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Abstract

Dynamic Bayesian networks (DBNs) can be effectively used to model various problems in complex dynamic systems. We
perform an empirical investigation on compositional analysis of DBNs using abstraction. In static systems and hidden Markov
models, computation of a metric called treewidth induces a tree decomposition that can be used to perform logical or probabilistic
inference and max+ optimizations in time exponential in treewidth and linear in overall system size. Intuitively, the linear scaling
means that very large systems can be analyzed as long as they are sufficiently sparse and well structured. In these simple cases,
summary propagation, which uses two operations, summation (projection) and product (composition), suffices to perform the
inference or optimization. Here, we begin an extension of this to structured networks of communicating dynamic systems.

We define generalizations of projection and composition operators that treat labeled Markov chains as primitive objects.
The projection operation, corresponding to summation, is implemented as label deletion followed by exact state reduction for
Markov chains, similar to Hopcroft’s DFA minimization algorithm, with O(n logm) complexity. The composition operation is the
product of state machines. We use canonical MDDs, similar to BDDs, to capture logical dependencies symbolically. Combining
symbolic representations with Markov chain lumping algorithms is a novel contribution. Using this approach, we have created
a tool leveraging model based systems engineering technologies. The communicating Markov chains are specified using UML
Statecharts via Papyrus extended using an ANTLR parsed domain specific language (DSL).

The tool reduces the number of states in networks of Markov chains by several orders of magnitude. In one example, a
network having a product state space of more than 600 million states is reduced to about 500 states. A feature of this technique
is that the state space is examined incrementally, meaning that the full state space is never explicitly represented, even as an input
to the reduction algorithm. The primary reduction appears to come from symmetry which is surprising because the technique
includes no explicit symmetry handling. We note that composition is efficient at least for systems with high symmetry. We describe
applications to a hospital intensive care unit (ICU) from a systems engineering perspective.

I. INTRODUCTION

A fundamental problem in systems engineering is decomposing large systems into smaller, more manageable pieces. Since a
system has multiple behaviorally equivalent logical decompositions, for example, refactoring transformations [1] have been used
by the software community to change the structure of object-oriented programs without affecting behavior, an inevitable question
that arises is how to compare different decompositions, or more fundamentally, what is gained from these decompositions. Is
it merely aesthetic or reflective of the physical configuration of the system or is there something more meaningful? For a large
class of problems, as reviewed in [2], analysis complexity is tightly linked to the specific decomposition. The treewidth of a
system, which is a metric based on its graphical decomposition, has a significant influence on analysis complexity. For many
NP complete problems, analysis1 is exponential in treewidth and linear in system size [3]. The linear scaling in problem size
gives us hope that very large systems can be effectively analyzed if properly structured, avoiding the curse of dimensionality.

The question we begin to address here is whether this can be generalized to dynamic systems. Since these systems are
physical in nature, it is reasonable to assume sparsity and structure in the communication graph, implying systems with low
treewidth. However, it is commonly believed that because every variable becomes coupled over time, it is not possible to
perform exact inference in complexity less than O(|Q|N ) where |Q| is the number of states in each machine and N is the
number of machines [4] (see Section II-A for details). In the more complexity oriented work of Ferrara [5], the author proves
that nondeterministic automata networks having bounded local treewidth2 are EXPSPACE complete, meaning we should not
expect reductions for every system. While this is true in general (see Section VII for more details), our results demonstrate,
by example, cases for which reduction is efficient.

Figure 1 shows a conceptual example of a dynamic Bayesian network. The high level structure is a simple tree, but each
node of the tree contains an internal topology representing dynamic behavior. The semantics of composing the machines (see
Section II-B) means that the ground topology once we reduce it to a single machine has a state space given by the Cartesian
product of the sets of states of its constituent machines. It is very easy to describe machines with an immense number of states
due to this exponential combination. However, this explosion under composition also appears in the simpler problems referred
to earlier and in that context is avoided by summary propagation. Assuming the treewidth is not too large, it is sufficient to
analyze a component at a time, taking local products and projecting out unnecessary intermediate information. In this sense,
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1Analysis can be logical inference, probabilistic inference, dynamic programming using max + algebra, etc.
2Local treewidth is the treewidth of the communication graph, as defined in [5]. Global treewidth in their terminology refers to the treewidth of the flattened
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Fig. 1. A network of communicating machines is depicted above. Machines may exchange information if they are linked. There is a local and implicit global
topology above. In staying consistent with [5], when we refer to the local topology, we mean the 5 rounded rectangles as nodes and the four links connecting
them. The global topology is the single machine that results after flattening the above network using composition.

summary propagation can be seen as a methodical approach to analyzing a system using mathematically defined abstraction and
composition operations. Intuitively, this work can be seen as an extension of summary propagation to more dynamic systems.

