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Abstract

In this paper we introduce a discrete-time, distributed optimization algorithm executed by a set of

agents whose interactions are subject to a communication graph. The algorithm can be applied to opti-

mization problems where the cost function is expressed as a sum of functions, and where each function

is associated to an agent. In addition, the agents can have equality constraints as well. The algorithm can

be applied to non-convex optimization problems with equality constraints, it is not consensus-based and

it is not an heuristic. We demonstrate that the distributed algorithm results naturally from applying a first

order method to solve the first order necessary conditions of an augmented optimization problem with

equality constraints; optimization problem whose solution embeds the solution of our original problem.

We show that, provided the agents’ initial values are sufficiently close to a local minimum, and the

step-size is sufficiently small, under standard conditions on the cost and constraint functions, each agent

converges to the local minimum at a linear rate.

I. Introduction

Recent years’ technological advances in wireless networks re-fueled the interest of the research

community in applications where complex tasks are executed over large networks by a large set

of agents. Such applications can include autonomous/unmanned vehicles, parallel computing,

sensor networks for monitoring and tracking, and so on. The execution of these applications

over large networks makes a centralized coordination unfeasible. As a consequence, researchers

have looked for distributed strategies where although each agent makes decisions based on limited

information, the overall result is comparable with the result obtained had a centralized strategy

been used.

Multi-agent distributed optimization problems appear naturally in many distributed applications

such as such as network resource allocation, collaborative control, estimation and identification,



2

and so on. In these type of applications a group of agents has as goal the optimization of a cost

function under limited information. The limited information can take the form of communication

with only a set of neighboring agents or/and awareness of only a part of the cost function (or

constraints, if they exist).

A particular formulation of a distributed optimization problem refers to the case where the

optimization cost is expressed as a sum of functions and each function in the sum corresponds

to an agent. In this formulation the agents interact with each other subject to a communication

network, usually modeled as a directed/undirected graph. This formulation is often found in

wireless network resource allocation problems [14] or in finite horizon optimal control problems

with separable cost functions [2].

A first distributed algorithm for solving an optimization problem of the type described above

was introduced in [13]. The algorithm, referred to as ”distributed subgradient method”, is used

to minimize a convex function expressed as a sum of convex functions:

min
x

N∑
i=1

fi(x).

In this algorithm each agent uses a combination of the standard (sub)gradient descent step with a

consensus step to deal with the limited information about the cost function and about the actions

of the agents, and takes the form:

xi,k+1 =

N∑
j=1

ai jx j,k −αi,kdi,k,

where the indices i and k refer to agents and discrete time, respectively, ai j are the entries of a

stochastic matrix whose structure depends on the communication graph, di,k is the (sub)gradient

of function fi(x), computed at xi,k, and αi,k is the step-size of the (sub)gradient descent step.

Many subsequent versions of this algorithm appeared in the literature. The introduction of

communication noise and errors on subgradients was addressed in [11], [15], while the case where

the communication network is modeled as a random graph was treated in [8], [10]. Analyses

of asynchronous versions of the algorithm can be found in [11], [17]. A further extension was

proposed in [9], where the authors considered state-dependent communication topologies.

A modified version of the distributed subgradient method was introduced in [5], [6], where

the authors change the order in which the two operations of the algorithm are performed. More
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specifically, first the subgradient descent step is executed, followed by the consensus step, and

takes the form

xi,k+1 =

N∑
j=1

(
ai jx j,k −α j,kd j,k

)
.

The algorithms discussed above became popular in the signal processing community as well,

being used for solving distributed filtering and parameter identification problems [3], [16].

