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Abstract—We consider a typical crowdsourcing task that ag-
gregates input from multiple workers as a problem in information
fusion. To cope with the issue of noisy and sometimes malicious
input from workers, trust is used to model workers’ expertise. In
a multi-domain knowledge learning task, however, using scalar-
valued trust to model a worker’s performance is not sufficient
to reflect the worker’s trustworthiness in each of the domains.
To address this issue, we propose a probabilistic model to jointly
infer multi-dimensional trust of workers, multi-domain properties
of questions, and true labels of questions. Our model is very
flexible and extensible to incorporate metadata associated with
questions. To show that, we further propose two extended models,
one of which handles input tasks with real-valued features and
the other handles tasks with text features by incorporating topic
models. Finally, we evaluate our model on real-world datasets and
demonstrate that our model is superior to state-of-the-art and the
two extended models have even better performance. In addition,
our models can effectively recover trust vectors of workers, which
can be very useful in task assignment adaptive to workers’ trust in
the future. These results can be applied for fusion of information
from multiple data sources like sensors, human input, machine
learning results, or a hybrid of them.

I. INTRODUCTION

In a crowdsourcing task, in order to estimate the true labels
of questions, each question is distributed to the open crowd and
is answered by a subset of workers. The answers from workers
are then aggregated, taking into account reliability of workers,
to produce final estimates of true labels. Example questions are
image label inference with multiple annotators’ input, topic-
document pair relevance inference with crowd’s judgements,
Bayesian network structure learning given experts’ partial
knowledge, and test grading without knowing answers. Most
past research ignores the multi-domain property present in
the questions above. For example in test grading without
golden truth, bio-chemistry questions require knowledge in
both biology and chemistry. Some are more related to biology
while others are more related to chemistry. Similarly, workers
also exhibit such multi-domain characteristics: people are good
at different subjects. The above observations motivate our
modeling of multi-domain characteristics for both questions
and trust in workers’ knowledge and the design of principled
methods for aggregating knowledge input from various unre-
liable sources with different expertise in each domain.

In this paper, we propose to model each question by a
concept vector, which is a real random vector where the value
in a particular dimension indicates its association in that di-
mension. Back to the test grading example, each bio-chemistry
question is represented by a two-dimensional hidden concept
vector with the first dimension being chemistry and the second
dimension being biology. So a concept vector [0.7,0.3] means
the question is more associated with chemistry. Note that the
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Chemistry

Fig. 1. Multi-domain property of questions and workers in the test grading
example. () represents a question with concept vector [0.7, 0.3] shown on the
edges. Several workers with different two-dimensional trust vectors provide
answers.

concept vector can be far more general than this. In the case
of identifying causal relationships between entities, reasoning
ability and past experience are two dimensions of the concept
vector. Each worker is modeled also by a trust vector, which
is a real random vector with each dimension representing the
trustworthiness of the worker in that dimension. The multi-
domain property of questions and workers for the biology-
chemistry example is illustrated in Fig. 1. Our goal is to
better estimate the true labels of question Q by fusing answers
from multiple unreliable workers with varying trust values
in each of the domains. Note that the concept vectors of
questions and the trust vectors of workers are both hidden.
We therefore propose a probabilistic model that incorporates
questions’ concept vectors, workers’ trust vectors, answers
submitted by workers and design an inference algorithm that
jointly estimates true label of questions along with concept
vectors and trust vectors. The inference algorithm is based on
a variational approximation of posterior distributions using a
factorial distribution family. In addition, we extend the model
by incorporating continuously-valued features. In applications
where each question is associated with a short text description,
each dimension of the concept vector corresponds to a topic.
Therefore we further propose an extended model that integrates
topic discovery.

Our contributions are as follows:

e  We formulate a probabilistic model of crowdsourcing
tasks with multi-domain characteristics and propose a
novel inference method based on variational inference.

e  Our model is very flexible and can be easily extended.
In applications where each question comes with a fea-
ture vector, we further develop an extended model that
handles questions with continuously-valued features.

e  We further extend the model by combining a multi-
domain crowdsourcing model with topic discovery
based on questions’ text descriptions and derive an



analytical solution to the collective variational infer-
ence.

