
1

Factor Join Trees in Systems Exploration
Shahan Yang and John Baras

Abstract—The interaction of connected components creates
complexity impeding the analysis of large systems. Thorough
exploration, appearing as formal verification, optimization or
constraint satisfaction typically has a complexity that is either a
high order polynomial or an exponential function of system size.
However, for a large class of systems the essential complexity is
linear in system size and exponential in treewidth which makes
the previous notion of exponential complexity in system size an
accidental overestimate.

In this paper, we demonstrate how this reduced complexity
can be achieved using summary propagation on factor graphs. We
describe summary propagation in terms of operations belonging
to a commutative semiring-weighted relational algebra. We show
how by appropriate selection of the commutative semiring, the
same solution applies to propositional satisfiability, inference on
Bayesian networks and a mixed integer linear optimization prob-
lem motivated by the power restoration problem for distributed,
autonomous networks. This solution leads to a non-iterative
distributed algorithm that operates on local data.

While weighted relational algebraic operators are used as the
basic means of calculation, the algorithm presented works only
on factor graphs that are trees. This requires the calculation
of a non-unique structure called a join tree, which can be
trivially generated from a unique structure called a clique-
separator graph, which can be computed in linear time from a
SysML Parametric Diagram description of the system for chordal
systems1. Interesting artifacts arise from this structural analysis
which may be interpreted as interfaces and components. The
framework also contains mathematical artifacts that may be
interpreted as hierarchy and abstraction.

We develop a tool to assist in the structural analysis described
and implementations of the described algorithms.

I. INTRODUCTION

THE curse of dimensionality is a severe impediment to our
ability to develop and reason about complex systems. As

systems grow in size, the number of variables increase and
this leads rapidly to computational intractability for questions
of critical importance to the systems engineering process, for
example, correctness and optimality. Under a given set of
assumptions, does the system always operate in the intended
manner? Is the system designed to attain its requirements at
the lowest possible cost? Given a certain set of observations,
how likely are certain unobserved events to have occurred?
Although these questions appear different, they are mathe-
matically very similar. They all require exploration of a high
dimensional state or parameter space. In fact, each of the
questions asked can be posed using a single common semiring
equation, where the only difference is the specific semiring
used.

S. Yang and J. Baras are with the Institute for Systems Research, University
of Maryland, College Park, MD, 20742 USA. 2247 AV Williams Building,
College Park, MD 20742-3271. Fax: 301-314-8486. Phone: 301-405-6606.
E-mail: {syang, baras}@umd.edu.

1Systems that are not chordal are outside the scope of this paper but every
system can be converted into a chordal one by adding fill-ins [1].

Naive exploration of high dimensional system spaces is
computationally intractable. Systems engineering attempts to
address this problem by partitioning a system into a graph
of components. This promises the ability to understand the
overall system by using a series of local analyses and a
compositional technique to compose the results. However,
most methods of partitioning are ad-hoc. Object-oriented anal-
ysis and design, for example, relies primarily upon general
rules of thumb or the brilliance of an individual designer to
determine the appropriate classes and interfaces. Furthermore,
the ability to reason compositionally about a system depends
on an appropriate partitioning. So we pose the two questions:
is there a mathematical basis for deciding between different,
but functionally equivalent, decompositions? And is there
a locality respecting uniform framework for compositional
analysis after the partitioning has been created?

For many NP-complete problems on graphs, including
vertex cover, independent set, dominating set, graph k-
colorability, hamiltonian circuit, network reliability [2], and
dynamic programming [3], the complexity is exponential in
treewidth and linear in problem size. We suggest that treewidth
is closely tied to essential problem complexity. How can this
be used within a systems engineering process?

A. Our Contribution

Our contribution is elucidating and advocating the use of
chordality and the sum-product algorithm in the analysis of
structured systems.
• We present an analysis method for optimization, logical

and probabilistic inference on a certain class of systems
where exploiting the logical system topology localizes
the curse of dimensionality. The complexity of analysis
using this framework grows exponentially in the size of
local neighborhoods but only linearly in overall system
size making it well suited to component based analysis.

• As an example application, we present a novel distributed
algorithm that uses local information for optimal power
restoration that also provides a space of possible compu-
tational and communication topologies that are consistent
with the algorithm.

• We show how SysML Parametric Diagrams can be used
to capture factor graphs and describe an algorithm for
“refactoring” Parametric Diagrams into factor join trees
for efficient summary propagation.

II. FACTOR GRAPHS

A factor graph2 is a bipartite graph that expresses how a
“global” function of many variables factors into a product

2See [4] for a good introduction to factor graphs.

2

of “local” functions [5]. The two independent sets of nodes
in a factor graph are the variable nodes and function nodes.
Figure 1(a) illustrates a factor graph. By observation, we note

x1 x2 x3 x4 x5

fA fB fC fD fE
(a) Example factor graph. The circles represent variables
of the system and the black squares represent functions.

[Block] par []

«constraint»

 : fC

{fC(x,y,z)}

x y z

«constraint»

 : fE

{fE(x,y)}

x y

«constraint»

 : fD

{fD(x,y)}

x y

«constraint»

 : fA

{fA(x)}

x

«constraint»

 : fB

{fB(x)}

x

x5x2x1 x4x3

(b) An equivalent parametric diagram.

Fig. 1. The factor graph in 1(a), depicting the formula
fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4)fE(x3, x5) is captured by
the parametric diagram in 1(b). In contrast to the factor graph, the
parametric diagram specifies which arguments of the constraints are
mapped to which connected parameters.

that factor graphs can be captured by parametric diagrams as
shown in Figure 1(b). Every variable node becomes a value
property and every function node becomes a constraint block.
A factor graph represents the decomposition of a function
into the product (⊗) of factors. In this paper, we restrict the
domains of factors to finite, discrete sets. The codomain is a
set forming the elements of a commutative semiring.