In this paper we study a distributed optimization problem similar to the formulation proposed

in [13], namely the goal is to minimize a function expressed as a sum of functions, where each

function in the sum is associated to an agent. In addition, we assume that each agent has an

equality constraint, as well. Distributed algorithms for solving constrained optimization problems

were already studied in the literature. The focus was on convex problems: the cost and constraint

sets are assumed convex. The algorithms are based on a combination of a consensus step (to

cope with the lack of complete information) and a gradient projection step and they consider

that either all agents use the same constraint set [7], [11], [15] or each agent has its own set

of constraints [12], [17]. We do not make any convexity assumptions on the cost and constraint

functions, but we assume they are continuously differentiable. We propose a distributed, discrete-

time algorithm that, under standard assumptions on the cost and constraint functions, guarantees

convergence to a local minimizer (at a linear rate), provided that the initial values of the agents

are close enough to a (local) minimum and a sufficiently small step-size is used. The most

interesting aspect of this algorithm is that it is not an heuristic algorithm, but follows naturally

from using a first order numerical method to solve the first order necessary conditions of an

augmented optimization problem with equality constraints; optimization problem whose solution

embeds the solution of our original problem.

The paper is organized as following: in Section II we formulate the constrained optimization

problem and introduce a distributed optimization algorithm to solve it. Section III presents the

origins of the algorithm by demonstrating that our initial optimization problem is equivalent to

an augmented optimization problem with equality constraints. In Section IV we give sufficient

conditions so that local convergence to a local minimum is achieved. We end the paper with

some numerical examples and conclusions.

Notation and definitions: For a matrix A, its (i, j) entry is denoted by [A]i j and its transpose is

given by A′. If A is a symmetric matrix, A ≻ 0 (A ≽ 0) means that A is positive (semi-positive)
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definite. The nullspace and range of A are denoted by Null(A) and Range(A), respectively. The

symbol ⊗ is used to represent the Kronecker product between two matrices. The vector of all

ones is denoted by 1. Let S be a set of vectors. By x+ S we understand the set of vector

produced by adding x to each element of S , that is, x+S , {x+ y | y ∈ S }. Let ∥ · ∥ be a vector

norm, x a vector and S a set of vectors. By ∥x−S ∥ we denote the distance between the vector

x and the set S , that is, ∥x− S ∥ , infy∈S ∥x− y∥. Let f : Rn → R be a function. We denote by

∇ f (x) and by ∇2 f (x) the gradient and the Hessian of f at x, respectively. Let F : Rn×Rm→R

be a function of variables (x,y). The block descriptions of the gradient and of the Hessian of F

at (x,y) are given by ∇F(x,y)′ =
(
∇xF(x,y)′,∇yF(x,y)′

)
, and

∇2F(x,y) =

 ∇2
xxF(x,y) ∇2

x,yF(x,y)

∇2
x,yF(x,y) ∇2

yyF(x,y)

 ,
respectively. Let {Ai}Ni=1 be a set of matrices. By diag(Ai, i = 1, . . . ,N) we understand a block

diagonal matrix, where the ith block matrix is given by Ai.

II. Problem description

In this section we describe the setup of our problem. First we present the communication

model after which we introduce the optimization model.

A. Communication model

A set of N agents interact with each other subject to an undirected communication graph

G = (V,E), where V = {1,2, . . . ,N} is the set of nodes and E = {ei j} is the set of edges. An

edge between two nodes i and j means that agents i and j can exchange information (or can

cooperate). We denote by Ni , { j | (i, j) ∈ E} the set of neighbors of agent i, and by L the

Laplacian of graph G defined as

[L]i j =


−li j j ∈ Ni,∑

j∈Ni li j i = j,

0 otherwise,

(1)

where li j are positive scalars.

In the next sections we are going to make use of a set of properties of a (weighted) Laplacian

of a graph; properties that are grouped in the following remark.