II. RELATED WORK

There are a lot of works on how to leverage trust models to
better aggregate information from multiple sources. Conflicts
between information provided by different sources were used
to revise trust in the information [12]. Trust was also used as
weights of edges in the sensor network and was integrated into
distributed Kalman filtering to more accurately estimate the
state of a linear dynamical system in a distributed setting [7].
Local evidence was leveraged to establish local trust bewteen
agents in a network and those local trusts were then used to
isolate untrustworthy agents during sensor fusion [6].

In the context of crowdsourcing tasks to the open crowd,
many works develop models for aggregating unreliable input
from multiple sources to more accurately estimate true labels
of questions. [10] combined multiple weak workers’ input
for constructing a Bayesian network structure assuming each
worker is equally trustworthy. Workers’ trust was considered
to improve accuracy in aggregating answers in [3], [5], [9],
[13].

A model that jointly infers label of image, trust of each
labeler and difficulty of image is proposed in [15]. However,
they model questions and workers using scalar variables and
they use the Expectation-Maximization inference algorithm,
which has long been known to suffer from many local optima
difficulties. Another work that went a step further based
on signal detection theory is [14], where they assume each
question comes with a feature set and models each worker
by a multidimensional classifier in an abstract feature space.
Our model can handle more general cases without such an
assumption and when text information is available for each
question, each dimension of a question becomes interpretable.
Moreover, it is difficult to find analytical solutions to posterior
distributions of hidden variables in [14]. An approach in the
spirit of test theory and item-response theory (IRT) was pro-
posed in [1] and they relied on approximate message-passing
for inference. Their model is not as flexible and extensivle
as our model because they have to redesign their model to
incorporate rich metadata associated with each question.

III. PROBLEM DEFINITIONS

We assume there are M workers available and IV questions
whose true labels need to be estimated. We use R; to denote
the true label variable of question ¢, where R; € {0,1}. Each
question is answered by a subset of workers M; and we denote
the answer of question ¢ given by worker j by l;; € {0,1}.
The set of questions answered by worker j is denoted by N;.

The multi-domain characteristics of question ¢ are repre-
sented by a concept vector \;, a D-dimensional real-valued
random vector, where D is the total number of domains. To
simulate a probability distribution, we further require \; €
[0,1],l =1,...,D and ZZD=1 Aii = 1, where \;; denotes the
[th dimension of the concept vector. We impose a Dirichlet
prior distribution for concept vector \; with hyperparameter
a = {o}2,, where a; denotes the soft counts that specify
which domain a question falls into a priori.
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Workers contribute to the estimation of the true label of
questions by providing their own guesses. However, workers’
inputs may not be reliable and sometimes even malicious. In
multi-domain crowdsourcing tasks, different workers may be
good at different domains. The multi-dimensional characteris-
tics of a worker is described by a D-dimensional trust vector
B; ={Bj1,---,Bji,---,B;p}, where 5;; denotes j-th worker’s
trust value in domain / and it takes either a continuous or a
discrete value. In the discrete case, the inference is generally
NP-hard and message-passing style algorithms are used. We
consider the continuous case only where 3; € [0, 1]P, V5.
Higher value of j3;; indicates that worker j is more trustworthy
in domain [. The true value of 3;; is usually unknown to the
crowdsourcing platform. It has to be estimated from answers
provided by workers. We assume a Beta prior distribution for
Ba with hyper-parameter 8 = {6y, 61}, where 6y > 0 is the
soft count for worker j to behave maliciously and §; > 0 is the
soft count for worker j to behave reliably. This interpretation
resembles the Beta reputation system [4] that models beliefs
of workers.

We aim to estimate the true labels of questions and trust
vectors of workers from answers provided by workers.