Let X = {x1 . . . xN} be a set of N variable symbols, with
the corresponding variable having finite, discrete domain Xi

for i = 1 . . . N . Let f be a function that can be represented
as the product of M factors f1 . . . fM such that

f(X) =
M⊗
k=1

fk(Xk) (1)

where Xk is the set of variables associated with fk 3 .
The quintessential query on a factor graph is to determine

the function resulting from summing (1).⊕
x1∈X1

. . .
⊕

xN∈XN

f(X) (2)

While this operation looks benign on the surface, there is an
underlying combinatorical structure as shown in Figure 2. The

3We denote sets of symbols by script capital letters. For brevity, we will
abuse notation and permit the set of symbols X = {x1, . . . , xN} to stand
in for a tuple of symbols (x1, . . . , xN). This is ill-defined, in a sense,
because sets do not imply an ordering of the symbols and the ordering of
the symbols plays a role in how the symbols are interpreted by the function,
for example f(X) could mean f(x1, . . . , xN) or it could conceivably mean
f(xN , . . . , x1). The intended interpretation should be clear from the context.

set of terminal nodes of this tree can be mapped one to one
onto the set of all combinations of variable assignments. This
summation captures a full exploration of the complete variable
space of the problem, which is what makes it useful for an-
swering questions of interest in systems engineering. Roughly
speaking, optimization, inference and satisfiability have in
common this problem of searching over some parameter or
state space. Since the summation in (2) implicitly evaluates
every possible combination of state assignments, intuitively,
it is connected to these problems. Section III has specific
examples of problems that can be solved using (2). The factor
graph provides a structure for computing this sum efficiently
using summary propagation, as described in Section II-A.

A. Summary Propagation

Summary propagation (or interchangably, the sum-product
algorithm) provides a way to compute (2) efficiently by
reordering the sums ⊕ and products ⊗ using commutativity4

and using the fact that multiplication distributes over addition
to factor out invariant terms. In this section, we assume
that the factor graphs are trees and address loopy graphs in
Section II-C.

Property 1. Every pair of nodes in a tree is connected by a
unique simple path.

Summary propagation works by first selecting a root node
which induces a hierarchy on the tree as shown in Figure 4.
Computing (2) can then be described as the recursion listed
in Figure 3 on the tree starting at the root node.

Theorem 1. The program listed in Figure 3 computes (2).
(See Appendix A for proof.)

Property 2. The complexity of applying a summation to
a function f : X1 × X2 × . . .× Xk → R, over any num-
ber of its variables, has an upper bound given by
the size of the domain of the function O(|Dom(f)|)
where |Dom(f)| = |X1 × . . .× Xk| = |X1| · . . . · |Xk|. (See
Appendix B for proof.)

Property 3. The complexity of performing a multiplication of
two functions f : X1 × . . .× Xk × Y1 × . . .× Ym → R and
g : X1 × . . .× Xk × Z1 × . . .× Zn → R has an upper bound
of |X1| · . . . · |Xk| · |Y1| · . . . · |Ym| · |Z1| · . . . · |Zn|. (See Ap-
pendix C for proof.)

Theorem 2. The program listed in Figure 3 has an upper
bound on complexity of

O(n · max
k∈{1...M}

|Dom(fk)|)

where n is the number of nodes, and fk are the factors for
k = 1 . . .M . (See Appendix D for proof.)

Theorem 2 is the benefit of using the Sum-Product program.
By Property 2, the complexity of performing (2) is equal
to

∏N
i=1 |Xi| which grows exponentially with the number of

4By definition of semirings the ⊕ operator is commutative and recall we
have assumed a commutative semiring which means the ⊗ operator is also
commutative.

3

⊕
x1∈X1

. . .
⊕

xN∈XN

f(X) =

⊕
x1∈X1

· · ·
⊕

xN−1∈XN−1

f(X)|xN=XN [1] =

⊕
x1∈X1

. . .
⊕

xN−2∈XN−2

f(X)| xN=XN [1],
xN−1=XN−1[1]⊕

...⊕⊕
x1∈X1

. . .
⊕

xN−2∈XN−2

f(X)| xN=XN [1],
xN−1=XN−1[|XN−1|]⊕

...⊕

⊕
x1∈X1

· · ·
⊕

xN−1∈XN−1

f(X)|xN=XN [|XN |] =

⊕
x1∈X1

. . .
⊕

xN−2∈XN−2

f(X)| xN=XN [|XN |],
xN−1=XN−1[1]⊕

...⊕⊕
x1∈X1

. . .
⊕

xN−2∈XN−2

f(X)| xN=XN [XN],
xN−1=XN−1[|XN−1|]

Fig. 2. This figure shows the branching, combinatorical structure of evaluating the sum in (2). The tree continues to expand towards the right with the total
number of layers equal to the number of variables and the number of terminal nodes in the tree is equal to

∏N
i=1 |Xi| which means that the size of this tree

and the number of operations needed to perform the summation is roughly exponential in the number of variables. The indexing notation, Xi[k] assumes that
domain Xi, for i = 1 . . . N , has a default ordering of its elements such that they can be indexed Xi[1] . . .Xi[|Xi|].

variables. The expression maxk∈{1...M} |Dom(fk)| also grows
exponentially with the number of nodes, but is restricted to
local neighborhoods and the complexity is linear in the size of
the graph. Thus systems questions that can be answered by (2)
behave well for composition. The complexity of analysis is
very sensitive to the density of local interaction, but then grows
only linearly in overall system size. As defined in Figure 3,
the sum product algorithm only works on trees, but we will
show how it may be applied to a much larger class of systems
in Section II-C.

B. Abstraction and Induced Hierarchy

For any graph that is a tree, every node can induce a hierar-
chy on the graph as shown in Figure 4. The hierarchy induced
is based on paths leading away from the selected node. So
for any tree, there are as many hierarchies as there are nodes.
Interpreting Figure 4 in light of the Sum-Product algorithm
(Figure 3), we see that the head node receives a summary of
all the information in the rest of the tree projected onto its
variables of interest. Abstraction can be interpreted precisely
in this framework as the summation operation, summing over
variables that are not directly related to the current node. This
is a projection of the overall behavior into a lower dimensional
space. In this sense, nodes that are higher in the hierarchy
receive an abstract view of what lies lower in the hierarchy.
However, what is higher or lower depends entirely upon a
particular perspective or choice of head node. The traditional
view of hierarchy is biased towards user level requirements.
This idea is interesting because it indicates that when we are
working on a low level subsystem, we must work with an
abstract view of the overall system. Within this framework,
many different abstract views are generated as projections.

Another note about hierarchy is that it is possible to obtain
multiple levels of resolution by keeping certain variables
exposed. For the lowest level of resolution, we might only
keep variables pertaining to the root node. We could also
choose to keep variables from multiple nodes. Figure 5 shows
an example of multi-resolution abstractions for a particular
choice of head node using the same factor graph as Figures 1
and 4. Sum-Product provides a means to expand and collapse
different branches to provide different levels of resolution.