A. Our Contribution

• We present an encapsulation based approach to analyzing dynamic Bayesian networks.
• We present a novel algorithm that allows state reduction on symbolic Markov chains.
• We create a tool integrating UML Statecharts with a DSL extension for describing DBNs and a computational engine

implementing the algorithms presented.
• We analyze a model of an intensive care unit with costs.

II. LABELED DYNAMIC BAYESIAN NETWORK (DBN) FORMALISM

A labeled DBN consists of a number of communicating Markov chains where the transition matrix may depend on some
output messages from a neighboring machine (for an excellent exposition on DBNs, see [6]). Unless otherwise specified,
assume that every set defined is finite.

Definition 1. Formally, we define a DBN as the tuple

Π = 〈L, P1, . . . , PN 〉

where
L = {Σ1, . . . ,ΣM} is a set of system labels
where each Σ ∈ L is a set of symbols and

each Pi for i = 1 . . . N is a tuple as defined below.

Pi = 〈Qi, Ii,Oi, δi, λi〉

with components given in the following table3.

Qi set of states
Ii ⊆ L input labels
Oi ⊆ L output labels

δi : Qi ×Qi × (×I∈IiI)→ [0, 1] transition function
λi : Qi → (×O∈Oi

O) labeling function

The following additional properties are part of our definition for DBNs.

Property 1. ∪Ni=1Oi = L and Oi ∩ Oj = φ for i 6= j, meaning that O1 . . .ON forms a partition of L.

Property 2. For i = 1 . . . N , δi specifies proper input dependent transition functions. For each q ∈ Qi and for each input
vector z in ×I∈IiI ∑

q′∈Qi

δi(q, q
′, z) = 1. (1)

3If we let Ii = {I1, . . . , IK} then ×I∈Ii
I is an abbreviation for I1 × . . .× IK where we assume any ambiguity regarding the ordering of inputs and

outputs is taken care of, for example, by predefining a total ordering on the sets Σ1 . . .ΣM .
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This property ensures that transition matrices are well defined. One might think of the input z as choosing a transition
matrix.

Property 3. Finally, assume w.l.o.g that Ii ∩ Oi = φ for each i = 1 . . . N , meaning the outputs of a machine are not fed back
into itself.

Note that the topology of the communication graph is implicitly defined by the label structure. By Property 1 above, every
output is associated with a unique machine so a mapping m : L → {P1, . . . , PN}, associating labels to machines outputting
them, can be uniquely determined. Let P ∈ {P1, . . . , PN} be a machine with input label set I = I1, . . . , IK . Then there is
a directed link from machine P to m(Ik) for each k = 1 . . .K. Since the direction of causality does not simplify inference
calculations4, we ignore the direction and consider only undirected links in communication graphs.

Observe that the inputs Ii do not necessary cover L. The labels can be used to encode arbitrary information about the
system. In a later example, we show how these labels can be used to compute costs (see Section VI-A).

We will define some basic operations here that will be used later.

Definition 2. Let Π = 〈L, P1, . . . , PN 〉 be a DBN and let P = 〈Q, I,O, δ, λ〉, where I ⊆ L and O ∩ L = φ, satisfy Property 2
and 3 of Definition 1. The concatenation of a component, P , onto Π, written ΠP , is defined as

ΠP = Π′ = 〈L ∪ O, P1, . . . , PN , P 〉 .

It is clear that Π′ satisfies the properties of a DBN because 2 and 3 are independently satisfied by all the component machines
and since O ∩ L = φ, the outputs still form a partition of the label space L ∪ O.

Definition 3. Let Π = 〈L, P1, . . . , PN 〉 be a DBN. Define the removal of a component, written Π/Pi, where i ∈ {1 . . . N} as

Π/Pi = Π′ = 〈L \ Oi, P1, . . . , Pi−1, Pi+1, . . . , PN 〉 .

Removal of components will cause the DBN to become ill-formed if another component of Π has an input that is an output
of the removed component.

Definition 4. Let z ∈ ×Σ∈ZΣ be a vector where Z is a set of alphabets. Define the vector projection of z onto X ⊆ Z ,
written z|X , as just those components of z that correspond to symbols from the alphabets contained in X .

It is evident from this definition that z|X ∈ ×Σ∈XΣ. Also note that this definition has no meaning if X * Z .

Definition 5. Let x ∈ ×Σ∈XΣ and y ∈ ×Σ∈YΣ be such that X and Y are both sets of alphabets where X ∩ Y = φ. Define
the vector composition of x and y, written x⊗ y as a vector having as components the union of the components of x and y.

Thus x⊗ y ∈ ×Σ∈X∪YΣ and this definition has no meaning if X ∩ Y 6= φ.
In Definitions 4 and 5, the order of the components in the resulting vectors is not given. We assume that it will be clear

from the context what the order should be. One technique for achieving this would be to let the alphabets Σ have a predefined
total ordering. Since these vectors never use the same alphabet for two components, the ordering of the alphabets induces
a unique ordering on the components of the vectors. Using this ordering uniformly everywhere (including function inputs)
ensures consistency as long as the domains are matching.