5

Remark 2.1: The Laplacian L of a connected graph satisfies the following properties:

(a) The matrix L has only one eigenvalue zero and the corresponding right and left eigenvectors

are 1 and η, where η is a vector with non-zero entries of the same sign;

(b) The nullspaces of L and L′ are given by Null(L) = {γ1 | γ ∈R}, and Null (L′) = {γη | γ ∈R},
respectively;

(c) Let L = L⊗ I, where I is the n-dimensional identity matrix. Then the nullspaces of L and

L′ are given by Null(L) = {1⊗ x | x ∈Rn}, and Null (L′) = {η⊗ x | x ∈Rn}, respectively;

(d) Let x be a vector in RnN . Then the orthogonal projection of x on Null (L′) is given by

x⊥ = Jx, where J is the orthogonal projection matrix (operator) defined as

J ,
ηη′

η′η
⊗ I,

with η the left eigenvector of L corresponding to the zero eigenvalue.

B. Optimization model

We consider a function f : Rn→R expressed as a sum of N functions

f (x) =
N∑

i=1

fi(x),

and a vector valued function h : Rn→RN where h , (h1,h2, . . . ,hN)′, with N ≤ n.

We make the following assumptions on the functions f and h and on the communication

model.

Assumption 2.1: (a) Functions fi(x) and hi(x), i = 1, . . . ,N are twice continuously differen-

tiable;

(b) Agent i knows only functions fi(x) and hi(x);

(c) Agent i can exchange information only with agents belonging to the set of its neighbors Ni;

(d) The communication graph G is connected.

The goal of the agents is to minimize the following optimization problem with equality

constraints

(P1) minx∈Rn f (x),

subject to: h(x) = 0,

under Assumptions 2.1.
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Let x∗ be a local minimum of (P1) and let

∇h
(
x∗
)
,
[∇h1

(
x∗
)
,∇h2

(
x∗
)
, . . . ,∇hN

(
x∗
)]

be a matrix whose columns are the gradients of functions hi(x) computed at x∗. The following

assumption is used to guarantee the uniqueness of the Lagrange multiplier vector µ∗ appearing

in the first order necessary conditions of (P1), namely

∇ f (x∗)+∇h
(
x∗
)
µ∗ = 0.

Assumption 2.2: Let x∗ be a local minimum. The matrix ∇h (x∗) is full rank, or equivalently,

the vectors {∇hi (x∗)}Ni=1 are linearly independent.

Together with some additional assumptions on f (x) and h(x), Assumption 2.2 is also used the

prove local convergence of a first-order numerical method for solving the first order necessary

conditions of (P1) (see for example Section 4.4.1, page 386 of [1]). As we will see in the next

sections, the same assumption will be used to prove local convergence for a distributed algorithm

used to solve (P1).

Remark 2.2: We assumed that each agent has an equality constraint of the type hi(x) = 0. All

the results presented in what follows can be easily adapted for the case where only m ≤ N agents

have equality constraints, as long as m ≤ n.

C. Distributed algorithm

Let xi,k denote the estimate of the (local) minimizer x∗ of agent i, at time-slot k. We propose

the following distributed algorithm to solve the problem (P1), referred henceforth as algorithm

(A1):

(A1) xi,k+1 = xi,k −α∇ fi(xi,k)−αµi,k∇hi(xi,k)− (2)

− α
∑
j∈Ni

(
li jλi,k − l jiλ j,k

)
, xi,0 = x0

i , (3)

µi,k+1 = µi,k +αhi(xi,k), µi,0 = µ
0
i , (4)

λi,k+1 = λi,k +α
∑
j∈Ni

li j(xi,k − x j,k), λi,0 = λ
0
i , (5)

where ∇ fi(xi,k) and ∇hi(xi,k) denote the gradients of functions fi(x) and hi(x), respectively,

computed at xi,k. In addition the positive scalars li j are the entries of the Laplacian L of the

graph G defined in (1).
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Remark 2.3: Note that although the graph G is assumed undirected, the Laplacian L is not

necessarily symmetric since we may have li j , l ji. However, if li j , 0 then we must also have

that l ji , 0. In other words, if agent i sends information to agent j, agent j must send information

to agent i, as well.

In Algorithm (A1) the first index (i or j) refers to a particular agent, while index k refers to

the discrete time. It can be observed that the algorithm is indeed distributed since for updating

its current estimate agent i uses only local information, that is, its own information (xi,k, µi,k,

λi,k, ∇ fi(xi,k) and ∇hi(xi,k)) and information from its neighbors (x j,k, λ j,k, for j ∈ Ni). Therefore,

at each time instant, agent i shares with its neighbors the quantities xi,k and li jλi,k. Note that

equation (2) is a standard gradient descent step combined with two additional terms used to

cope with the local equality constraint and the lack of complete information. The exact origin

of equations (4) and (5) will be made clear in the next section. Intuitively however, µi,k can be

seen as the price paid by agent i for having its estimate outside the local constraint set, while

λi,k is the price paid by the same agent for having its estimate far away from the estimates of

its neighbors.

In the next section we start building the infrastructure that will allow us to prove local

convergence of Algorithm (A1). Specifically, this infrastructure will allow us to show that if the

agents’ initial values are close enough to a local minimum x∗ and the step-size α is sufficiently

small, under some standard conditions on functions fi(x) and hi(x), all estimates xi(k) converge

to the local minimum x∗. More importantly, we will show that algorithm (A1) is not an heuristic

algorithm, but it can be traced back to solving an augmented optimization problem with additional

equality constraints, whose solution embeds the solution of the optimization problem (P1), as

well.

III. An equivalent optimization problem with equality constraints

In this section we define an augmented optimization problem, from whose solution we can in

fact extract the solution of problem (P1). As made clear in what follows, Algorithm (A1) comes

as a result of applying a first-order method to solve the first order necessary conditions of the

augmented optimization problem.
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Let us define the function F : RnN →R given by

F(x) =
N∑

i=1

fi(xi),

where x′ = (x′1, x
′
2, . . . , x

′
N), with xi ∈ Rn. In addition we introduce the vector valued functions

h : RnN →RN and g : RnN →RnN , where

h(x) = (h1(x),h2(x), . . . ,hN(x))′ ,

with hi : RnN →R given by hi(x) = hi(xi), and

g(x)′ =
(
g1(x)′,g2(x)′, . . . ,gN(x)′

)
,

with gi : RnN →Rn given by

gi(x) =
∑
j∈Ni

li j(xi− x j),

where li j are the entries of the Laplacian L defined in (1). The vector valued function g(x) can

be compactly expressed as

g(x) = Lx,

where L = L⊗ I, with I the n-dimensional identity matrix.

We define the optimization problem

(P2) minx∈RnN F(x),

subject to: h(x) = 0,

g(x) = 0,

which can be expressed more explicitly as

(P2) minx∈RnN F(x), (6)

subject to: h(x) = 0, (7)

Lx = 0. (8)

The following proposition states that by solving (P2) we solve in fact (P1) as well, and

vice-versa.

Proposition 3.1: Let Assumptions 2.1 hold. The vector x∗ is a local minimum of (P1) if and

only if x∗ = 1N ⊗ x∗ is a local minimum of (P2).
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Proof: Since the Laplacian L corresponds to a connected graph, according to Remark 2.1-

(c), the nullspace of L is given by Null(L) = {1⊗ x | x ∈Rn}. From the equality constraint (8),

we get that any local minimum x∗ of (P2) must be of the form x∗ = 1N ⊗ x∗, for some x∗ ∈Rn.

Therefore, the solution of (P2) must be searched in the set of vectors with structure given by

x = 1N ⊗ x. Applying this constraint, the cost function (6) becomes

F(x) =
N∑

i=1

fi(x) = f (x),

and the equality constraint (7) becomes

h(x) = h(x) = 0,

which shows that we have recovered the optimization problem (P1).

Remark 3.1: We note from the above proposition the importance of having a connected

communication topology. Indeed, if G is not connected, then the nullspace of L is much richer

than {1⊗ x | x ∈ Rn}, and therefore the solution of (P2) may not necessarily be of the form

x∗ = 1N ⊗ x∗. However, the fact that we search a solution of (P2) of this particular structure is

fundamental for showing the equivalence of the two optimization problems.

Let x∗ = 1⊗ x∗ denote a local minimum of (P2). From the theory concerning optimization

problems with equality constraints (see for example Chapter 3, page 15 of [18], or Chapter 3,

page 253 of [1]), the first order necessary conditions for (P2) ensure the existence of λ∗0 ∈ R,

µ∗ ∈RN and λ∗RnN so that

λ∗0∇F(x∗)+∇h(x∗)µ∗+∇g(x∗)λ∗ =

= λ∗0∇F(x∗)+∇h(x∗)µ∗+L′λ∗ = 0,

where the matrix ∇h(x∗) is defined as

∇h(x∗) ,
[∇h1(x∗),∇h2(x∗), . . . ,∇hN(x∗)

]
.

The vectors ∇hi(x∗) are the gradients of the functions hi(x) at x∗ with a structure given by

∇hi(x∗)′ =

=

0, . . . ,0︸ ︷︷ ︸
n zeros

, . . . ,0, . . . ,0︸ ︷︷ ︸
n zeros

, ∇hi(x∗)′︸   ︷︷   ︸
ith component

,0, . . . ,0︸ ︷︷ ︸
n zeros

, . . . ,0, . . . ,0︸ ︷︷ ︸
n zeros

 , (9)
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as per definition of the function hi(x).

Note that since L is not full rank, and therefore the matrix
[∇h(x∗),L′

]
is not full rank as

well, the uniqueness of µ∗ and λ∗ cannot be guaranteed. Before presenting the result concerning

the first order necessary conditions for (P2), we introduce two auxiliary results.

The first proposition recalls a well known result on the properties of the tangent cone to the

constraint set at a local minimum of (P1).

Proposition 3.2: Let Assumptions 2.1-(a) and 2.2 hold, let x∗ be a local minimum of (P1)

and let Ω denote the constraint set, that is, Ω = {x | h(x) = 0}. Then the tangent cone to Ω at x∗

is given by

TC(x∗,Ω) = Null
(∇h(x∗)′

)
,

where

∇h
(
x∗
)
,
[∇h1

(
x∗
)
,∇h2

(
x∗
)
, . . . ,∇hN

(
x∗
)]
.

The second proposition characterizes the nullspace of the matrix
[∇h(x∗),L′

]
, which will be

used for expressing the tangent cone at a local minimum of (P2).

Proposition 3.3: Let Assumptions 2.1 and 2.2 hold. The nullspace of the matrix
[∇h(x∗),L′

]
is given by

Null
([∇h(x∗),L′

])
=
{(

0′,v′
)′ | v ∈ Null

(
L′
)}
.

Proof: Let u ∈RN and v ∈RnN be two vectors. To characterize the nullspace of
[∇h(x∗),L′

]
,

we need to check for what values of u and v the equation

∇h(x∗)u+L′v = 0 (10)

is satisfied. Using the definition of ∇hi(x∗) shown in (9), equation (10) can be equivalently

written as

∇hi(x∗)ui+
∑
j∈Ni

(
li jvi− l jiv j

)
= 0, i = 1, . . . ,N,

where ui are the entries of u and vi are n-dimensional sub-vectors of v.

Summing the above equations over i we obtain that
N∑

i=1

ui∇hi(x∗) = 0,

and since ∇h(x∗) is assumed full rank we must have that u = 0 and the result follows.
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We are now ready to state the first order necessary conditions, specialized for the problem

(P2).

Lemma 3.1 (first order necessary conditions for (P2)): Let Assumptions 2.1 and 2.2 hold and

let x∗ = 1N ⊗ x∗ be a local minimum for problem (P2). There exist unique vectors µ∗ and

λ∗ ∈ Range(L) so that

∇F(x∗)+∇h(x∗)µ∗+L′λ = 0,

for all λ ∈ {λ∗+λ⊥ | λ⊥ ∈ Null (L′)}.
Proof: The proof has two steps: first we show that the tangent cone to the constraint set at

a local minimum is given by the nullspace of the matrix
[∇h(x∗),L′

]′; second we use the fact

that ∇F(x∗) is orthogonal on the tangent cone, and use this to derive the necessary conditions.

Let us denote by Ω the constraint set of (P2), that is,

Ω , {x | h(x) = 0,g(x) = 0} .

In the following we show that the tangent cone to Ω at x∗, denoted by TC(x∗,Ω) is indeed the

nullspace of
[∇h(x∗),L′

]′. In fact, all we have to show is that any vector in Null
([∇h(x∗),L′

]′)
belongs to TC(x∗,Ω) as well, since it is well known that (the closure of the convex hull

of) TC(x∗,Ω) is included in Null
([∇h(x∗),L′

]′). Let u be a vector in Null
([∇h(x∗),L′

]′) and

therefore it must satisfy

∇h(x∗)′u = 0 and L′u = 0. (11)

From the second equation of (11), u must be of the form u = 1⊗u, for some u ∈Rn. From the

first equation of (11), using the definition of ∇hi(x∗) in (9) together with the particular structure

of u, we obtain that

∇hi(x∗)′u = 0 ∀i = 1, . . . ,N,

or equivalently

u ∈ Null
(∇h(x∗)′

)
.

For the first part of the proof we need to show that a vector u = 1⊗u, with u ∈ Null (∇h(x∗)′)

belongs to TC(x∗,Ω). More explicitly, using the definition of the tangent cone, we must find a

function o : R→RnN , with limt→0,t>0
o(t)

t = 0, so that

x∗+ tu+o(t) ∈Ω ∀t > 0.
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Choosing o(t) = 1N ⊗o(t), where o : R→Rn is a function so that limt→0,t>0
o(t)

t = 0, we note that

g
(
x∗+ tu+o(t)

)
= 0 ∀t > 0,

and therefore, all we are left to do is to check that

h
(
x∗+ tu+o(t)

)
= 0 ∀t > 0, (12)

as well. Making the observation that x∗ + tu+ o(t) = 1⊗ (x∗+ tu+o(t)), (12) is equivalent to

showing that

h
(
x∗+ tu+o(t)

)
= 0 ∀t > 0. (13)

However, we showed previously that u ∈Null (∇h(x∗)′)= TC(x∗,Ω), by Proposition 3.3. Therefore

there exits a function o(t) so that (13) is satisfied, which shows that indeed

TC
(
x∗,Ω

)
= Null

([∇h(x∗),L′
]′) ,

and consequently TC(x∗,Ω) is a closed and convex subspace.

By Lemma 11 , page 50 of [18] we have that ∇F(x∗) is orthogonal on TC(x∗,Ω) and therefore

∇F(x∗) must belong to Range
([∇h(x∗),L′

])
. Consequently, there exist the vectors µ∗ and λ so

that

−∇F(x∗) = ∇h(x∗)µ∗+L′λ. (14)

Noting that RnN can be written as a direct sum between the nullspace of L′ and the range of

L, there exist the orthogonal vectors λ∗ ∈ Range(L) and λ⊥ ∈Null (L′) so that λ = λ∗+λ⊥. Note

that we can replace λ⊥ by any vector in Null (L′) and (14) still holds. The only thing left to do

is to prove the uniqueness of µ∗ and λ∗. We use a contradiction argument. Let µ̃ , µ∗ and λ̃ , λ∗

with λ̃ ∈ Range(L) be two vectors so that (14) is satisfied. Hence we have that

−∇F(x∗) = ∇h(x∗)µ∗+L′λ∗,

and

−∇F(x∗) = ∇h(x∗)µ̃+L′λ̃,

1The result states that given a local minimum x∗ of a function f (x), h′∇ f (x∗) ≥ 0 for all h ∈ TC(x∗,Ω). When TC(x∗,Ω) is

a (closed, convex) subspace, orthogonality follows.
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which gives

0 = ∇h(x∗)
(
µ∗− µ̃)+L′

(
λ∗− λ̃

)
.

By Proposition 3.3 we have that

Null
([∇h(x∗),L′

])
=
{(

0′,v′
)′ | v ∈ Null

(
L′
)}
,

and therefore µ∗ = µ̃ and λ∗ = λ̃ since λ∗− λ̃ ∈ Range(L), and the result follows.

Under the assumption that the matrix ∇h(x∗) is full rank, the first order necessary conditions

of (P1) are given by

∇ f (x∗)+∇h(x∗)µ∗ = 0,

h(x∗) = 0,

where the vector µ∗ is unique (see for example Proposition 3.3.1, page 255, [1]). An interesting

question is whether or not there is a connection between µ∗ and µ∗ shown in the first order

necessary conditions of (P2). As proved in the following, the two vectors are in fact equal.

Proposition 3.4: Let Assumptions 2.1 and 2.2 hold, let x∗ = 1⊗ x∗ be a local minimum of

(P2) and let µ∗ and µ∗ be the unique Lagrange multiplier vectors corresponding to the first order

necessary conditions of (P1) and (P2), respectively. Then µ∗ = µ∗.

Proof: By Lemma 3.1, there exist two unique vector µ∗ and λ∗ ∈ Range(L) so that

∇F(x∗)+∇h(x∗)µ∗+L′λ∗ = 0.

Using the structure of ∇F(x∗), h(x∗) and L′, the above equation can be equivalently expressed

as

∇ fi(x∗)+µ∗i∇hi(x∗)+
∑
j∈Ni

(
li jλ
∗
i − l jiλ

∗
j

)
, i = 1, . . . ,N, (15)

where µ∗i are the scalar entries of µ∗ and λ∗i are the n-dimensional sub-vectors of λ∗. Summing

up equations (15) over i, we obtain
N∑

i=1

∇ fi(x∗)+
N∑

i=1

∇hi(x∗)µ∗i = 0.

Equivalently,

∇ f (x∗)+∇h(x∗)µ∗ = 0,
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which is just the first order necessary condition for (P1). But since µ∗ must be unique, it follows

that µ∗ = µ∗.

To find a solution of problem (P2) the first thing we can think about is solving the set of

necessary conditions:

∇F(x)+LTλ = 0, (16)

h(x) = 0, (17)

Lx = 0. (18)

Solving (16)-(18) does not guarantees finding local minimum (the sufficient conditions must

also be checked), but at least they are among the solutions of the above nonlinear system of

equations. One of the simplest approaches for solving (16)-(18) consists of using a first order

method given by:

xk+1 = xk −α
[∇F(xk)+∇h(xk)µk +L′λk

]
, (19)

µk+1 = µk +αh(xk), (20)

λk+1 = λk +αLxk. (21)

Expressing the above algorithm for each of the n dimensional component of the vectors xk, µk

and λk, we in fact recover algorithm (A1), which shows the distributed and non-heuristic nature

of the algorithm.

Remark 3.2: We made the assumption that the graph G is undirected. This assumption is

in fact crucial for the implementation of the algorithm (A1) in a distributed manner. Indeed,

consider a directed graph with three nodes, where the neighborhoods of the nodes are N1 = {2},
N2 = {3} and N3 = {1}. In this case the non-weighted Laplacian of the graph is given by

L =


1 −1 0

0 1 −1

−1 0 1

 and L′ =


1 −1 −1

−1 1 0

0 −1 1

 ,
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and the algorithm (A1) becomes

x1,k+1 = x1,k −α
[
λ1,k −λ3,k

]−α∇ f1(x1,k)−α∇h1(x1,k),

x2,k+1 = x2,k −α
[
λ2,k −λ1,k

]−α∇ f2(x2,k)−α∇h2(x2,k),

x3,k+1 = x3,k −α
[
λ3,k −λ2,k

]−α∇ f3(x3,k)−α∇h3(x3,k),

µ1,k+1 = µ1,k +αh1(x1,k),

µ2,k+1 = µ2,k +αh2(x2,k),

µ3,k+1 = µ3,k +αh3(x3,k),

λ1,k+1 = λ1,k +α
[
x1,k − x2,k

]
,

λ2,k+1 = λ2,k +α
[
x2,k − x3,k

]
,

λ3,k+1 = λ3,k +α
[
x3,k − x1,k

]
.

Note that although each agent can update its Lagrange multipliers using only information from

its neighbors, it cannot update its estimate since it requires information from agents outside its

neighborhood.

IV. Convergence analysis of Algorithm (A1)

In this section we analyze the convergence properties of Algorithm (A1). Since the matrix

L is not full rank, we cannot apply existing results for regular (local) minimizers, such as

Proposition 4.4.2, page 388, [1], directly. Still, for a local minimum and Lagrange multipliers

pair (x∗,µ∗,λ∗), with λ∗ ∈Range(L), we show that if the initial value x0 is close enough to x∗, for

a small enough step-size and under some conditions on (the Hessians of) the functions fi(x) and

hi(x), i = 1, . . . ,N, the vectors xk and µk do indeed converge to x∗ and µ∗, respectively. However,

although under the same conditions λk does converge, it cannot be guaranteed that it converges

to the unique λ∗ ∈ Range(L) but rather to a point in the set {λ∗+Null (L′)}.
The convergence of the algorithm (A1) depends on the spectral properties of a particular

matrix; properties analyzed in the following proposition. Before stating our first result of this

section let us define the Lagrangian function of problem (P2)

L (x,µ,λ) , F(x)+µ′h(x)+λ′Lx, (22)

used to simplify notation in the following lemma.
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Lemma 4.1: Let Assumptions 2.1 and 2.2 hold, let α be a positive scalar, and let (x∗,µ∗,λ∗)

with λ∗ ∈ Range(L), be a local minimum-Lagrange multipliers pair of (P2). In addition, let the

Hessian with respect to x of L (x,µ,λ) be positive definite, that is, ∇2
xxL (x∗,µ∗,λ∗) ≻ 0. Then

each eigenvalue of the matrix

B =


∇2

xxL (x∗,µ∗,λ∗) ∇h(x∗) L′

−∇h(x∗)′ 0 0

−L 0 1
αJ

 ,
has positive real part, where J , ηη

′

η′η ⊗ I, with η the left eigenvector of L corresponding to the

zero eigenvalue.

Proof: Let β be an eigenvalue of B and let (u′,v′,z′)′ , 0 be the corresponding eigenvector,

where u, v and z are complex vectors of appropriate dimensions. We have that

Re


(
û′, v̂′, ẑ′

)
B


u

v

z


 = Re(β)

(
∥u∥2+ ∥v∥2+ ∥z∥2

)
, (23)

where û, v̂ and ẑ are the conjugates of u, v and z, respectively. Using the structure of the matrix

B, we get

Re


(
û′, v̂′, ẑ′

)
B


u

v

z


 = Re

β
(
û′, v̂′, ẑ′

)


u

v

z


 =

Re


(
û′, v̂′, ẑ′

)
B


u

v

z


 = Re

{
û′∇2

xxL
(
x∗,µ∗,λ∗

)
u

+û′L′z− ẑ′Lu+ û′∇h(x∗)v− v̂′∇h(x∗)′u+ ẑ′
1
α

Jz
}
=

Re
{

ûT∇2
xxL
(
x∗,µ∗,λ∗

)
u+ ẑ′

1
α

Jz
}
. (24)

By using (23) and (24) we further obtain

Re(β)
(
∥u∥2+ ∥v∥2+ ∥z∥2

)
=

Re
{
û′∇2

xxL
(
x∗,µ∗,λ∗

)
u
}
+Re
{

ẑ′
1
α

Jz
}
.
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Since J , ηη
T

ηTη
⊗ In is a semi-positive definite matrix and ∇2

xxL (x∗,µ∗,λ∗) is positive definite we

have that

Re(β)
(
∥u∥2+ ