F(k)(xk−x∗)
]

, (50)

or subtractingx∗ from the left and right hand sides of (50), we obtain

xk+1−x∗ =
[

A −α∇2F(k)
]

[

xk−x∗
]−α∇F(x∗), (51)

where we used that fact thatAx∗ = x∗. Defining M2(k) , A −α∇2F(k), we further have

xk+1−x∗ =M2(k)
[

xk−x∗
]−α∇F(x∗), (52)

Let σ(A) = {−1< σ1,A ≤ σ2,A ≤, . . . ,≤ σnN,A = 1} be the set of eigenvalues ofA. The next proposition
characterizes the spectral properties of the matrixA −α∇2F(x) as a function ofα.

Proposition 7.1:Let Assumptions2.1 hold, let x∗ be a local minimizer of (P2) and assume that
∇2F(x∗) ≻ 0. Then there exist positive numbersθ, ml andmu, with ml ≤mu so that

ρ
(

A −α∇2F(x)
)

< 1, ∀x ∈ Bc(x∗, θ), ∀α ∈
(

0,
1+σ1,A

mu

)

, (53)

and an upper bound on the spectral radius ofA −α∇2F(x) is given by

ρ (A −α∇F(x)) ≤














1−αml α ∈
(

0, 1+σ1,A
ml+mu

)

,

−σ1,A +αmu α ∈
[1+σ1,A

ml+mu
,

1+σ1,A
mu

)

.
(54)
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Proof: By Proposition4.4, there exist the scalarsθ, ml andmu so that

∇2F(x) ≻ 0, ∀x ∈ Bc(x∗, θ)

and
mlI � ∇2F(x) �muI , ∀x ∈ Bc(x∗, θ).

SinceA is symmetric, we have that
σ1,AI � A � I ,

and it follows that
(σ1,A −αmu)I ≺ A −α∇2F(x) � (1−αml)I , ∀x ∈ Bc(x∗, θ).

Therefore, the matrixA −α∇2F(x) has all its eigenvalues strictly inside the unit circle if the following
inequalities hold:

|σ1,A −αmu| < 1, |1−αml | < 1.

From the first inequality we obtain thatα ∈
(

0, σ1,A+1
mu

)

while from the second inequality we get that

α ∈
(

0, 2
ml

)

. Noticing that 1+σ1,A < 2 we get that

α ∈
(

0,
σ1,A +1

mu

)

.

To derive (54) we consider three cases on the positions ofσ1,A −αmu and 1−αml with respect to zero,
within the unit circle.

Assume first that 0< σ1,A −αmu < 1−αml or equivalently 0< α < σ1,A
mu

. In this case the spectral radius
of A −α∇2F(x) is upper bounded by 1−αml , and therefore we have

ρ
(

A −α∇2F(x)
)

≤ 1−αml , ∀α ∈
(

0,
σ1,A

mu

)

. (55)

In the second case we assume thatσ1,A −αmu ≤ 0< 1−αml which is true forα ∈
[

σ1,A
mu
, 1

ml

)

. Comparing
the modulus of the two bounds we obtain

ρ
(

A −α∇2F(x)
)

≤














1−αml α ∈
(

σ1,A
mu
,

1+σ1,A
ml+mu

)

,

−σ1,A +αmu α ∈
[1+σ1,A

ml+mu
, 1

ml

)

.
(56)

In the third case we haveσ1,A −αmu < 1−αml ≤ 0 form where we obtain that

ρ
(

A −α∇2F(x)
)

≤ −σ1,A +αmu, ∀α ∈
[

1
ml
,

1+σ1,A

mu

)

. (57)

The result follows from the combination of (55),(56) and (57).
The next result specifies sufficient conditions so thatxk−x∗ evolving according to (52) remains bounded.
Proposition 7.2:Let Assumptions2.1 hold, let x∗ be a local minimizer of (P2).Assume also that

∇2F(x∗) ≻ 0. Then there exist positive numbersθ, ml andmu (with ml ≤mu), ᾱ = (1+σ1,A)θ
muθ+‖∇F(x∗)‖ and 0< δ < 1

so that ifx0 ∈ Bc(x∗, θ), α ∈ (0, ᾱ] and
‖∇F(x∗)‖ ≤ θml , (58)

then the sequence{xk} generated by Algorithm (A2) satisfies

‖xk+1−x∗‖ ≤ δk‖x0−x∗‖+α 1
1−δ

∥

∥

∥∇F(x∗)
∥

∥

∥ . (59)