C. Join Trees

As presented, the Sum-Product algorithm performs exact
computations, and has predictable complexity with the restric-
tion that the factor graph is a tree. This topological limitation
can be eased by using join trees (see [6] for an introduction). A
join tree uses variable aggregation to create trees out of graphs
that have loops. As an example of variable aggregation, let x1
and x2 be two variables with domains X1 and X2 respectively.
Then we may define a new variable x1×2 that has domain
X1×2 = X1 × X2 where × denotes the Cartesian product of
sets. x1 and x2 are aggregated into the single variable x1×2.
Figure 6 shows a simple example of how this can be used to
transform a loopy graph into a tree. In Figure 6, the variables
x1 and x3 are aggregated, but it is also valid to aggregate
variables x2 and x4 instead. This is an example of a general
property which is that the join tree is seldom unique. The join
tree chosen has an affect on the computational complexity of
evaluating (2). Computing an optimal one is generally an NP-
complete problem [7]. Here, rather than the general case, we
will consider only graphs that are chordal.

4

1 f u n c t i o n sumProduct (node) {
2 rv = r e c u r s e (node) ;
3 f o r (v ∈ node . v a r i a b l e s) {
4 rv =

⊕
v rv ;

5 }
6 re turn rv ;
7 }
8
9 f u n c t i o n r e c u r s e (node) {

10 i f (i s V a r i a b l e (node)) {
11 rv = 1 ;
12 f o r (c ∈ node . c h i l d r e n) {
13 p r o j e c t i o n = r e c u r s e (c) ;
14 f o r (v ∈ c . v a r i a b l e s \ node . v a r i a b l e s) {
15 p r o j e c t i o n =

⊕
v p r o j e c t i o n ;

16 }
17 rv = rv

⊗
p r o j e c t i o n ;

18 }
19 re turn rv ;
20 } e l s e { / / node i s a f u n c t i o n
21 rv = node . f u n c t i o n ;
22 f o r (c ∈ node . c h i l d r e n) {
23 rv = rv

⊗
r e c u r s e (c) ;

24 }
25 re turn rv ;
26 }
27 }

Fig. 3. The listing here shows pseudocode for the recursive function
sumProduct. It takes as a parameter a node, the head of a factor hierarchy.
The output of sumProduct is a value from the semiring. The output of
recurse is a function mapping a set of variables to the semiring. A node
can be either a variable node or a function node, consistent with the factor
graphs in Figure 1. Since the graph is bipartite, every variable node has only
function nodes as children and every function node has only variable nodes
as children. node.children refers to the child nodes via the induced hierarchy
and node.variables refers to the set of variables relevant to the node. For a
function node, node.variables is the input variables to the function and for
variable nodes, node.variables is the set of variables associated with the node
(for simple factor graphs, there is only one).

Definition 1. A chordal5 graph is one in which every loop
of length greater than or equal to 4 has an edge joining two
non-adjacent nodes in the loop.

Theorem 3. For chordal graphs, computing a join tree re-
quires O(n+m) operations where n is the number of nodes
and m is the number of links [8].

Theorem 3 is the reason we consider only chordal graphs
here. The join tree is computed in a straightforward manner
for graphs that are chordal, unlike the general case which is
NP-complete.

Even though it is computed in linear time, the join tree is
not unique. Within a systems context, where behavior will be
mapped to a physical structure, the logical structure of the
join tree may have an impact on the design. This means that
the particular choice of join tree may be a design decision so
it is best to present the engineer with a means of choosing
the best join tree. Every join tree can be generated from a
unique structure called the clique-separator graph [9]. We first
compute the clique-separator graph then assume that the user
provides further input to convert the clique-separator graph
into a join tree.

Figure 7 shows how a loopy, chordal graph can be trans-

5For an excellent introduction to chordal graphs, see [6].

x1

x2x3

x4 x5

fA fC

fBfD fE

x1 as head

x1

x2

x3

x4
x5

fA

fB fC

fD fE

x2 as head

x1 x2

x3

x4 x5

fA fB

fC fD fE

x3 as head

x1
x2

x3

x4

x5

fA fB

fC

fD

fE

x4 as head

x1
x2

x3

x5

x4

fA fB

fC

fE

fD

x5 as head

Fig. 4. Multiple hierarchies induced by selecting different head nodes for
the factor graph shown in Figure 1. Note that the underlying trees are the
same in each of these hierarchies.

x1

x2
fA fC

fB

x3

x4 x5
fD fE

x1

x2x3
fA fC

g3 fB

x1

fA g1

Abstraction 1
Abstraction 2

Fig. 5. This figure shows multiple abstract representations of
the same function, by varying which variables are hidden. Abstrac-
tion 1 is achieved by hiding variables x4, x5 and defining g3(x3) ≡[⊕

x4∈X4
fD(x3, x4)

]
⊗
[⊕

x5∈X5
fE(x3, x5)

]
. Abstraction 2 is

achieved by further hiding variables x2, x3 and defining g1(x1) ≡⊕
x2∈X2

⊕
x3∈X3

(fB(x2)⊗ fC(x1, x2, x3)⊗ g3(x3)) . Both of these
functions are the result of performing summary propagation on the collapsed
nodes. The resulting functions are entirely equivalent to the original function,
with certain information hidden.

formed into a clique-separator graph. We call the undirected
graph in Figure 7(a) a functional dependence graph. It is
derived from a factor graph by removing the functional nodes
but keeping track of connectivity. Each node corresponds to
a variable node in the initial factor graph. The links represent
the connectivity between the variables where two variables are
connected in this graph iff there is a function node that has
both of those variables as inputs.

Definition 2. Formally, the functional dependence graph,
GS = (VS , ES), represents the structure of a function
f(X) =

⊗M
i=1 fi(Xi) with Xi ⊆ X for i = 1 . . .M .

The nodes of the graph are given by VS = X ,
the variables of the function. The edges are given by
ES = {(x, y)|∃i ∈ {1 . . .M} : x, y ∈ Xi}.

In this section, we will describe the construction of the join
tree from the functional dependence graph of a factor graph.
Section II-D will describe transforming the resulting join tree

5

x1
fA

x2

x4
fC

x3

fD fB X1×3

X4

fC⊗fD

fA⊗fB

x2

(a) Looping factor graph. (b) Factor join tree.

Fig. 6. Variable aggregation can be used to transform a loopy graph into a
tree. Variables x1 and x3 in the loopy graph (a) are aggregated into a single
variable x1×3 as shown in (b). The factor graph in (b) represents the same
function as (a), but is a tree, so summary propagation is readily applicable. We
assume that the values of the variables x1×3 can be expressed as tuples (a, b)
where a ∈ X1 and b ∈ X2 so applying the original or product aggregated
functions is straightforward.

A

B

CD

E

F

G

H

I

J

(a) The functional de-
pendence graph. This
graph is chordal.

HG

ABG

BGG

DFG BCDGDG

D

DEJ DIJDJ

(b) An equivalent clique-separator
graph. The rounded rectangles are the
cliques and the separators are the plain
rectangles.

Fig. 7. This diagram shows a chordal functional dependence graph and its
corresponding clique-separator graph. Every maximal clique of the chordal
graph in 7(a) has a corresponding clique in 7(b). Also, every minimal vertex
separator in the chordal graph 7(a) is represented as a rectangle in 7(b).

back into a factor graph. To handle the non-uniqueness of the
join tree, we will use a unique generalization of join trees
defined in [9] called the clique-separator graph which we
review here.

Definition 3. A maximal clique is a clique that cannot be
extended to a larger clique by adding any node belonging to
the graph.

Definition 4. A minimal vertex separator is a set of nodes
that when removed from the graph creates ≥ 2 partitions
separating some given nodes u, v. The set is minimal in the
sense that by removing any node from the set would leave u, v
in the same component when the set is removed.

Definition 5. The clique-separator graph consists of two types
of nodes. There is one clique node for each maximal clique
of GS . There is one separator node for each minimal vertex
separator of GS .

Both the clique and separator nodes in the clique-separator
graph G = (V,E) correspond to sets of nodes in the original
functional dependence graph GS . We will refer to the sets

associated with elements V ∈ V using the same identifier V .

Definition 6. The clique-separator graph also has two types
of links. An arc connects two separator nodes. An arc occurs
if a separator S ⊂ S ′′ and there is no separator S ′ such that
S ⊂ S ′ ⊂ S ′′. An edge connects a separator node S and a
clique node K if S ⊂ K and there is no separator node S ′
such that S ⊂ S ′ ⊂ K.

We can see by this definition of arcs that they are directed.
The relationship between separators is by subset, and it is
very similar behaviorally to an inheritence relationship. Any
separator that is a superset of another separator can be thought
of as a specialization. We will use the standard UML general-
ization arrow to depict arcs in the direction indicated as shown
in Figure 7(b). The arcs are shown using generalization links
and the edges are shown using undirected association edges.

Theorem 4. The clique-separator graph is computed from the
functional dependence graph in O(N3) time [9].

Maximum cardinality search can be used to find all the
maximal cliques and minimal vertex separators in a graph [8]
so the clique-separator graph can be constructed efficiently.

Theorem 5. Every join tree of a given functional dependence
graph can be determined from the clique-separator graph.

Proof: Kumar [10] provides an algorithm for finding
every join tree from an object he defines called the reduced
clique hypergraph (rch). The rch consists exactly of nodes that
are the maximal cliques and hyperedges that are the minimal
vertex separators. A hyperedge connects two nodes iff the
the associated separator is a subset of the associated clique.
The rch can be obtained from the clique-separator graph by
simply observing that the clique-separator graph also consists
of the maximal cliques and the minimal vertex seprataors and
includes the relationships between them.

Since every join tree can be found from the clique-separator
graph, it will serve the purpose of providing a representation
that allows the user to select a particular join tree for his
application. The algorithm in [10] has steps that require an
arbitrary choice to be made. This decision can be made by
the engineer.

D. Factor Join Tree

The join tree, which is derived from the clique-separator
graph in our approach, creates a tree topology from what
may be a loopy topology, but does not contain the functions
in the original factor graph it is derived from. In order to
apply summary propagation, it is necessary to establish how
these functions are related to the join tree so that (2) can be
computed.

Theorem 6. For every factor f in the original formula there
exists at least one maximal clique in the clique-separator
graph that contains all variables in Dom(f).

Proof: Every factor f induces a clique Vf on the vari-
ables. Vf is either a maximal clique itself or a subset of k
maximal cliques C1, . . . , Ck. In either of these two cases,

6

there will be at least one maximal clique that contains all
the variables in Dom(f) and since the maximal cliques are
the nodes of the clique-separator graph, the result follows.

Because of Theorem 6, it is always possible to assign every
factor in the original factor graph to at least one of the maximal
cliques in the the clique-separator graph. These same function
assignments can be carried over to the join tree, which has
the same nodes as the clique-separator graph. When multiple
functions are assigned to the same maximal clique, we use
their product for the associated function.

The only remaining detail is the interpretation of variable
nodes in the join tree. In the join tree, variables span connected
subtrees. This is called the running intersection property, and
is well known, see [10] for references.

Property 4. Let U and V be any two vertices in a join tree
and let R = U ∩ V . Since the graph is a tree, there is a
unique path U ,P1, . . .Pk,V connecting U and V . R ⊂ Pi for
i = 1 . . . k.

To turn the join tree into a factor join tree for summary
propagation, we replace each link between nodes with a link
that passes through an intermediate variable node. The variable
node has as its variables the intersection of the variables
of the linked nodes. See Figue 8 for an example. To apply

HG ABG

DFG BCDG

DEJ DIJ

(a) A join tree derived
from Figure 7.

HG ABG

DFG BCDG

DEJ DIJ

D

DG

DJ

BG

G

(b) A factor join tree resulting
from substituting links for vari-
ables.

Fig. 8. This figure shows how variable nodes can be inserted into the join
tree to create a factor join tree. Observe that the running intersection property
(Property 4) holds on this join tree. The maximal clique nodes have not been
assigned functions here, since in this example, no functions were defined, but
if they were, then Theorem 6 could be used to assign them.

summary propagation to this as given in Figure 3, no changes
are necessary. Only the following corollary to Theorem 1.

Corollary 1. The code listing in Figure 3 generalizes for
computing (2) over factor join trees.

Proof: Function nodes do not differ in factor join trees
and regular join trees. The difference is in the variable nodes.
We need only show that variables are not summed out before
they are multiplied. This follows easily from Property 4.

E. Queries

In addition to being able to ask questions like (2), it is
also useful to be able to ask what happens when variables are
fixed to certain values. Fixing a variable to a particular value

alters the topology of the factor graph by elimination of the
corresponding variable nodes. Referring back to the example
given in Figure 1, suppose we wish to examine the system
fixed at the value of x3 = c. Figure 9 shows the resulting
factor graph. The topology shown in Figure 9 is partitioned,

x1 x2 x4 x5

fA fB gC gD gE

Fig. 9. This factor graph depicts the function shown in Figure 1
evaluated at x3 = c, g(x1, x2, x4, x5) ≡ f(x1, x2, x3, x4, x5)|x3=c,
with gC(x1, x2) ≡ fC(x1, x2, c), gD(x4) ≡ fD(c, x4) and
gE(x5) ≡ fE(c, x5). Fixing the value of x3 causes the resulting
factor graph to be partitioned into three distinct graphs.

which means that the equation has completely independent
factors. Evaluating (2) on g as defined in Figure 9 results in⊕

x1∈X1

⊕
x2∈X2

⊕
x4∈X4

⊕
x5∈X5

g(x1, x2, x4, x5)

=

[⊕
x1∈X1

⊕
x2∈X2

fA(x1)fB(x2)gC(x1, x2)

]

⊗

[⊕
x4∈X4

gD(x4)

]
⊗

[⊕
x5∈X5

gE(x5)

]
. (3)

The sum itself decomposes into three independent factors in
this case so the three trees can be evaluated independently of
one another and then combined by multiplication. Since the
resulting factor graph is simpler than the original factor graph,
the complexity of evaluation is still bounded by Theorem 2.

Another possible query is to compute an entire function of
several variables that are a subset of the original variables.
By merely iterating the above over all possible variable value
combinations we have the following.

Theorem 7. Let Z = {z1, . . . , zq} ⊂ X be a sub-
set of the input variables of a function f(X). Computing
g(Z) ≡

⊕
X\Z f(X) is bounded above in complexity by

O(

[
q∏

i=1

|Zi|

]
· n · max

k∈{1...M}
|Dom(fk)|).

This upper bound is fairly loose, but it is generally expensive
to compute functions like this because it requires computing∏q

i=1 |Zi| individual sums. It can be useful because sometimes
the topology of the graph does not allow a computational
reduction.

The effect of the computation indicated by Theorem 7 is
defining an objective function h(Z) and adding it to the
factor graph. Adding h(Z) to the factor graph proceeds by
adding the function node h and linking it to the variable
nodes associated with each of the input variables in Z . This
changes the topology of the factor graph. Recall that the
Sum-Product algorithm as defined with predictable complexity
is only for trees. Adding a node may add a loop to the

7

original factor graph. Section II-C will describe how loops are
handled in greater detail, but they are not always reducible and
sometimes can add complexity to the computation as indicated
in Theorem 7.

F. Weighted Relational Algebra (WRA)

The sum-product rule maps easily to database computations.
This was also observed in [11] in the context of Boolean
logic, but we generalize in this presentation. There are two
basic operations that are required for performing summary
propagation, the sum and the product of two functions.

Definition 7. We define the database representation, R, of
a function f(x1, . . . , xk) as follows. Let R have columns
x1, x2, . . . , xk, and w. There will be one row for R for every
possible combination of x1, . . . , xk values meaning

∏k
i=1 |Xi|

rows. Column w will be assigned the value f(x1, . . . , xk)
corresponding to the x values of that row.

The sum over a function, as indicated in the proof of Prop-
erty 2, can be executed starting with a tabular representation
of the function. Let R be as described in Definition 7. Then
the following SQL command computes the summation over
x1.

1 SELECT x2, . . . , xk , ⊕w FROM R GROUP BY x2, . . . , xk

The ⊕ operator could be SUM , MIN , MAX or any other
database aggregator that corresponds to the semiring addition
operation. The GROUP BY keyword ensures that the sum-
mation occurs over groups of common values. To modify
this query for sums other than x1, either add or remove
variables from the lists given to the SELECT and GROUP BY
statements.

The product of two functions also fits well within
a database context. Let f(x1, . . . , xm, z1, . . . , zs) and
g(y1, . . . , yn, z1, . . . , zs) be two functions sharing variables
z1, . . . , zs. Let R and S be the database representations of
f and g respectively. Then the product of the two functions
can be computed using the following statement.

1 SELECT x1, . . . , xm, y1, . . . , yn, z1, . . . , zs, wR ⊗ wS

2 FROM R INNER JOIN S ON R.z1 = S.z1, . . . , R.zs = S.zs

This operation can be thought of as a weighted natural join
since the ON condition corresponds merely to the shared vari-
ables. The ⊗ operator corresponds with the semiring product
operation.

Databases are a natural fit for performing computations of
this form because the input models are relational models,
which can be provided either parametrically, or as factor
graphs. Databases also support the creation of different ab-
stract views on the fly by the CREATE VIEW operation which
is useful if these abstract views will be used in other parts of
the system design.

III. EXAMPLES

A. Propositional Satisfiability

Amir [11] uses partitioning to reduce the complexity of
solving propositional satisfiability problems and provides a

compositional method. Here, we show how the same problem
is solved using the Sum-Product algorithm over the Boolean
semiring. Figure 10 shows a Boolean function as a loopy factor

ok_pump

on_pump

water man_fill

ok_boiler
on_boiler

steam

coffee

hot_drink

teabag

ok_pump∧on_pump→water

man_fill⊕on_pump

water∧ok_boiler∧on_boiler→steam
-water→-steam
-ok_boiler→-steam
-on_boiler→-steam

steam∧coffee→hot_drink

steam∧teabag→hot_drink

man_fill→water

coffee∨teabag

Fig. 10. This diagram shows a factor graph representing a Boolean function.
We would like to know whether there is a satisfying assignment of variables
for this Boolean function.

graph. Determining whether there is a satisfying assignment
is the same as evaluating (2) over the conjunction or product
of all the formulas. The Boolean semiring has as its domain
{0, 1} and its addition operator is ∨ while its multiplication
operator is ∧. Since this factor graph is loopy, we will not be
able to perform summary propagation, so we try to form the
factor join tree. The next step in this process is to find the
functional dependence diagram, which is shown in Figure 11.
Since the functional dependence diagram in Figure 11 is

ok_pump on_pump

water man_fill

ok_boiler

on_boiler

steam coffee

hot_drink teabag

Fig. 11. This diagram shows the functional dependence diagram of the
Boolean function depicted in Figure 10. Note that it is chordal. The maximal
cliques are also fairly apparent in this diagram.

chordal, the clique-separator graph as described in Definition 5
can be found using maximum cardinality search. Figure 12
shows the result. From the clique-separator graph, we can
determine the join tree. In this case, there are only two possible
join trees. One in which water is connected to ok_pump,
on_pump, water and the other case which is shown in
Figure 13. Applying Theorem 6 allows us to determine a factor
join tree from the join tree by assigning the formulas to the
maximal cliques that have the associated variables.

The result of this transformation is that we reduce a Boolean
satisfiability problem that has 10 variables and 210 = 1024

8

man_fill
on_pump

water

coffee
hot_drink

steam
teabag

ok_pump
on_pump

water

steam

on_pump
water

ok_boiler
on_boiler

steam
water

water

Fig. 12. The clique-separator graph for the Boolean function shown in
Figure 10. Note that the cliques form logical groupings of the variables and the
separators can be interpreted as shared variable interfaces. We can determine
the treewidth at this point as the maximal sized clique, which is 4.

steam

on_pump
water

coffee
hot_drink

steam
teabag

ok_pump
on_pump

water

water

man_fill
on_pump

water

ok_boiler
on_boiler

steam
water

man_fill⊕on_pump

man_fill→water

ok_pump∧on_pump→water

water∧ok_boiler∧on_boiler→steam
-water→-steam
-ok_boiler→-steam
-on_boiler→-steam

coffee∨teabag
steam∧coffee→hot_drink
steam∧teabag→hot_drink

Fig. 13. One possible factor join tree of Figure 10 is shown in this diagram.
Observe that the running intersection property holds.

possible assignments to investigate down to 4 Boolean satis-
fiability problems, each with less than or equal to 24 = 16
possibilities to investigate. This is a significant computational
reduction.

B. Bayesian Networks

This is the canonical application of join trees and inference
using summary propagation. This is reviewed in the book of
Pearl [12], but does not include clique-separators which give
more flexibility than finding join trees directly. In Bayesian
networks, the relevant semiring is the domain of [0, 1] ⊂ R
with addition being addition on real numbers and product
being the product of real numbers.

C. Power Restoration

The power restoration problem can be described with the
following parameters and (time varying) variables.

N number of generators
M number of loads
K number of buses
P number of load priority levels

Ci(t) ∈ R ≥ 0 for i = 1 . . . N generator capacities
Di(t) ∈ R ≥ 0 for i = 1 . . .M demands
Wi(t) ∈ RP for i = 1 . . .M load weights
Ai(t) ∈ {0, 1} for i = 1 . . .K bus availabilities

The load weights are vectors that are lexicographically or-
dered, which captures different priority levels for the loads.
Additionally, there are connectivity constraints that describe
the topology of the network.

Gi ⊆ {1 . . .K} for i = 1 . . . N buses that may
connect to generator i

Bj ⊆ {1 . . .M} for j = 1 . . .M loads that may
connect to bus j

The above variables and parameters are given inputs to the
optimization problem. The decision variables are the generator
assignments for the buses and the bus assignments for the
loads.

gj ∈ {i : j ∈ Gi} for j = 1 . . .K generator con-
nected to bus j

bk ∈ {j : k ∈ Bj} for k = 1 . . .M bus connected to
load k

There is one constraint equation that must be satisfied for each
generator i = 1 . . . N . It says that the capacity of every gen-
erator must exceed the sum of the demands of the connected
loads.

Ci(t) ≥
∑
j∈Gi

Aj(t)10(gj − i)

∑
k∈Bj

10(bk − j)Dk(t)

 (4)

Given the above constraints 6, the score is the sum of the
weights of the powered loads. For i = 1 . . . N generator i
contributes Si to the score:

Si =
∑
j∈Gi

Aj(t)10(gj − i)

∑
k∈Bj

10(bk − j)Wk(t)

 . (5)

The objective is to maximize the sum:

max
g1...gK ,b1...bM

∑
i∈{1...N}

Si. (6)

It is clear from the description and well known [13] that this
problem is a mixed integer linear program (MILP). While
MILP can determine an optimal solution, the computational
complexity is high, leading to the development of heuristic
methods, for example [14].

There is one constraint equation per generator associated
with its capacity and it has the exact same structure as the score
equation. This implies that all of the variables associated with

610(k) ≡
{

1 if k = 0
0 o.w.

9

each generator i, the potentially connected buses Gi and the
potentially connected loads to those buses

⋃
j∈Gi Bj , become

part of a single clique. Let Bi ≡ Gi ∪
⋃

j∈Gi Bj , the set
of variables in each clique. Figure 14 shows a higher order
functional dependency diagram for this set. The individual
variables are hidden and a link is shown if one clique is related
to another. Treating the variables as aggregates with additional

B9 B4

B1

B6

B3

B2

B5

B8

B10

B7

Fig. 14. This diagram shows the higher order functional dependency structure
of the cliques associated with the generators. The underlying variables are not
in a chordal relationship with one another, but this graph is chordal. If we
treat the sets of variables Bi as aggregate values, functions are introduced so
that consistency of the individual values can be maintained. The functional
dependencies for these new consistency functions are the same as those shown
in this graph.

functions to model the consistency between the individual
variables allows us to create the higher-order clique-separator
graph as shown in Figure 15 by maximum cardinality search.
Some of the separators occur only between two cliques. Any

Fig. 15. A clique-separator graph for functional dependency structure shown
in Figure 14. A slightly different notation is used here, that is consistent with
SysML block diagrams. Separators are rendered as interfaces and cliques are
rendered as blocks.

resulting join trees will necessarily have a link between those
cliques. It is possible to reduce these and produce a reduced
clique-separator graph as shown in Figure 16. The semiring

Fig. 16. The reduced clique-separator graph for the functional dependences
shown in Figure 14. This clearly shows that there are only 9 possible join
trees.

used to solve this particular example is max-plus, which
consists of a real-valued domain, with max as the addition
operator and real addition as the multiplication operation. The

functions at each node are constructed to respect constraints
(4) and the weights are given by (5), or the product (real
addition) of scores in case of aggregation.

The interesting thing about this example is that the under-
lying topology of the variables was not chordal, but chordality
at a higher level of the system design is still useful in creating
a structure suitable for summary propagation. We have also
introduced here the notion of a reduced clique-separator graph,
which is easily generated from the clique-separator graph.

1) Computational and Communication Topology: Another
interesting aspect of using factor join trees is that locality is re-
spected so that distributed algorithms are easy to create. It also
provides an answer to where to place a local computational
resource. This scheme has flexibility in that different join trees
are possible and aggregations of join tree nodes also result in
topologies that respect the structure of the computation.

IV. DISCUSSION

Systems development is coupled with the process of elicit-
ing requirements. As development proceeds, unforseen interac-
tions or scenarios are often encountered, requiring a refinement
or modification of the requirements. A design will usually
start simple, because the designer wants the system to be
as simple as possible but it seldom ends this way because
reality is seldom simple. Refactoring, or behavior performing
transformations of the system are typically used to reduce
perceived complexity as the system evolves. However, there
are no quantitative metrics for measuring the complexity and
the refactoring is performed in an ad-hoc manner. In this work,
we identified treewidth as a metric for measuring the com-
plexity of systems. Treewidth is based entirely on the logical
structure of the system, which means it can be computed from
non-rigorous SysML diagrams. SysML is often criticized for
lacking semantics, but that is also a strength, because it is less
costly to produce and thus frees a designer to reasoning at a
higher level thus preventing a kind of deep tunnel vision that
a more formal analysis method would require.

We make the suggestion that design tools should measure
the treewidth of the system because it provides insight into
the essential system complexity. While this paper focuses
on measuring treewidth of parametric diagrams, treewidth
decomposes along clique separators, which means that we
can reason compositionally about treewidth. A clique separator
would be interpreted in this sense as an interface that partitions
the system. The treewidth of the composed system is equal
to the maximum treewidth over the components. This also
means that complexity hotspots with higher treewidth can be
identified and analyzed independently.