IV. MULTI-DOMAIN CROWDSOURCING MODEL

We describe the generating process for the Multi-Domain
Crowdsourcing (MDC) Model in this section.

1) For each question i € {1,...,N},
a) draw the domain distribution \;|a ~ Dir(«);
b) draw domain C;|\; ~ Discrete()\;);

2) For each question ¢, draw the true label R; ~
Uniform(0, 1);

3) For each worker j € {1,...,M} and domain [ €
{1,..., D}, draw the trust value /3;; ~ Beta(6);

4) For each question-worker pair (i, 7), draw observed an-
swer lij ~ F (RZ, /3]’, CZ)

In step 1, the domain for question ¢ is then drawn according
to a discrete distribution with parameter )\;, i.e. generating
C; = [ with probability A;;. In step 3, we profile each worker
by a vector 3; with §;; drawn from a Beta distribution. In
step 4, the observed answer of question 7 provided by worker
7 is drawn according to an output distribution F, a Bernoulli
distribution. We will specify the form of this output distribution
in the following paragraph.

The generating process is illustrated in Fig. 2. The joint
probability distribution is

N

p(L,R,B,C.N) =[] p(ri) p(Nila) p (Ci|\i) -
(M
1TrB) [ Ip sl Ci=1,85)

j=1 =1

where N is the total number of questions, M is the total work-
ers, and D is the total number of domains. p (1;;|r;, C; = {, 5;)
is the output distribution F' in Fig. 2 and is the likelihood of
worker j’s answer given its expertise vector and the domain
variable of question ¢, and the true label. p (r;), and p (5;) are
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Fig. 2. The graphical model for observed data provided by workers L,
multi-domain expertise (3, true labels R, domain variables C, and concept
vectors A\. M is the total number of workers. N the number of questions.
a is the hyperparameter of the Dirichlet prior distribution for A and 6 is the
hyperparameter of the Beta prior distribution for /3.

prior distributions. F can be compactly expressed as:
pliglri G =1,63) = B~ (L= g 177 @)

where 1{l;; =r;} is an indicator function taking the value
of 1 if the observed label given by worker j to question % is
equal to the ground truth. We assume a non-informative prior
for true label p(r; = 1) = p(r; = 0) = 1.

A. Inference And Parameter Estimation

In order to estimate the questions’ true labels r;,7 =
1,..., N and workers’ trust vectors 3;,j = 1,..., M, their
posterior distributions need to be computed. However, the com-
putation of posterior distributions involves integrating out a
large number of variables, making the computation intractable.
We propose to use a variational approximation of the posterior
distribution of variables in equation (1) with a factorized
distribution family:

a(R,5,C.)) = [T atr)) [T aNilan) [T a(Co) [T a (8101
i A A 7,0
3

The optimal forms of these factors are obtained by maximizing
the following lower bound of the log likelihood of observed
labels Inp(L):

Inp(L) >Elnp(L,R,8,C,\) —Elng(R,5,C,\) (4
q q

We show inference details in Algorithm 1. Updates for each
factor are derived in the Appendix. Upon convergence of
Algorithm 1, we obtain the approximate posterior distributions
of the questions’ true labels {r;}’s and of the workers’ trust
vectors {f3;}s.

B. Integration with Features

Algorithm 1 ignores features of questions. In most cases
we do have features associated with questions. These features
help us better estimate both the questions’ true labels and the
workers’ trust vectors. Our proposed model MDC can be easily
extended to incorporate question features. The extended graph-
ical model is shown in Fig. 3, where x denotes the features
observed. We call this extended model MDFC. Intuitively, the
features associated with questions allow us to better estimate
the questions’ concept vectors and the workers’ trust vectors
so that true labels of questions can be more accurately inferred.