In addition, there exists a matrixΨ∗2 so that

lim
k→∞

xk−x∗ = −αΨ∗2∇F(x∗), (60)
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where

Ψ
∗
2 , lim

k→∞

k−1
∑

τ=0

Φ2(k, τ), (61)

with Φ2(k, τ) the transition matrix of (51), that is,Φ2(k, τ) =M2(k−1)M2(k−2). . .M2(τ).
Proof: The existence of the positive numbersθ, ml andmu is ensured by Proposition4.4. By (58),

we have that1+σ1,A
mu+ml

≤ ᾱ ≤ 1+σ1,A
mu

. Then for anyα ∈ (0, ᾱ], according to Proposition7.1, the eigenvalues of
A−α∇2F(x) for all x ∈ Bc(x∗, θ) are strictly within the unit circle. By choosingδ =max{−σ1,A +αmu,1−
αml}, again by Proposition7.1, we have that

ρ
(

A −α∇2F(x)
)

≤ δ,∀x ∈ Bc(x∗, θ), ∀α ∈ (0, ᾱ].

The main idea of the proof consists of showing thatxk−x∗ ∈ Bc(0, θ) for all time k. If this is the case then
ρ(M2(k)) ≤ δ for all k since the Hessian∇2F(k) from M2(k) is computed at a point on a line betweenx∗

andxk, and therefore it belongs toBc(x∗, θ).
We proceed by induction. Assume that‖xk−x∗‖ ≤ θ. Then according to iteration (51)

‖xk+1−x∗‖ ≤ δ‖xk−x∗‖+α‖∇F(x∗)‖ ≤ δθ+α‖∇F(x∗)‖. (62)

Depending on the value ofα, we distinguish two cases. Ifα ∈
(

0, 1+σ1,A
ml+mu

)

then δ = 1−αml and (62)
becomes

‖xk+1−x∗‖ ≤ (1−αml)θ+α‖∇F(x∗)‖ = θ−α (mlθ−‖∇F(x∗)‖) ≤ θ,

where the last inequality followed from (58). In fact one can check thatθ−α (mlθ−‖∇F(x∗)‖) > 0 for
α ∈

(

0, 1+σ1,A
ml+mu

)

, and therefore the above inequality makes sense.

If howeverα ∈
[1+σ1,A

ml+mu
, ᾱ

)

thenδ = −σ1,A +αmu and (62) becomes

‖xk+1−x∗‖ ≤ (−σ1,A +αmu)θ+α‖∇F(x∗)‖ =

−σ1,Aθ+α
(

muθ+ ‖∇F(x∗)‖) ≤ −σ1,Aθ+ ᾱ
(

muθ+ ‖∇F(x∗)‖)

= −σ1,Aθ+
(1+σ1,A)θ

muθ+ ‖∇F(x∗)‖
(

muθ+ ‖∇F(x∗)‖) = θ.

Therefore, for our choice of ¯α we have that‖xk−x∗‖ ≤ θ for all k≥ 0 and consequently

ρ(M2(k)) = ρ
(

A −α∇2F(k)
)

≤ δ < 1, ∀k≥ 0.

The solution of (51) is given by

xk−x∗ =Φ2(k,0)
(

x0−x∗
)−α

k−1
∑

τ=0

Φ2(k, τ)∇F(x∗),

and since‖Φ2(k, τ)‖ ≤ ‖M2(k−1)‖‖M2(k−2)‖ . . .‖M2(τ)‖ = δk−τ we obtain that
∥

∥

∥

∥

∥

∥

∥

k−1
∑

τ=0

Φ2(k, τ)∇F(x∗)

∥

∥

∥

∥

∥

∥

∥

≤
k−1
∑

τ=0

‖Φ2(k, τ)‖‖∇F(x∗)‖ ≤

k−1
∑

τ=0

δk−τ‖∇F(x∗)‖ ≤ 1
1−δ‖∇F(x∗)‖,

from where (59) follows.
To obtain (60) it is enough to show that the seriesΨ2(k) =

∑k−1
τ=0Φ2(k, τ) converges since we already

have that
lim
k→∞
Φ2(k,0)

[

x0−x∗
]

= 0.
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We achieve this by showing that the series
∑k−1
τ=0

∣

∣

∣e′iΦ2(k, τ)ej

∣

∣

∣ converges, since this implies that the series
∑k−1
τ=0e′iΦ2(k, τ)ej converges as well, where{ei}nN

i=1 represents the standard Euclidean basis.
Using the Cauchy-Schwarz inequality and the fact that‖ei‖ = 1 we get

k−1
∑

τ=0

∣

∣

∣e′iΦ2(k, τ)ej

∣

∣

∣ ≤
k−1
∑

τ=0

‖Φ2(k, τ)‖ ≤
k−1
∑

τ=0

δk−τ =
1−δk
1−δ ≤

1
1−δ,

and therefore the series is upper bounded. But since is also monotonically increasing, then it converges
and therefore there exitsΨ∗2 so that

lim
k→∞

k−1
∑

τ=0

Φ2(k, τ) =Ψ∗2. (63)

Consequently, we get that

lim
k→∞

xk−x∗ = lim
k→∞
−α

k−1
∑

τ=0

Φ2(k, τ)∇F(x∗) = −αΨ∗2∇F(x∗),

which concludes the proof.

We showed above that the stability of Algorithm (A2) can be guaranteed if the gradient∇F(x∗) is less
than a threshold; threshold that depends on a set of parameters induced by the behavior of∇2F(x) around
the minimizerx∗. We need this inequality to hold to make sure that at each iteration xk is kept in a
neighborhood aroundx∗ in which ∇2F(x) is positive definite. Such a condition is not needed in the case
of Algorithm (A1). We also showed that algorithm (A2) does not guarantee convergence to a minimizer
of (P1) but rather to a neighborhood aroundx∗, whose size depends on∇ fi(x∗) andα. The neighborhood
can be made arbitrarily small by makingα very small, but this would reduce the rate of convergence. In
fact, except in the case of some “fluke of nature”, mathematically translated as

∇F(x∗) ∈ Null
(

Ψ
∗
2

)

,

convergence to a local minimizer does not happen. In particular, convergence is achieved if∇F(x∗) = 0,
or equivalently fi(x∗) = 0 for all i. However, this is not an interesting case since there is no need for
cooperation between agents.

B. Convergence analysis of Algorithm(A3)

This section focuses on the convergence properties of Algorithm (A3). We give conditions to ensure the
stability of Algorithm (A3) in terms of the parameters of the problem. As in the case of Algorithm A2,
we show that in general, for constant step-size, Algorithm (A3) does not converge to a local minimizer,
even though the agents’ initial values are close to the minimizer and the algorithm is stable. Still, there
are more possible scenarios under which Algorithm (A3) does converge to a local minimizer, compared
to Algorithm (A2).

Let x∗ be a local minimizer of (P2). Then proceeding as in the case of Algorithm (A2), we can
reformulate Algorithm (A3) in terms of the Hessian ofF(x) and obtain

xk+1−x∗ = A
[

I −α∇2F(k)
]

[

xk−x∗
]−αA∇F(x∗), (64)

or by definingM3(k) , A
[

I −α∇2F(k)
]

, we have

xk+1−x∗ =M3(k)
[

xk−x∗
]−αA∇F(x∗). (65)

The next result is the equivalent of Proposition7.1 and shows that as longx is kept close enough
to a local minimizerx∗, the matrixA

[

I −α∇2F(x)
]

is positive definite provided that∇2F(x∗) is positive
definite.
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Proposition 7.3:Let Assumptions2.1 hold, let x∗ be a local minimizer of (P2) and assume that
∇2F(x∗) ≻ 0. Then there exist positive numbersθ, ml andmu (with m≤mu) so that

ρ
(

A
[

I −α∇2F(x)
])

< 1, ∀x ∈ Bc(x∗, θ), ∀α ∈
(

0,
2

mu

)

, (66)

and an upper bound on the spectral radius ofA
[

I −α∇2F(x)
]

is given by

ρ
(

A
[

I −α∇2F(x)
])

≤














1−αml α ∈
(

0, 2
ml+mu

)

,

−1+αmu α ∈
[

2
ml+mu

, 2
mu

)

.
(67)

Proof: By Proposition4.4, there exist the scalarsθ, ml andmu so that

∇2F(x) ≻ 0 ∀x ∈ Bc(x∗, θ)

and
mlI � ∇2F(x) �muI ∀x ∈ Bc(x∗, θ).

SinceA is symmetric, we have thatρ(A) = ‖A‖ = 1 and therefore

ρ
(

A
[

I −α∇2F(x)
])

≤ ρ
(

I −α∇2F(x)
)

.

We also have that
(1−αmu)I � I −α∇2F(x) � (1−αml)I ∀x ∈ Bc(x∗, θ).

Therefore, in order for the matrixA
[

I −α∇2F(x)
]

to have all its eigenvalues strictly inside the unit circle,
it is sufficient for the following inequalities to be satisfied:

|1−αmu| < 1, |1−αml | < 1,

or equivalently

α ∈
(

0,
2

mu

)

.

To derive (67) we consider three cases on the positions of 1−αmu and 1−αml with respect to zero.
Let us first assume that 0< 1−αmu< 1−αml or equivalently 0< α < 1

mu
. In this case the spectral radius

of A
[

I −α∇2F(x)
]

is upper bounded by 1−αml , and therefore we have

ρ
(

A
[

I −α∇2F(x)
])

≤ 1−αml ∀α ∈
(

0,
1

mu

)

. (68)

In the second case we assume that 1−αmu ≤ 0< 1−αml which is true forα ∈
[

1
mu
, 1

ml

)

. Comparing the
modulus of the two bounds we obtain

ρ
(

A
[

I −α∇2F(x)
])

≤














1−αml α ∈
(

1
mu
, 2

ml+mu

)

,

−1+αmu α ∈
[

2
ml+mu

, 1
ml

)

.
(69)

In the third case we have 1−αmu < 1−αml ≤ 0 form where we obtain that

ρ
(

A
[

I −α∇2F(x)
])

≤ −1+αmu ∀α ∈
[

1
ml
,

2
mu

)

. (70)

The result follows from the combination of (68),(69) and (70).
The following result give conditions under which Algorithm(A3) converges. It also shows that in general

xk does not converge tox∗ except in some particular cases.
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Proposition 7.4:Let Assumptions2.1 hold, let x∗ be a local minimizer of (P2) and assume that
∇2F(x∗) ≻ 0. Then there exist positive numbersθ, ml andmu (with ml ≤mu), ᾱ = 2θ

muθ+‖∇F(x∗)‖ and 0< δ < 1
so that ifx0 ∈ Bc(x∗, θ), α ∈ (0, ᾱ] and

‖∇F(x∗)‖ ≤ θml , (71)

then the sequence{xk} generated by Algorithm (A3) satisfies

‖xk+1−x∗‖ ≤ δk‖x0−x∗‖+α 1
1−δ

∥

∥

∥A∇F(x∗)
∥

∥

∥ . (72)

In addition, there exists a matrixΨ∗3 so that

lim
k→∞

xk−x∗ = −αΨ∗3A∇F(x∗), (73)

where

Ψ
∗
3 , lim

k→∞

k−1
∑

τ=0

Φ3(k, τ), (74)

with Φ3(k, τ) the transition matrix of (49), that is,Φ3(k, τ) =M3(k−1)M3(k−2). . .M3(τ).
Proof: Let θ, ml and mu be the positive numbers defined in Proposition4.4. By (71), we have that

2
mu+ml

≤ ᾱ ≤ 2
mu

. Then for anyα ∈ (0, ᾱ], according to Proposition7.3, the eigenvalues ofA
[

I −α∇2F(x)
]

are strictly within the unit circle for allx ∈ Bc(x∗, θ). By choosingδ =max{−1+αmu,1−αml}, again by
Proposition7.3, we have that

ρ
(

A
[

I −α∇2F(x)
])

≤ δ ∀x ∈ Bc(x∗, θ), ∀α ∈ (0, ᾱ].

The main idea of the proof is showing thatxk − x∗ ∈ Bc(0, θ) for all time k. If this is the case then
ρ(M3(k)) ≤ δ for all k since the Hessian∇2F(k) from M3(k) is computed at a point on a line betweenx∗

andxk, and therefore it belongs toBc(x∗, θ).
We proceed by induction. Assume that‖xk−x∗‖ ≤ θ. Then according to iteration (51)

‖xk+1−x∗‖ ≤ δ‖xk−x∗‖+α‖∇F(x∗)‖ ≤ δθ+α‖∇F(x∗)‖. (75)

Depending on the value ofα, we distinguish two cases. Ifα ∈
(

0, 2
ml+mu

)

thenδ= 1−αml and (62) becomes

‖xk+1−x∗‖ ≤ (1−αml)θ+α‖∇F(x∗)‖ =

= θ−α (mlθ−‖∇F(x∗)‖) ≤ θ,

where the last inequality followed from (71). In fact one can check thatθ−α (mlθ−‖∇F(x∗)‖) > 0 for
α ∈

(

0, 2
ml+mu

)

, and therefore the above inequality makes sense.

If howeverα ∈
[

2
ml+mu

, ᾱ
)

thenδ = −1+αmu and (75) becomes

‖xk+1−x∗‖ ≤ (−1+αmu)θ+α‖∇F(x∗)‖ =

−θ+α (muθ+ ‖∇F(x∗)‖) ≤ −θ+ ᾱ (muθ+ ‖∇F(x∗)‖) =

−θ+ 2θ
muθ+ ‖∇F(x∗)‖

(

Lθ+ ‖∇F(x∗)‖) = θ.

Therefore, for our choice of ¯α we have that‖xk−x∗‖ ≤ θ for all k≥ 0 and consequently

ρ(M3(k)) = ρ
(

A
[

I −α∇2F(k)
])

≤ δ < 1, ∀k≥ 0.

The solution of (64) is given by

xk−x∗ =Φ3(k,0)
(

x0−x∗
)−α

k−1
∑

τ=0

Φ3(k, τ)∇F(x∗),
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or

‖xk−x∗‖ ≤ ‖Φ3(k,0)‖‖x0−x∗‖+α
k−1
∑

τ=0

‖Φ3(k, τ)‖‖A∇F(x∗)‖, (76)

and since‖Φ3(k, τ)‖ ≤ ‖M3(k−1)‖‖M3(k−2)‖ . . .‖M3(τ)‖ = δk−τ, inequality(72) follows. Using the same
approach as in the proof of Proposition7.2, we can show that the series

∑k−1
τ=0Φ3(k, τ) converges and

therefore there exitsΨ∗3 so that

lim
k→∞

k−1
∑

τ=0

Φ3(k, τ) =Ψ∗3.

We conclude the proof by noticing that

lim
k→∞
Φ3(k,0)

(

x(0)−x∗
)

= 0,

and therefore
lim
k→∞

xk−x∗ = −αΨ∗3A∇F(x∗).

The above result shows that, similarly to Algorithm (A2), Algorithm (A3) does not guarantee convergence
to a minimizer of (P1), but rather to a neighborhood aroundx∗ whose size depends on∇ fi(x∗) and α.
Convergence tox∗ is ensured provided that

∇F(x∗) ∈ Null
(

Ψ
∗
3A

)

.

Interestingly, unlike Algorithm (A2) if the communication graph is complete, Algorithm (A3) does converge
to a local minimizerx∗. Indeed, if the communication graph is complete thenA= 1

N11
′ and each entry

of the vectorA∇F(x∗) is given by

[

A∇F(x∗)
]

i =

N
∑

i=1

∇ fi(x
∗) = 0,

where the last equality followed from the first order necessary conditions of (P1).

C. Comparison of the performance of Algorithms(A2) and (A3)

We provided in the previous two subsections estimates on therate of convergence of the Algorithms
(A2) and (A3). A natural question is if these estimates are tights. Usinga simple example, we show in
the following that in fact the upper-bounds on the rate of convergence can be reached.

Let fi(x)= 1
2x2 for all i and consequently∇2F(x)= I . For this particular example, the matrices controlling

the convergence of the algorithms (A2) and (A3) areM2=A−αI andM3= (1−α)A, respectively. According
to the Propositions7.1 and7.3, the upper-bounds on the spectral radius of the matricesM2 andM3 are
given by

ρ (M2) ≤














1−α α ∈
(

0, 1+σ1,A
2

)

,

−σ1,A +α α ∈
[1+σ1,A

2 , 1+σ1,A
)

,
(77)

and

ρ (M3) ≤
{

1−α α ∈ (0, 1),
−1+α α ∈ [1, 2), (78)

respectively.
On the other hand the eigenvalues of the matricesM2 andM3 are given by

σ (M2) =
{

σ1,A −α,σ2,A −α, . . . ,σN−1,A −α,1−α
}

, (79)
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and
σ (M3) =

{

(1−α)σ1,A , (1−α)σ2,A , . . . , (1−α)σN−1,A ,1−α
}

, (80)

and therefore,ρ (M2) =max{|σ1,A −α|, |1−α|} andρ (M3) =max
{|(1−α)σ1,A |, |1−α|

}

= |1−α|. Forcing the
spectral radius ofM2 andM3 to be smaller than one, we note that indeed the upper-bounds (77) and (78)
are reached, and therefore the bounds are tight.

An interesting question is which one of the Algorithms (A2) and (A3) performs better. In the following
we show that at least in a worse-case scenario, that is, the upper-bounds on the spectral radius of matrices
M2 andM3 are reached, Algorithm (A3) converges faster than Algorithm (A2). Let ρu (M2) andρu (M3)
denote the upper-bounds on the spectral radius of the aforementioned matrices, as per Propositions7.1
and 7.3. Using the results from the two propositions it can be checked that ρu (M3) ≤ ρu (M2) for all
α ∈

(

0, 1+σ1,A
mu

)

. In particular we have that

ρu (M2) = 1−αml = ρu (M3)

∀ α ∈
(

0,
1+σ1,A

ml +mu

)

,

ρu (M2) = −σ1,A +αml > 1−αml = ρu (M3)

∀ α ∈
[

1+σ1,A

ml +mu
,

2
ml +mu

)

, (81)

ρu (M2) = −σ1,A +αml > −1+αmu = ρu (M3)

∀ α ∈
[

2
ml +mu

,
1+σ1,A

mu

)

.

In addition, forα ∈
[1+σ1,A

mu
, 2

mu

)

although we have thatρu (M3)=−1+αmu< 1,ρu (M2) cannot be guaranteed
to be smaller than one. Therefore we have that, at least in a worse-case scenario (that is, the upper-bounds
on the spectral radius are reached) Algorithm (A3) converges faster than Algorithm (A2). In [16], it is
indeed confirmed that Algorithm (A3) outperforms Algorithm (A2), at least from the point of view of the
rate of convergence2. The authors were able to compute exactly the spectral radius of matricesM2 and
M3, but only because they considered quadratic cost functions.

We saw earlier that the two consensus-based algorithms, in the case of a constant step-size, do not
converge exactly to the (local) minimizer. Hence, another interesting question is how close do the two
algorithms get to the local minimizer. In the following we show that, as in the case of the rate of
convergence, in a worse-case scenario, Algorithm (A3) is guaranteed to be closer to the (local) minimizer.
Using the results of Proposition7.2, in the case of Algorithm (A2), we have

lim
k→∞

sup‖xk−x∗‖ ≤ α‖Ψ∗2‖‖∇F(x∗)‖ ≤ α

1−ρu(M2)
‖∇F(x∗)‖. (82)

Similarly, from Proposition7.4, in the case of Algorithm (A3) we have

lim
k→∞

sup‖xk−x∗‖ ≤ α‖Ψ∗3‖‖A∇F(x∗)‖ ≤ α

1−ρu(M3)
‖∇F(x∗)‖, (83)

where‖ · ‖ denotes the Euclidean norm, and the last inequalities followed from the definitions ofΨ∗2 and
Ψ
∗
3, shown in (61) and (74), respectively. Since according to (81) we have thatρu(M3)≤ ρu(M2), Algorithm

(A3) is guaranteed to converge to a point in a neighborhood around the minimizer; neighborhood whose
diameter is smaller than the diameter of the neighborhood resulting from Algorithm (A2). In addition, as
expected, the size of the neighborhoods decreases withα, which in turn decreases the rate of convergence.

2The authors refer to Algorithm (A2) asconsensus strategyand to Algorithm (A3) asATC diffusion
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VIII. N umerical example

In this section we test our distributed algorithm on the “Weber point of a set of points” problem, where
a group ofN agents want to find a pointx in the plane whose sum of weighted distances from a given
set of pointsy1, . . ., yN is minimized. Formally expressed, the common goal of the agents is to minimize
the function

min
x∈Rn

N
∑

i=1

fi(x),

where fi(x) = wi‖x− yi‖, for i = 1, . . . ,N. In the following numerical simulations we choosen = N = 12,
wi = i andyi = iei , where{ei} is the standard Euclidean basis. We assume that the agents interact through
a communication network with a circular structure, shown inFigure 1. In Figure 2 we plot the errors

Fig. 1: Communication network

between the estimates of the agents and the minimizer‖xi,k− x∗‖, as generated by Algorithm (A1), where
we useα= 0.025 and the non-weighted Laplacian corresponding to the graph in Figure1. We increase the
eigenvalues of the LaplacianL by multiplying it with a scalarc= 4. To ensure the stability of the algorithm
we are forced to pick smaller values forα. Figure3 shows the numerical simulation of Algorithm (A1) for
α = 0.002 and Laplacian 4L. We note that the values of the estimate tend to be closer to each other. The
intuition behind this phenomenon may be the heavier “weight” put on the dynamics induced by the equality
constraint of Problem (P2) which forces the values of the estimates to be closer. A similar phenomenon
can be observed in the case of the consensus-based distributed algorithms, when the connectivity of the
graph is improved.

We compare in the following Algorithm (A1) with Algorithms (A2) and (A3). We would like to point
out that the comparison is not easy since the algorithms havedifferent parameters. For instance, indeed
we can create a stochastic matrix from LaplacianL using the formulaA = I − γL, but we can obtain
an infinity of such stochastic matrices. Therefore we chose astochastic matrixA that corresponds to
the communication graph and that minimizes the second largest eigenvalue in modulus. Figures4 and
5 present a comparison between Algorithms (A1), (A2) and (A3), where in the case of (A1) we used
the non-weighted Laplacian. We plot the average of the errors between the current estimates and the
minimizer, that is,1

N

∑N
i=1‖xi,k− x∗‖. As expected from the theoretical results, Algorithms (A2) and (A3)

do not converge to the minimizer. For large values ofα the consensus-based algorithm appear to converge
faster. If however we want Algorithms (A2) and (A3) to be more precise, we need to decrease the step-size,
but as a consequence we decrease the rate of convergence as well, as shown in Figure5. In addition, as
suggested by our analysis, for the considered example, Algorithm (A3) does perform better (A2), both in
terms of rate of convergence and precision.
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Fig. 2: Convergence of Algorithm (A1) for α = 0.025 and
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Fig. 3: Convergence of Algorithm (A1) for α = 0.002 and Laplacian 4L

From the above simulations we note that for the same values ofα, Algorithms (A2) and (A3) appear
to be faster than Algorithm (A1). However, if a small error between the estimates and the minimizer is
desired, than the value ofα that can achieve this error may result to be considerable small, and therefore
the rate of convergence (A2) and (A3) is decreased considerable. For example, to achieve an average error
of 0.2, the value of alpha should be roughlyα = 0.0001. In the case of Algorithm (A1), as long asα
is chosen to ensure the stability of the iteration, the average error will always converge to zero. Figure
6 shows the evolution of the average errors for the three algorithms. In the case of Algorithm (A1) we
choseα = 0.01, which ensures the stability of the algorithm. In the caseof Algorithm (A2) and (A3), we
choseα = 0.0001, so that the desired precision is reached. As expected,Algorithm (A1) converge much
faster than the consensus-based algorithms. In conclusion, if precision is required than Algorithm (A1)
would be the most indicated. If however we are willing to sacrifice precision to gain higher rate of the
convergence, than the consensus-based distributed algorithm are more suitable.
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Fig. 4: Convergence of Algorithms (A1), (A2) and (A3) for α = 0.01
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Fig. 5: Convergence of Algorithms (A1), (A2) and (A3) for α = 0.003

IX. Conclusions

We presented a distributed algorithm for solving a particular type of optimization problems. In this
problem, the cost function is expressed as a sum of functionsand each agent is aware of only one
function of the sum. We demonstrated the non-heuristic nature of the algorithm by showing that it is
the byproduct of applying a first-order method for solving the first order necessary conditions of a lifted
optimization problem; optimization problem whose solution embeds the solution of our original problem.
We presented a convergence analysis of the algorithm and showed qualitatively how the connectivity of
the network influences the rate of convergence. In addition,we revisited two consensus-based distributed
algorithms and gave sufficient conditions so that their use can be extended to non-convex cost functions.
We showed that when a constant step-size is used, unlike our algorithm, the consensus-based algorithms
do not guarantee convergence to a local minimizer even when the initial values of the agents are near a
local minimizer, so that stability is ensured.
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Fig. 6: Convergence of Algorithms (A1) for α = 0.01 and convergence of Algorithms (A2) and (A3) for
α = 0.0001
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