A. Local and Global Views

Figure 2 illustrates the difference between local and global topologies in a DBN. Performing inference on the graph shown
in Figure 2(b) can be achieved by using the frontier algorithm which has complexity O(TD|Q|D+2) where T is the number
of timesteps, D is the size of the linear5 network and |Q| is the number of states that each node has [6]. Linear complexity
in the number of timesteps is good, but it depends upon reasoning over the product state space of |Q|D states which could be
immense depending on the application. Given the configuration of the global topology, there is no obvious way to reduce this
by taking the local topology into account. In the frontier algorithm, the local topology merely modifies the exponent but it is
never less than D + 2 in connected networks.

In this work, we perform the analysis on the graph shown in Figure 2(a). Although each Pi represents a possibly infinite set
of behaviors, Pi is represented by a finite symbolic expression. This decomposition should allow us to take greater advantage
of the local topology which becomes coupled in the standard decomposition. The remainder of this section will describe how
these manipulations are performed.

4The fact that A was caused by B does not mean that A carries no information about B.
5This formula only describes line networks and will change depending on the local topology. The worst case topology has a complexity of O(TD|Q|2D).
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P1 P2 P3 

(a) Local topology of a sim-
ple DBN.

P1 P2 P3 

t=0 

t=1 

t=2 

(b) This is the global topology of
the same DBN as in (a).

Fig. 2. (a) shows the local topology. P1 and P2 communicate by some shared variables as do P2 and P3. However, P1 communicates only indirectly with
P3 through P2. (b) is the global topology of the same DBN as in (a). The graph may extend infinitely towards increasing time. Causality goes from top to
bottom, but inference can go upstream so the links are treated as undirected. The global view shown in (b) is a detailed view of the behavior of the network
depicted in (a). We are interested in using the local decomposition, as in (a), as a basis for computation. In this example, P1 is conditionally independent of
P3 given P2.

B. Composition

It is straightforward to define a composition operator that combines two communicating Markov chains. We shall see that
the composition still respects Definition 1 so DBNs are closed under composition.

Definition 6. Let Π = 〈L, P1, . . . , PN 〉 be a DBN and let Pi, Pj be two components of P such that i 6= j ∈ {1 . . . N}. Define
the composition of two DBN components, Pi and Pj , written Pi ⊗ Pj as follows. Let

Pi ⊗ Pj = P ′ = 〈Q′, I ′,O′, δ′, λ′〉

where
Q′ = Qi ×Qj
I ′ = (Ii ∪ Ij) \ O′
O′ = Oi ∪ Oj

δ′((qi, qj), (q
′
i, q
′
j), z) =

δi(qi, q
′
i, (z⊗ λj(qj))|Ii)

·δj(qj , q′j , (z⊗ λi(qi))|Ij )
λ′(qi, qj) = λi(qi)⊗ λj(qj)

Lemma 1. Composition by Definition 6 results in a well formed DBN component. (See A for proof.)

C. Projection

Projection is an operation associated with abstraction and information hiding.

Definition 7. Let Pi = 〈Qi, Ii,Oi, δi, λi〉 and let X ⊆ L be such that X ∩ Ii = φ. Define the machine projection of Pi
to L \ X , written

⊕
X Pi as P ′i = 〈Qi, Ii,Oi \ X , δi, λi|X 〉. Here, λi|X is the composition of λi and the vector projection

operator.

Since only the outputs Oi and λi are affected by this operator, the machine remains well formed. This operation is invalid
if X ∩ Ii 6= φ.

Definition 8. Let Π = 〈L, P1, . . . , PN 〉 be a DBN and let X ⊆ L be such that X ∩ Ii = φ for i = 1 . . . N . Define the
network projection of Π to L \ X , written

⊕
X Π as applying the machine projection to each component machine, so⊕

X Π = 〈L \ X ,
⊕
X P1, . . .

⊕
X PN 〉 where the individual component

⊕
X Pi projections, for i = 1 . . . N are as described

in Definition 7.

Definition 8 is the extension of Definition 7 to networks. This operation is invalid if X ∩ Ii 6= φ for any i = 1 . . . N . None
of the inputs to DBN in this definition is exogenous. This means that every input in the DBN specifies an interaction between
two of the components. Note that it is possible to eliminate inputs by composition as described in Definition 6. The resulting
I ′ subtracts the outputs from the union of the inputs meaning that if you compose a machine having an input Σ with another
machine having the output Σ, Σ is removed from the set of inputs of the composite.

D. Queries

Queries will be in the form of projections of the DBN to variables of interest. Without this step, it is unlikely that much
reduction will be possible. This includes the possibility of defining an observer machine that produces a new output based on
quantities of interest. Then the query could be defined as just the outputs of the observer.
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E. Algebraic Interpretation

From the previous sections, queries are defined in terms of projections (with possible added observer machines in the
network). Consider a query on a set of alphabets X ⊆ L. From Definition 8, we know that it is not possible to project out
certain variables, namely, if an alphabet, Σ ∈ X , is an input to any machine in Π.

The way to solve this problem is to observe from Definition 6 that it is possible to remove inputs by satisfying them via
composition with the machines that provide those inputs as outputs. Formally, let Σ be an alphabet of Ii that is an input of
component Pi. By Property 1 of Definition 1, we know that there is a unique machine Pj producing Σ as an output, where
by Property 3, i 6= j. Removing Pi and Pj from Π and replacing them with the composite Pi ⊗ Pj , which we may write as
Π′ = Π/Pi/Pj(Pi ⊗ Pj), results in a well formed DBN that has one less constraint on projecting out Σ. If other components
also have Σ as an input, then those components can be subsequently composed, iteratively, starting with Pi ⊗ Pj , until Σ no
longer occurs at all as an input in the DBN. This allows Σ to be eliminated. We have shown the following.

Lemma 2. Regardless of whether Σ occurs as an input or output, every component having Σ must be composed before Σ
can be projected out.

What emerges is an elimination ordering problem. There are two ways to view this problem, algebraic and graphical. One
way to eliminate all of the inputs of a well formed DBN is by composing all of the machines. This way every input will be
satisfied. This problem is structured exactly as if solving a constraint program.

Definition 9. We define the constraint hypergraph (or Gaifman graph) of a DBN, Π = 〈L, P1, . . . , PN 〉 as follows. Let
G = (V,E) be the hypergraph with nodes V = L and hyperedges E = {Ii ∪ Oi : i = 1 . . . N}.

The nodes of this graph consist exactly of the alphabets and there is a hyperedge for every DBN component, linking that
component’s inputs and outputs. The graph structures the possible orderings of compositions and projections. As indicated by
Lemma 2, an alphabet Σ can only be eliminated if every component having Σ as an input or output has been composed first.
This is equivalent to saying that the nodes of the constraint graph can be eliminated only after all hyperedges linked to that
node have been composed. The constraint graph is determined by the DBN and can be seen as varying dynamically as the
DBN is manipulated by composition and projection operations.

An important question is, for a given query, what is the optimal way to order the composition and projection operations? A
fact to keep in mind is that composition tends to increase the complexity of the model (we take the Cartesian product of state
spaces) and projection tends to reduce the complexity (we remove information from the model). Intuitively, we would like to
perform as many projections as possible, as early as possible in the sequence. However, due to the condition of Lemma 2, certain
compositions must precede those projections. So assuming that we wish to perform the elimination optimally, the projection
ordering determines when the compositions are needed. Finding an optimal projection ordering is a difficult problem in general,
but for certain classes of graphs, such as chordal graphs or trees, it can be done in linear time (this is reviewed in [2]).

F. Reduction

There is one last operation that is used, typically in conjunction with the projection operator, which is reduction. In the case
of state machines, an efficient, O(nlogn), algorithm was discovered by Hopcroft [7]. It turns out that generalizing this same
algorithm to Markov chains is possible [8]. It is also possible to implement this algorithm using only simple data structures
and algorithms [9]. See Figure 3 for an example.

1 

3 

2 

4 

0.5 

0.5 

a 

b 

c 

1 

3 

2 

4 

Use c to split b. 

Fig. 3. Illustrating a key step in the working of the lumping algorithm. The algorithm begins with the coursest possible partitioning of the states and
incrementally refines by splitting. In this example, states 1,2 lead to partition c with probability 1, state 3 leads to partition c with probability 0.5 and state 4
leads to partition c with probability 0. This means that partition b is refined into the partitions {1, 2}, {3} and {4}. Essentially this splitting of an existing
partition based on the probability of reaching another partition continues until convergence. The log complexity comes from the fact that whenever you refine
a partition, one of the new resulting partitions is redundant for splitting purposes.

In this work, we generalize this algorithm further to operate on DBN components. The tricky part of this is that DBN
components do not have closed form transition functions, but are actually functions of their input variables I. In a normal
Markov chain, δ(q, q′) is given by a fixed probability. However, in a DBN component, δ(q, q′, z) is parameterized. The lumping
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algorithm, which works by partition refinement requires that we can sort the transition probabilities. In this case, the transition
probability is a symbolic expression. As long as there is a canonical form for this symbolic expression, then it can be lexically
compared to other symbolic expressions. A canonical, unique form is needed because otherwise, there could be two symbolic
expressions describing the same function that are lexically unequal. This canonical form for transition functions is described
in Section III-C.

III. MULTIPLE DECISION DIAGRAM (MDD)

We use MDDs (see [10]) to symbolically encode the transition functions in this problem. MDDs are very similar to the
well known binary decision diagrams (BDDs) with operations described by Bryant [11]. The only difference is that rather than
two possible choices at each node, there are many possible choices and there are also many possible terminals. Using MDDs
instead of BDDs allows us to bypass a binary encoding step for the variables. The operations are nearly identical to operations
on BDDs. We assume that there is a given variable ordering and do not concern ourselves with dynamic variable reordering
although this is something that could be considered in future work.

A. Operations

We implement the following operations on MDDs. In this context, it is sufficient to treat the MDDs as mappings, m : L → T ,
where T is some arbitrary codomain. Note that this same descriptor applies even in cases where the actual domain of the
MDD is a subset of L as the extraneous variables can be ignored.

apply This takes as parameters two MDDs, m1 : L → T1 and m2 : L → T2 and a mapping from the respective MDD
terminal types to an arbitrary output type, f : T1 × T2 → T3 where T1, T2 and T3 are not necessarily different. The
operation effectively returns an MDD describing f(m1(z),m2(z)).

sum This takes as parameters an MDD m : L → T , an alphabet Σ ∈ L in the domain of the MDD and the definition of
a summation operator s : T × T → T . If we let Σ = {σ1, . . . , σK}, then this operator returns
s(. . . s(s(m|σ1 ,m|σ2),m|σ3), . . . ,m|σK

).
restrictThis operation takes as parameters an MDD and a particular assignment to one of the variables of that MDD. It

returns an MDD that is equal to the input MDD restricted to that variable assignment.
remap This operation takes as parameters an MDD, m : L → T and a mapping f : T → T ′. It returns the composition f ◦m.

These operations all run in time proportional to the size of the input MDDs.

B. Implementation of Natural Joins and Aggregations

One feature of MDDs is that it is trivial to implement weighted natural joins using them. In fact, using the terminal nodes
as weights and invoking apply on two MDDs using the appropriate semiring multiplication operator exactly produces the
natural join. As this implementation of MDDs also includes the summation over a variable, using an appropriate semiring sum
operator means that a full summary propagation inference engine can be constructed from MDDs alone. This means that many
problems such as Boolean satisfiability, inference on Bayesian networks and optimization using max + algebra can use MDDs
as a solver [2].

C. Encoding of Transition Functions

Every state of a DBN component is associated with a transition vector which assigns probabilities to next states. The
transition vector is not a vector of probability values, but rather a function mapping from outputs of neighboring machines to
probability vectors. The MDD encodes a decision tree based on the discrete values of the labels of the inputs. Since like BDDs,
MDDs are canonical, this is sufficient for providing a canonical representation for the purposes of comparing two symbolic
transition probabilities. To order them, we flatten the MDD by depth first recursion and compare the resulting strings (this is
done incrementally so that the full strings need not be generated if inequality is detected early in the recursion).

D. Implementation of Composition

Composition of DBN components, as described in Definition 6, requires the multiplication of transition functions. This is
achieved by two MDD operations, the first being restrict, which is used to feed the output of one MDD to another. There is
a different transition function encoded for every starting state. In the product state (qi, qj), the outputs λ(qi) and λ(qj) are
fixed, so they can be made constants in the resulting transition function (if they occur as inputs) and eliminated using restrict.
Apply is then used with something resembling an outer product of transition vectors as the mapping parameter.

Since projection only applies when the alphabets do not occur as inputs, it does not require an MDD operation.
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Fig. 4. The above figure shows our toolchain. The DBN is specified using either extended UML activity diagrams or using a DSL implemented with ANTLR.
We use the export function of Papyrus to produce XMI which is then translated using XSLT to another format for our tool.

Machine

name:String 1 1..*
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1 1..*

1
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1

1
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1
1
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1
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consequent

1

alternative1

1

Trans itionVector

map:Map<State,Probabil ity>

1
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1
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1
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disjunctiveTerms

2..*

disjunctiveTerms

2..*

Or And

ConjunctiveTerms

2..*

ConjunctiveTerms

2..*

Implies

1

consequent

1

antecedent

1

consequent

1

antecedent
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1

subject

1

subject

Atom

machineName:String

labelName:String

character:String

* 

Fig. 5. The class diagram for the DBN components as they are entered by the user. Observe the recursive links in DecisionTree and Predicate. These
are both implementations of the composite pattern used to represent trees. DecisionTree captures arbitrarily nested if then else constructs. Likewise,
Predicate captures arbitrarily nested logical predicates consisting of expressions connected by logical operators such as AND, OR or NOT.

IV. TOOL IMPLEMENTATION

The tool has been implemented in Java on top of some other technologies as shown in Figure 4. Linking to UML provides
us with a rich graphical framework of modeling primitives and we eventually forsee linking to other languages that can link to
UML such as Modelica. Using XSLT as a parser provides a simple mechanism for linking to multiple UML tools with slightly
different XMI dialects (we have implemented translations from both Papyrus and UML2 Tool). We use Xalan as the XSLT
transformation language which allows Java based extensions. The intermediate XML format is used to provide an independent
storage format for our models that can easily be used by other tools. We also have a way to directly express the entire model
using a domain specific language described in Section IV-A.

A. Specification Language

Figure 5 shows the structure, as presented to the user, of the multiple Machine instances comprising the components of a
DBN. λ, the output labeling function, is captured by a HashMap that contains entries mapping the String names of each
alphabet Σ ∈ O to the approriate String names of each symbol in Σ.

The transition functions δ are modeled using if then else constructs with predicates on the inputs I of the DBN
components. The terminals of these expressions are the transition vectors. This mechanism provides a relatively compact,



8

1 Machine : p1
2 S t a t e : u s i n g l a b e l s : u s i n g =1
3 i f commons : : l e v e l =0 p [ r e s t i n g ] = 1 . 0 , p [ u s i n g ] = 0 .
4 e l s e i f commons : : l e v e l =1 p [ r e s t i n g ] = 0 . 8 , p [ u s i n g ] = 0 . 2
5 e l s e i f commons : : l e v e l =2 p [ r e s t i n g ] = 0 . 6 , p [ u s i n g ] = 0 . 4
6 e l s e i f commons : : l e v e l =3 p [ r e s t i n g ] = 0 . 4 , p [ u s i n g ] = 0 . 6
7 e l s e i f commons : : l e v e l =4 p [ r e s t i n g ] = 0 . 2 , p [ u s i n g ] = 0 . 8
8 e l s e / / commons : : l e v e l =5
9 p [ r e s t i n g ]= 0 , p [ u s i n g ]=1

10 S t a t e : r e s t i n g l a b e l s : u s i n g =0
11 p [ r e s t i n g ] = 0 . 5 , p [ u s i n g ] = 0 . 5

Fig. 6. This is a a very simple two state example of DBN component specification written in our DSL just to show the syntax. The two states are using
and resting. The if then else construct is used to describe δ(using, q′, z) The predicate conditions refer to the outputs of another machine called
commons. The terminals of these decision trees are transition vectors. Consider this in relation to Figure 5.

Fig. 7. This figure shows the specification of the ANTLR grammar used to describe DBNs. The toplevel grammar production is a net which consists of a
number of machines. You will note that L and the various O and I values are not explicitly defined anywhere in this grammar, but can be inferred by the
parser. This grammar does not have the dangling else problem because every if must have a corresponding else so extra delimiters are unnecessary.

relatively easy to use means to describe arbitrary mappings δ(q, q′, z). The input q is determined by the particular state, then a
transition vector is used to cover all the possible q′ next states. The discrete label space I is broken up using logical predicates
whose atoms are label assignments. See Figure 6 for an example.

One thing to point out here is the naming scheme. Due to Property 1, every alphabet Σ ∈ L is initially output by a unique
DBN component P . In our implementation, every such initial component is given a name by the user so that it can be referred
to in other places in the specification. This name is used as a prefix for the names of each Σ generated by P . We use the
scope resolution operator (::) to separate the prefix from the actual name. This helps the user with awareness of where the
symbols are coming from and helps with naming for things like symmetrical instances.

The code shown in Figure 6 is parsed by ANTLR [12], a lexer parser generator for Java, having the specification shown in
Figure 7. There are a few rules not shown having to do with comments and whitespace.

1) Code Generation: In the system we were analyzing (see Section VI-A), this particular grammar was found to be too
restrictive for practical use and we had to use code generation to produce some of the machine specifications. In particular,
the DBN component responsible for randomly distributing arrivals to unoccupied beds had extremely large decision trees. The
reason for this is the following. Every configuration of empty vs occupied beds (of which there are 2N where N is the size
of the ICU), requires a different transition vector. This makes the resulting MDD representing the transition function very
large. We are considering what might make sense in the next iteration of this tool as higher level constructs for creating these
specifications.
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B. Implementation Style

The MDDs, though written in Java are implemented using a completely functional coding style by liberal use of final
modifiers on members and enforcement through interfaces. The key bottlenecks in our code, computing symbolic transition
matrices, and computing compositions of DBN components6 have been parallelized by exploiting this fact. We are free to
perform whatever manipulations we wish in parallel on the MDDs because they are decoupled by their immutability.

C. Monte Carlo

The tool also contains a very simple implementation of Monte Carlo simulation. This was done to verify the results of the
symbolic analysis. The Monte Carlo simulation uses a similar query framework. It is possible to define a query as a new DBN
observer component to be concatenated with Π and project onto just the output variables of the observer. If we were to try to
collect statistics over the entire label space, we would run into a curse of dimensionality. So the query framework still turns
out to be quite useful. We do not, however, do any local topology based analysis using Monte Carlo, which could conceivably
be useful even in the simulation context.

V. RELATED WORK

This work is somewhat similar to the work in the probabilistic model checker Prism [13] and also the tool Mobius [14].
What makes our tool quite distinct from these two is its utilization of projection as an integral technique in its solver.

VI. RESULTS

A. Intensive Care Unit (ICU) Modeling

We model the ICU as the simple system depicted in Figure 8(a).

Dispatch 

Bed1 Bed2 BedN 

(a) This is the local topology of a DBN
modeling the ICU.

(b) This figure shows the patient progression model as
entered into Papyrus.

Fig. 8. As shown in (a), each Bedi represents a bed of the ICU. Each Bedi captures the patient progression model and uses an additional empty state to
indicate an unoccupied bed. The Dispatch component encompasses the arrival of patients and placing them in an unoccupied bed or blocking if no bed is
available. As shown in (b), a detailed specification starting from the conditional of the grammar is contained within each node. The patients enter in an
initially low intracranial pressure (ICP) state, and potentially reach a high ICP state. They may return to a high ICP state. Every patient eventually leaves the
ICU by either death or discharge.

We have a very simple patient progression model of severe traumatic brain injury (STBI) patients shown in Papyrus in
Figure 8(b). The problem of modeling ICUs has been studied previously by simulation methods [15]. The analysis performed
here could also be performed using Monte Carlo simulation, however, it would then be necessary to incorporate an additional
error term in the calculations. The emphasis in this study was on developing compositional methods of analysis.

Based on documents from the UMMC Shock Trauma center [16], we were led to understand that management of intracranial
pressure (ICP) is one of the most important aspects of treating STBI patients. The model presented focuses only on this variable
although there are certainly other criteria that may influence a patient progression. Associated with each of the states is a different
cost reflecting the cost of different clinical treatments depending on the ICP level.

We use our model to measure the overflow probability, the occupancy and the expected cost.
The strategy for querying overflow probability is to observe the Dispatch component. We compose the Bedi components

with Dispatch one at a time and project out any variables having to do with Bedi. What we are left with is a single bit we
are observing, which represents arrivals of “things”. Since we know the arrival rate, we can calculate the overflow probability
by comparing the observed probability of arrival to the actual arrival rate.
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Empty

Discharge

Distribution of ICP level with arrival rate of 0.8 and 7 beds

Dead
Low

High

InitLow

(a) The stationary distribution of states for one bed in
the ICU.

Dispatch 

Bed1 Bed2 BedN 

Occupancy 

(b) The local structure of DBN.

Fig. 9. (a) Shows the stationary distribution of states for one bed in the ICU. Due to symmetry, the distribution of states for the other beds is identical and
the cost can be computed based on what it costs to be in each state. (b) Shows the local structure of the DBN used to query occupancy. An observer is added
to measure occupancy. We can tell by the structure of this graph that the observer will add complexity to the system.

To query the expected cost, we compose the Bedi components with Dispatch one at a time and project out any variables
having to do with Bedi until the last BedN component. At this point, we sum everything out except for the costs. By symmetry,
multiplying this by N gives the overall ICU cost. Figure 9(a) shows the distribution of ICP state which is a proxy for the cost.

Since occupancy has an effect on cost per patient in the form of supplementary nurse costs [17], it is interesting from a cost
modeling perspective. To query the occupancy, we must create an observer machine, as shown in Figure 9(b). Figure 10(a)
shows the resulting occupancy. The occupancy will be given by first taking the product of Occupancy and Dispatch then
incrementally taking the product with each Bedi and projecting out any variables that are not occupancy.
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(b) State size over time.

Fig. 10. (a) Showns the stationary occupancy distribution as observed by the occupancy observer shown in Figure 9(b). (b) Shows the number of states as a
function of the number of steps in the inference. The dashed red curve shows how many states there would be if we were taking a raw Cartesian product at
each step. The other curves show the number of states for different queries. The sawtooth pattern seen is a result of the project compose pattern. Projection is
followed by reduction which reduces the number of states and composition causes the number of states to increase. The small dip seen after each composition
is caused by removing unreachable states.

Figure 10(b) shows the state reduction achieved in these queries. As anticipated, the occupancy query is slightly more
complex than the others. The blocking probability query and the cost query are identical except in the last step because the
queries are the same except that the blocking probability query projects out the last patient’s cost information while the cost
query does not.

VII. DISCUSSION

The primary goal of this study was to investigate complexity reduction using local tree structures of systems. Ferrara [5]
shows that it is possible to encode exponential space Turing machines using bounded communicating automata over a
treewidth bounded communication topology. This means that communicating automata, even restricted to bounded treewidth
communication topologies, are powerful enough to encode arbitrary EXPSPACE computations. However, this is similar to
the situation with NP-complete problems where in general, certain types of computations can be used to encode general NP-
complete problems. The difference is that in the case of NP-complete, treewidth alone is sufficient for complexity reduction.