Let’s assume question ¢’s feature vector z; is a K-
dimensional real-valued vector. The likelihood of feature z;,
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Algorithm 1: Multi-Domain Crowdsourcing

Input: initial values of hyperparameters «, 6

Output: approximate posterior ¢ (R, 8,C, \)

Do the following updates repeatedly until convergence.
1) First update ¢(8;),Vj =1,...,M,l=1,...,D,
sequentially, in the following way:

q(Bj1) o Inp(Bj) + > Blup (lylrs, Cs = 1, ))
ien; ?
(5)
2) Then update g(r;),Vi = 1,..., N, sequentially, in the
following way:

hlq(T'i) X Z Elnp(lz]hz,C’Z = l,ﬂj) (6)
jen;

and then normalize ¢(r;),r; € {0,1} to make them
valid probabilities.
3) Then update g(\;):

Ing(A\;) o< Inp(N;) + Igjlnp(CiP\i) (7
4) Then update ¢(C; = 1):

lnq(C’,;) e (Ig)lnp(cz‘)\z) +Elnp(lij|7"i701; = l,ﬁj)
qlAqi q
(8)

Fig. 3. The graphical model for observed data provided by workers L,
features x, multi-domain expertise 3, true labels R, domain variables C, and
parameter for domain distribution A. p, 3, w, and § are model parameters.

given domain variable C;, is modeled by a multivariate Gaus-
sian distribution with y;’ as the K-dimensional mean vector
of the /-th domain and ¥; as the K x K covariance matrix:

Inp(z;|C; =1) x —% (z; — ,ul)T Efl (xy — ) — %ln |2,

)
where |3;| denotes the determinant of the covariance matrix of
the /-th domain. The conditional distribution of the true label
variable R;, given feature variable z;, can take various forms.
We use the logistic regression model:

p(ri =1]z;) = (1+exp (—wz —8)) " (10)

where w is the regression coefficient and ¢ is the intercept for
the regression model.

The inference and parameter estimation of MDFC differs
from Algorithm 1 in three ways: first, the update of ¢(C;)



includes an extra term Inp(z;|C; = [); second, the update of
q(r;) includes an additional term p(r;|x;); third, there is an
additional M-step to estimate model parameters p;’s, X;’s,
w, and 0 given current approximate posteriors. The details of
variational inference and model parameter estimation of MDFC
is similar to that of MDTC and are shown in the Appendix.

C. Integration with Topics Models

In many crowdsourcing applications, we can often get ac-
cess to questions’ text descriptions. Given the text description,
we can use the latent Dirichlet allocation to extract topic
distribution of a question [2]. The advantage of topic models
over the Gaussian mixture model in Section IV-B is that the
domains (topics) are of low dimensions and are easier to
interpret. For example, using topic models, a question might
be assigned to the domain of sports while another question
assgined to music domain. For a crowdsourcing platform, it
needs to profile a worker’s trust in all these interpretable topics
instead of some latent unexplainable domain. We call this
extended model with topic discovery MDTC and we will exploit
the topic discovery of questions in the experiments section.

Each topic corresponds to one domain of a question. The
learned topic distribution can then be used as a damping prior
for domain variable C. We show that our MDC is flexible to
incorporate topics models and it is an easy extension to jointly
infer topic distribution and the true labels of quesitons and the
workers’ trust vectors in equation (1).

In addition to obtaining posterior probability distributions
for R, B, C, A, we can also obtain the posterior distribution
for the topic distribution for the k-th word in the ¢-th question
Zik, and the word distribution for [-th topic ¢; simultaneously.
Denote n;,, as the number of occurances of word w in question
¢ and 1;,; as the probability that the word w in question ¢ is
associated with domain /. The variational inference process
differs from Algorithm 1 in the following ways:

1) The A;s have a Dirichlet posterior distribution with pa-
rameter oy +¢q(Cs = 1)+, NiwNiwl Where D Nl
is the additional term introduced by topic discovery.

2) The update of g(2;y = 1) = My follows:

In N X EInp(zi = UA;) + Eln ¢y (11)
q q

where ¢, = p (wix = wl, zix = 1) .
3) The ¢s have a Diricilet posterior distribution with pa-
rameter Y'; as follows:

le =T+ Z Miap Miwl (12)

where Y is the hyper-parameter of the Dirichlet prior distri-
bution.