Having a tool that makes treewidth calculations of the
system provides a way for the designer to understand the
implications of design decisions on system complexity. System
complexity is a source of bugs and unforseen system behavior.
If the system is too complex to analyze completely, then
unforseen behavior will occur by definition. An awareness of
system complexity at design time and making choices that
tradeoff complexity can therefore reduce overall system costs.

As shown in our example with the power restoration prob-
lem, the join tree provides an interesting partitioning of the

10

system from a behavior description of the system. There are
many places where the question of how to allocate behavior or
computation to a graph of computational resources. The join
trees provide structures that are in a sense compatible with
the underlying computational and logical topology. We would
expect that generally speaking, variables that are logically re-
lated correspond to physically proximate system elements and
so there is a match between the join tree, computational needs
and underlying physical system structure. Also, as shown in
the power distribution network example, summary propagation
also provides an algorithm for performing distributed inference
and optimization on such structures. For these reasons, we
suggest that aiming to design a system as a join tree could be
a useful design principle.

V. FUTURE WORK

A. Non-Chordal Graphs

While computing join trees for chordal graphs is linear in
the number of nodes and links, the general problem is NP-
complete. A great deal of research has been conducted on
computing join trees for non-chordal graphs. Vertex separators
occur in non-chordal graphs and can be exploited for factor-
ization and recursive decomposition.

B. Symbolic Tables for Infinite Sets

One of the limitations of the algorithms as described is that
they are applicable to only finite sets. We give an example
where that constraint can be lifted using communicating finite
state machines. One interesting direction for future research
would be to extend this to other classes of infinite sets using
symbolic representations.

A state machine is a tuple M =< Q,Σ,Θ, δ, λ >. Q is a
set of states, Σ is an input alphabet, Θ is a set of labels,
δ : Q× Σ→ Q is a transition function and λ : Q→ Θ is
a labeling function. Given an initial state q0 ∈ Q, every
machine Mq0 , from an input/output perspective can be seen as
a mapping Mq0 : Σ∗ → Θ∗. Note that this set of acceptable
input / output strings is infinite.

It is possible to extend this definition to build networks of
communicating state machines as follows. The input alphabet
of machine M , Σ can be defined as the Cartesian product
of the output alphabets of a set of machines M1, . . . ,Mk,
Σ = Θ1 × . . .×Θk where the machines M1, . . . ,Mk could
also have various relationships between their inputs and out-
puts. We may construct a factor graph with variable nodes
representing output traces from the domains Θi for i = 1 . . . N
where there are N machines. The relational nodes of this
graph will be the machines themselves. See Figure 17 for an
example.

To define the factor graph, the variable nodes become the
machines themselves and the constraints reflect the connectiv-
ity of the machines. The summary operator is interpreted as a
behavior preserving projection over a particular label and the
multiplication operator is merely composition of the machines.
Summary would likely use Nerode equivalence classes using
Hopcroft’s state minimization algorithm [15]. This allows us
to perform analysis using factor graphs and to enjoy the

M1 M2 M3 M4

(a) Neighboring machines.

M1 M2 M4M3

θ1 θ2 θ3 θ4

(b) Factor graph showing

interaction details.

θ1 θ2

θ3 θ4

θ1θ2θ3

θ2θ3θ4

θ2θ3

(c) Adjacency graph.

(d) Join tree.

M1⊗M2

θ1

M3⊗M4

θ4

(θ2,θ3)

(e) Factor join tree.

Fig. 17. Step by step transformation of simple communicating finite state
machines to a factor join tree. Analysis of this graph can be performed in two
components. It is interesting that even though there are 4 machines, analysis
only permits 2 major blocks. This is because, as shown in (c), M2 and M3

connect all the blocks in their neighborhoods.

computational benefits. It would be interesting to create a
model checker based on these principles.

Note that in Figure 17, because of the way the system
is defined, the state update equations end up creating large
coupled neighborhoods. An alternate way of defining a com-
municating state machine would be to define interactions
between machines and express the behaviors of the machines
themselves as products of their interactions. This would reduce
the amount of coupling between systems and allow further
factorization, but it is unclear how expressive such a formalism
would be.

C. Loopy Belief Propagation and Approximation Schemes

Loopy belief propagation has been used as an approximate
method for summary propagation in Bayesian networks [12]. It
would be interesting to see how well it approximates solutions
to optimization and constraint satisfaction problems.

D. Tool Creation

There are many tools that we envision being created around
this framework. A modeling tool using essentially the database
operations described in Section II-F could be very beneficial.
It would come with a built in mechanism for creating many
different, mathematically justified (see Figure 5), abstracted
views of a system. Other tools would be necessary for
measuring treewidth and the interactive process described for
transforming from the loopy factor graph to a factor join tree
(see Section II-C) would be helpful.

VI. CONCLUSIONS

We have presented an objective framework for determing
system structure. Rather than using heuristics or subjective
measurements, structure is defined in a way that is dependent
on the logical configuration of the system that minimizes the
complexity of answering certain optimizations or inferences
on a large class of systems. Within this framework, structure
has a certain degree of flexibility, and a unique representation,
the clique-separator graph is presented that generates every
possible realization. The framework induces mathematical

11

notions of hierarchy and abstraction that coincides well with
our intuition.

Complexity is at the root of many problems that are en-
countered in systems today. A system that cannot be analyzed
rigorously will have unanticipated behavior by definition, and
such behaviors are often undesirable. It would be interesting
to see whether developing tools that make a designer aware
of the complexity of analyzing the system improves system
quality. In this framework, systems may grow to arbitrary
size, provided relationships have strong locality properties.
The complexity of analyzing a system is dominated by the
size of its maximal clique and only linear in overall size. We
suggest that such metrics be incorporated into tools.

APPENDIX A
PROOF OF THEOREM 1

Proof: Observe that the recurse performs a full depth first
recursion of the tree starting at the input node. Ignoring lines
14-16 in Figure 3, observe that the result of the recursion is a
product of all the function nodes in the tree. This holds because
every variable node returns a product of the return values of
its children, and every function node returns a product of its
own function with the return of every child. By commutativity
of multiplication, the resulting product is equivalent to the
product in (2).

By commutativity of addition, we can freely rearrange the
ordering of the summations occurring in (2). By distributivity
of multiplication over addition, if a factor is invariant over a
sum, then it is possible to factor it out of the summation, for
example, ⊕af(a)f(b)f(c) = f(b)f(c)⊕a f(a). Thus to show
equivalence to (2), it is sufficient to show the following.

1) Every time the summation operation is applied, it cap-
tures every occurrence of the summed variable.

2) Every sum occurring in (2) occurs in Sum-Product.

(1) The summation operator on line 4 is applied to the
entire resulting formula, so it indeed captures any instance.
The only other summation operator is on line 15. Line 14
restricts summation to only variables occurring only in the
child function. This implies that the variable occurs in a
function somewhere under the current node’s hierarchy. Using
Property 1, we know that the variable cannot occur anywhere
else in the hierarchy.
(2) It suffices to show that every variable associated with
every variable node gets summed out. By inspecting lines 3-
5, we know that if the head node is a variable node, then
that particular variable gets summed out. Likewise, if it is a
function node, then all of its child node variables get summed
out. It remains to be shown that every variable occurring at a
variable node that is neither the head node nor a child of the
head node gets summed out. Let x be such a node. Since x is
neither the child of the head node nor the head node itself, it
has a grandparent that is a variable node and a parent that is
a function node. The variable associated with x is part of its
parent node’s domain, by the definition of a factor graph, thus
it will be summed out by line 15 operating on its grandparent.

APPENDIX B
PROOF OF PROPERTY 2

Proof: We may convert the function f into a tabular
representation with one row per possible value of x1, . . . , xk
as shown in the table

x1 . . . xk f(x1, . . . , xk)
X1[1] . . . Xk[1] w1

X1[1] . . . Xk[2] w2

.
X1[|X1|] . . . Xk[|Xk|] wP

letting P = |X1| · . . . · |Xk|. This operation has O(P)
complexity. To perform the summation, we construct a second
table. WLOG, assume we are summing out xk. This table
has as its columns x1, . . . , xk−1,

⊕
xk
f(x1, . . . , xk) and has

P/|Xk| rows. We initialize the function value column to zero.
To compute the table weights, we loop through every row of
the first table and add the function value to the function value
of the row that matches on the first k − 1 variables in the
second table. It is clear by construction that the second table
represents the summation function and that the complexity
of performing this computation is O(|X1| · . . . · |Xk|). The
complexity is generated by evaluating all the values in the
initial table and it does not matter how many variables we are
summing out. Summing out multiple variables has the same
complexity but results in a table with fewer columns.

APPENDIX C
PROOF OF PROPERTY 3

Proof: Note that the resulting function
h(x1, . . . , xk, y1, . . . , ym, z1, . . . , zn) can be expressed as a
table having columns x1, . . . , xk, y1, . . . , ym, z1, . . . , zn which
has P = |X1| · . . . · |Xk| · |Y1| · . . . · |Ym| · |Z1| · . . . · |Zn|
rows. Each row can be filled in by querying functions f and
g with the matching values and multiplying the results. This
operation is performed P times so the overall complexity is
bounded above by P .

APPENDIX D
PROOF OF THEOREM 2

Proof: Line 15 of Figure 3 is executed for every child
of a variable node, which means for every function node, and
by Property 2, has complexity |Dom(f)| for each function f .
Since Property 2 is invariant with respect to the number of
summed out variables, the enclosing loop formed by lines 14
and 16 does not affect this complexity. This has an upper
bound on complexity of maxk=1...M |Dom(fk)| for each
function node. Line 17 has complexity |X| and is executed
once each time line 14 is. But maxk=1...M |Dom(fk)| >
|X|, so the complexity of lines 13-17 can be bounded by
maxk=1...M |Dom(fk)| times the number of function nodes.
Line 23 is executed once per variable node and by Property 3
has complexity |Dom(f)|, which again is bounded above by
maxk=1...M |Dom(fk)|. Thus the total complexity is bounded
above by n ·maxk=1...M |Dom(fk)|.

12

ACKNOWLEDGMENT

Research supported in part by NSF grant No. 10092651
“CPS Large: Science of Integration for Cyber Physical Sys-
tems”.

REFERENCES

[1] D. Rose and R. Tarjan, “Algorithmic aspects of vertex elimination,” in
Proceedings of seventh annual ACM symposium on Theory of computing.
ACM, 1975, pp. 245–254.

[2] S. Arnborg and A. Proskurowski, “Linear time algorithms for NP-hard
problems restricted to partial k-trees,” Discrete Applied Mathematics,
vol. 23, no. 1, pp. 11–24, 1989.

[3] H. Bodlaender, “Dynamic programming on graphs with bounded
treewidth,” Automata, Languages and Programming, pp. 105–118, 1988.

[4] H. Loeliger, “An introduction to factor graphs,” Signal Processing
Magazine, IEEE, vol. 21, no. 1, pp. 28–41, 2004.

[5] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Transactions on Information Theory,
vol. 47, pp. 498–519, 1998.

[6] J. Blair and B. Peyton, “An introduction to chordal graphs and clique
trees,” Graph Theory and Sparse Matrix Computations, vol. 56, 1993.

[7] S. Arnborg, D. G. Corneil, and A. Proskurowski, “Complexity
of finding embeddings in a k-tree,” SIAM J. Algebraic Discrete
Methods, vol. 8, pp. 277–284, April 1987. [Online]. Available:
http://dx.doi.org/10.1137/0608024

[8] R. Tarjan and M. Yannakakis, “Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively
reduce acyclic hypergraphs,” SIAM Journal on Computing, vol. 13, p.
566, 1984.

[9] L. Ibarra, “The clique-separator graph for chordal graphs,” Discrete
Appl. Math., vol. 157, pp. 1737–1749, April 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1530895.1531045

[10] P. S. Kumar and C. E. V. Madhavan, “Clique tree generalization
and new subclasses of chordal graphs,” Discrete Applied Mathematics,
vol. 117, no. 1-3, pp. 109 – 131, 2002. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0166218X0000336X

[11] E. Amir and S. McIlraith, “Partition-based logical reasoning,” in Prin-
ciples of Knowledge Representation and Reasoning: Proceedings of the
7th International Conference, 2000, pp. 389–400.

[12] J. Pearl, Probabilistic reasoning in intelligent systems: networks of
plausible inference. Morgan Kaufmann, 1988.

[13] T. Nagata, H. Sasaki, and R. Yokoyama, “Power system restoration by
joint usage of expert system and mathematical programming approach,”
Power Systems, IEEE Transactions on, vol. 10, no. 3, pp. 1473–1479,
1995.

[14] T. Nagata and H. Sasaki, “A multi-agent approach to power system
restoration,” Power Systems, IEEE Transactions on, vol. 17, no. 2, pp.
457–462, 2002.

[15] J. E. Hopcroft, “An n log n algorithm for minimizing states in a finite
automaton,” Stanford, CA, USA, Tech. Rep., 1971.