6Lumping of the Markov chain fragments runs relatively fast compared to these steps.
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Ferrara’s proof shows that treewidth alone is not sufficient for complexity reduction in the DBN case, but in the systems
analyzed, significant reductions in complexity were achieved.

A detailed look at the systems studied reveals a certain symmetrical structure that helped a great deal in reducing the states.
The patient beds are all essentially the same DBN component, replicated with different names. When the identity specific labels
are projected out, it becomes possible for the lumping algorithm to detect the symmetry and reduce. The specific symmetry
found is that of order invariance. The state needed to represent N automata with Q states each is simply a count of the number
of automata in each state. Counting the number of possible configurations is equivalent to counting the number of ways N
elements can be interleaved in a sequence with Q − 1 elements (only Q − 1 separators are needed). This is known to be(
N+Q−1

N

)
which is significantly less than QN . While in retrospect, we can know this a priori and next time design a tool to

exploit this symmetry immediately, it is an interesting result that symbolic Markov chain lumping alone was able to detect
and reduce such symmetries.

A critical question is whether the low treewidth helped at all in this analysis. The answer is undoubtably yes because without
using the incremental approach of summary propagation, we might have needed the entire state space to be constructed prior
to passing it to the Markov chain lumping algorithm. This would have been infeasible because of the size of these product
state spaces. What projection-composition does in this case is that it feeds the lumping algorithm only smaller, feasibly sized
pieces of the problem to work on.

The ultimate computational obstacle in this exercise was not the number of states, but the rapidly expanding MDDs needed
to fully describe the rather complex decision trees. This will be a good topic for future research.

VIII. LIMITATIONS AND FUTURE WORK

As preliminary work, there are a number of questions that we would like to investigate in the future.

A. High Level Language

As described in Section IV-A1, the language presented is too low level for effectively describing certain complex transition
functions. While we are currently using Java to perform code generation for these special cases, it should be possible to extract
some key operations out from the Java code to extend the language so that it becomes higher level. One possibility is to start
with a high level language like Java, place some restrictions on it and some extensions for probabilistic behavior, then perform
translation to a lower level representation.

B. Symmetry Reductions

If symmetry is such a strong contributor to state reduction, perhaps it will be symmetry that is required for efficient analysis
in large systems with local topologies. We will be working on this question in the future.

IX. CONCLUSIONS

We have created a tool that analyzes DBNs based on local topology. This question has significance to the systems engineering
community because it addresses the question of scalable compositional reasoning and deepening our understanding of block
diagrams. We achieve a local topology based analysis by using a symbolic representation of the transition functions. The
projection composition framework is a generalization of the sum-product algorithm, which is typically used on commutative
semirings. Since sums in the sum-product algorithm are only used to sum out a variable, slightly less powerful objects than
semirings are needed to run the algorithm. We use projection here as a unary operator that serves as an analogy for summation.
Composition is a very natural analogy for multiplication.

The interesting question is whether using the local topology helps in reducing the complexity of analysis. In the examples
that we have analyzed, this in indeed the case, even though the main reduction is coming from symmetry. This shows that
state minimization is a powerful technique that includes symmetry reduction and we have also shown that it can be made
to run incrementally, following the local topology, which makes it possible to analyze state spaces that we believe would be
intractable to represent.

The main reductions from symmetry, if applied upfront, could be more effective than this approach and it is something we
intend to explore further.

APPENDIX

Property 1 still holds because P ′ replaces Pi and Pj merging Oi and Oj . This means that the union is still L and intersections
are still disjoint.

To see that Property 2 holds for P ′, it suffices that show that for every starting state (qi, qj) and every input z ∈ I ′, summing
δ′ over the possible next states (q′i, q

′
j) results in 1.

∀(qi, qj)∀z
∑

(q′i,q
′
j)

δ′((qi, qj), (q
′
i, q
′
j), z) = 1 (2)
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For each starting state (qi, qj), λj(qj) and λi(qi) are constant implying that for a given z, zi ≡ z⊗ λj(qj)|Ii and
zj ≡ z⊗ λi(qi)|Ij are both constant. It suffices to show that for a given constant zi and zj that∑

(q′i,q
′
j)

δi(qi, q
′
i, zi) · δj(qj , q′j , zj) = 1. (3)

Since q′i and q′j do not occur as a tuple in 3, we can split the sum and collect like terms resulting in the equivalent expression∑
q′i

δi(qi, q
′
i, zi) ·

∑
q′j

δj(qj , q
′
j , zj) = 1. (4)

We know from (1) that both of the above factors equals 1 so the result holds.
That Property 3 holds is trivial based on the definition of I ′ as explicitly excluding alphabets from O′.
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