V. EXPERIMENTS

In this section, we compare our proposed models MDC,
MDFC, and MDTC with crowdsourcing models with single di-
mensional trust (SDC) and show that our models have superior
performance on both the UCI dataset and scientific text dataset.
In addition, our models can effectively recover the workers’
trust vectors which can be used to match the right workers
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Fig. 4. The graphical model for MDTC. L are observed answers from workers,
w;k is word k observed in question ¢, multi-domain expertise (3, true labels
R, domain variables C, parameter for domain distribution A, topic distribution
for word k in question 7 : z;;, word distribution for domain [ : ¢;.

to a given task in the future. The models we consider for
comparison are listed as follows:

1) MDC: our proposed multi-domain crowdsourcing model
without features.

2) MDFC: extended model of MDC with continuously-valued
features.

3) MDTC: another extended model of MDC that combines
topic model given text descriptions associated with ques-
tions.

4) MV: the majority vote as the baseline algorithm.

5) SDC: the state-of-the-art in [5]. We call this algorithm
SDC because it is equivalent to MDC when each worker
is represented by only a scalar variable (single domain in
our case)

A. UCI datasets

We conducted experiments on the pima dataset from UCI
Machine Learning Repository! [8]. Each data instance corre-
sponds to a 8-dimensional feature of an anonymous patient.
The dataset consists of 768 data intances and we ask the
following question for each instance: should the patient be
tested positive for diabetes. Since there are no worker-provided
labels in this dataset, we simulate workers with varying re-
liability in different domains. We adopt k-means clustering
to cluster the data into two clusters (domains). Therefore,
each worker is profiled by a two-dimensional random vector.
Details of the simulated workers are shown in Table 1. Type
1 workers are malicious in both domains, answering questions
correctly with probability 0.5, type 2 workers answer questions
in domain O correctly with probability 0.95 and answer those in
domain 1 correctly with probability 0.5 while type 3 workers
answer questions in domain 0 correctly with probability 0.5
and answer questions in domain 1 correctly with probability
0.95, and type 4 workers are good at questions in both domains
and answer questions correctly with probability 0.95. In order
to show that our model MDC and MDFC works with increasing
number of workers that are not trustworthy, we simulated
several groups of worker settings with increasing number of
type 1 workers.

We compare MDC with MV and SDC when no features are
included and compare MDFC with MV and SDC when features
are incorporated. We use accuracy as the evaluation criterion

Uhttp://archive.ics.uci.edu/ml/datasets.html?sort=name Up&view=list



TABLE 1. WORKER SETTINGS FOR UCI DATASETS
worker type \ domain 0  domain 1
type 1 0.5 0.5
type 2 0.95 0.5
type 3 0.5 0.95
type 4 0.95 0.95

TABLE II. ERROR RATES OF VARIOUS METHODS ON UCI DATASET

PIMA INDIANS.

pima dataset | MV SDC_ MDFC__ MDC

(1,2,2,1) 0.098  0.040  0.009 x
(2,2,2,1) 0.103  0.042  0.009 X
(3,2,2,1) 0.150  0.042  0.008 X
,2,1),NF | 0.098  0.040 x 0.039
,1),NF | 0103  0.042 x 0.043
,2,2,1),NF | 0.150  0.042 x 0.041

In the expression (1, 2,2, 1), the four numbers from left to right mean: there are 1
worker of type 1, 2 workers of type 2, 2 workers type 3, and 1 worker of type 4. NF
means omitting the features in pima dataset.

and report results in Table II, where the first column denotes
worker settings.

When features are used, MDFC results in lowest error rates.
When features are omitted, MDC and SDC perform nearly
equally well. This could be explained by that when features
are not utilized to infer domain distributions for questions, the
estimated domain distributions by MDC might be inconsistent
with the truth. However, MDC is still very attractive because
it can still effectively estimate the workers’ reliability in
different domains as shown in Fig. 5(d). This can be useful
for task assignment adaptive to workers’ trust in the future.
Specifically, upon arrival of a new task, we can use the
estimated profile of workers to match the question belonging
to a particular domain to a worker that is trustworthy in that
domain. For example, consider the case when we need to know
the true label of a new question that belongs to a certain
domain. Then we can match the question with workers that
have the highest reliability in that domain.

In Fig. 5, we show that both MDC and MDFC can effectively
estimate workers’ trust values in both domains considered.
Each triangle stands for a worker’s trust profile (a two-
dimensional real-valuded trust vector) and the dotted circle
is used to cluster workers whose estimated trust values are
close to each other. Taking a closer look at Fig. 5(a), we see
that one worker is clustered close to (0.51,0.51), two workes
close to (0.95,0.5), two workers close to (0.5,0.96), and one
worker close to (0.95,0.95). This estimation of trust vectors
is consistent with the worker setting (1,2,2,1). Workers’
trust vectors can also be effectively estimated in other worker
settings in Fig. 5(b), Fig. 5(c), and Fig. 5(d).

B. Text Data

To evaluate MDTC, we tested our model on 1000 sentences
from the corpus of biomedical text with each sentence anno-
tated by 5 workers [11]. Each worker answers whether a given
sentence contains contradicting statements (Polarity). Each
sentence has the scientific text along with the labels provided
by 5 experts. However, since the labels provided by experts are
almost consensus and the naive majority vote algorithm gives
ground truth answers, we need to simulate workers of varying
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Fig. 5.  Estimated worker reliability under different simulation settings
on pima indians dataset. The estimated trust about workers’ knowledge in
Fig. 5(a), Fig. 5(b), and Fig. 5(c) are by MDFC and the results in Fig. 5(d)
are by MDC.

trust of knowledge in different topics. When the number of
topics (domains) is D, we simulate D workers in total, where
worker j answers topic j close to perfectly (probabililty of
right guess 0.97) and answers questions in topics other than
7 nearly randomly (probability of right guess 0.64). For each
simulation setting, we repeat 30 times and report the mean
error rate.

To the best of our knowledge, there is no comparative
model that integrates topics models into a probabilistic crowd-
sourcing framework in the literature, therefore we compare the
performance of MDTC with MDC that ignores topic information
and with the baseline majority vote algorithm. The mean
error rates are reported in Table III. We can see that in all
experiments with the number of topics ranging from 4 to 14,
MDTC gives the lowest error rate, outperforming MDC by over
50%. This strongly demonstrates the power of MDTC over
other models that do not take into account text information.

To further show that MDTC can effectively recover the
reliability of workers in different topics, we plot, for each
worker, the mean value of trust for each worker in each of
the eight topics (T8) as a heatmap in Fig. 6. The x-axis
denotes topic index and the y-axis denotes worker index.
The intensity of the color in the j-th row and [-th column
denotes the trust value of worker j in [-th dimension. We
can see that the diagonal blocks have more intense color than
others, which is consistent with the simulation setting where
each worker j € {0,1,...,7} is trustworthy in topic j and
is not reliable in topics other than j. The estimated trust
vectors of workers in all eight topics can be very useful in
the following scenario: if for example a new question with
concept vector [0.93,0.01,0.01,0.01,0.01,0.01,0.01,0.01] is
added, we probably want to match this question with a worker
whose trust vector has high value in the first dimension. The



TABLE III. ERROR RATES OF VARIOUS METHODS ON TEXT:POLARITY.
T4 DENOTES THE ASSUMPTION OF 4 TOPICS.
scientific text | MV MDC  MDTC
T4 0.181 0.095 0.044
T6 0.160 0.089 0.037
T8 0.141 0.082 0.034
T10 0.125 0.074 0.032
T12 0.116 0.069 0.032
T14 0.100 0.064 0.032
0 random
1|
Py
0
o,
]
¥
N good
5
61
T expert
topics
Fig. 6. Trust matrix about workers’ knowledge over topics estimated by

MDTC model.

representative words (top 10 words with the highest probability
in a particular topic) in all eight topics are shown in Table IV.

VI. CONCLUSION

In this paper, we propose a probabilistic model (MDC)
that captures multi-domain characteristics of crowdsourcing
questions and multi-dimensional trust of workers’ knowledge.
To show that our model MDC is very flexible and extensi-
ble to incorporate additional metadata associated with ques-
tions, we propose an extended model MDFC that incorporates
continuously-valued features of questions and MDTC that also
combines topic discovery. MDTC has the advantage that the
domains are interpretable. We show that our proposed models
have superior performance compared to state-of-the-art on two
real datasets and can effectively recover the trust vectors of
workers. This can be very useful in task assignment adaptive

TABLE IV. REPRESENTATIVE WORDS IN TOPICS ON SCIENTIFIC TEXT

topicO ins, protein, cells, express, activity, mutant, resulted, similar,
human, rna

topicl ins, cells, binding, two, presence, day, method, study, acids,
reporter

topic2 ins, binding, process, protein, cells, quot, factor, structure,
dna, splice

topic3 ins, cells, blotting, protein, using, analysis, western, express,
antibodies, demonstrate

topic4 ins, signal, wnt, cells, activity, resulted, using, protein,
pathway, regulation

topic5 ins, system, two, sequences, suggest, cloning, data, effects,
transcripts, different

topic6 ins, activity, cells, dna, binding, forms, gene, required,
phosphorylation, receptor

topic7 ins, min, cells, containing, activity, described, incubated,
protein, mms, buffer
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to workers’ trust values in different dimensions in the future.
We assume answers from workers are collected first and are
then fed to models for inference. For future work, we will
investigate the problem of choosing which question to be
labeled next by which worker based on the trust vectors of
workers.

The results in this paper can be applied for fusion of
information from multiple unreliable data sources instead of
just workers in the open crowd. Examples of data sources
are sensors, human input, and inference results given by
another system backed by a different set of machine learning
algorithms. Each of the data sources can be treated as a
“worker” in this paper and we can thereafter use models in
this paper to estimate the multi-domain trust values of the data
sources and true labels of questions.
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VIII. APPENDIX

This appendix derives the approximate posteriors in MDC,
MDFC and MDTC using variational inference.
A. Updates in MDC

1) Update each factor q(fB;i):
¢(B;1) has the following form:

by variational approach,

Ing(B;1) o< Inp(B;ul6j10,0511) + D Elnp (lijlri, Ci =1, 55)
1€EN;
=0+ Y a(Ci=Dg(Ri =1j) | nB;
iEN;
+ | 00+ D a(Ci=Da(Ri # lij) | In (1= Bjn)
iEN;
(13)

We can see that the above posterior of ¢(3;;) has Beta
distribution Beta(Qﬂ) with parameter 911 = [0j10, 9111],~where
00 = Ojio + Xien, 4(Ci = Da(Ri # 1) and O =
Ojin + 2 ien, 4(Ci = Da(Ri = Lj).
2) Update each factor q(r;):
posterior of ¢(r;) takes the form:

+ > Elnp (lylri, Ci, )

the optimal approximate

Ing(r;) o< Inp(r;)

]E]M
= Inp(r;) Z Z(hl [5UElnﬁ,l+( —0;)Eln(1 - Bj1)
JEM; 1=1 e
(14)

where ¢;; = q(C; = [). The expectation of logarithmic beta
variables

Elnﬁjz = ¥(0n) — Y011 + Oj10)
and

Igln (1= Bj) = ¥(Bj10) — (@51 + 0510



where 1(-) is digamma function. Then ¢(r;) is normalized in
order to be a valid probability.

3) Update each factor q(X;): assume )\; takes a Dirichlet
prior with parameter {c;}2,. We have

Inq(N;) o< Inp(N;) + Elnp(CiP\i)

-l—Zq
(15)

where &;; = a; + q(C; = 1). It is evident that the poste-
rior ¢()\;) also has a Dirichlet distribution with parameters

{&il}lzl‘
4) Update each factor q(C;): We have

D
DlnAy =In H NGt
=1

=Inp(A

Ing(C; =1) x (E)lnp( s =UN) +Elnp (L]r:, Ci =1, 85)
q
= E In)\
q(As) .

+ E [ ri = liz) Elnﬂ]l“"](n#ZU)Eln(l_Bﬂ)}
JEM;
(16)

where

D
E In); =
aO) N A = azl <kz )

B. Updates in MDFC

The updates in MDC are divided into two steps: E-step
and M-step. In E-step, we obtain the approximate posterior
distributions for different random variables in our model given
current estimates of model parameters y;’s, 3;’s, w, and 0.
In M-step, the model parameters are obtained given current
posterior approximations. E-step and M-step are iterated until
convergence.

1) E-step: Since the updates of posterior distributions of
Bj’s and \;’s are the same as those in MDC, we just show the
updates of ¢(C;)’s and ¢(r;)’s below:

For ¢(C;), besides the terms in equation (16), it has an
extra term:

1 _
=5 @i = )" S (i ) —

1
S I (2 — )

lnp(wzicz = lv,u’l7 El) =

a7
where ()T denotes the transpose of the term inside the
parenthesis. For ¢(r;), besides the terms in equation (14), it
has an additional term:

p(rilz;) = o(w
=o(w"
(18)

where o(x) denotes the sigmoid function and 1{r; = 1}
denotes the indicator function that equals to 1 if ; = 1 and
equals to O if not. The second equality in equation (18) holds
because for the sigmoid function we have o(—z) = 1 — o(2).

Ty 4 o)t ri=t) (1- a(mei + 6))”“10}
zi 4 6)Hri=l g (—wTy; — §)Hri=0}

580

2) M-step: In order to estimate the model parameters ;’s,
>’s, w, and 6, we adopt alternating optimization by optimizing
one set of the parameters while fixing the others. The objective
function is the expectation of the logarithm of the likelihood
function Q = E;Inp (L, R, 8,C, A|p, X, w, ) given current
approximate posteriors ¢q. Then we have:

Zil\;1 q(C; = D)y

new

A S Tey)
nnew _ Zz q(cl = l) ( M}new) (‘T’L — uiﬂew)T
: Zi:1 q(C; =1)
N
g—g = Z [q(r; = Do(wz; +6) — q(r; = 0)o(—wz; — §)]x
N
%—? = Z [q(r; = V)o(w"z; +6) — q(r; = 0)o(—w" z; — §)]

i=1
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To obtain the optimal values of w and §, we derive the first
order derivatives gfw and 65 and use the L-BFGS quasi-
Newton method [16].

C. Updates in MDTC

The updates for the parameters of the variational posterior
distribution for Cj, Bj;, and 7; remain the same since no
additional dependencies for those variables are introduced as
shown in Fig. 4. We derive the posteriors for A;, z;,, and ¢;.

1) Update each factor q(\;): We have

Ing(A;) o exp {lnp(ki) + Elnp(Ci|\) + ZElnp(zini)}
q — 4

D ~
X H )\ila”71
=1
(20

where &;; = oy +q(C; = 1)+, NiwNiwi- @ is the parameter
of the prior Dirichlet distribution of A.

2) Update each factor q(¢;): We have

Ing(¢1) o Inp(dy) ZElnp (wik| b, 2ir)

@1)
= Inp(¢1) +Zq Zik = 1) I Gpu,,

It is evident that ¢; has a Dirichlet posterior distribution with
parameter:

le =71+ Z Tiw Niwl
i
3) Update each factor q(z;,): We have
In i < Elnp(zi = UN;) + Eln ¢y
q q

=ElnX;+Eln¢op, (22)
q q

where E; In ¢, = 9( le -
normalize 7,1, = 1,.

(3, Y1w')- Then we need to
,D to form Vahd probabilities.
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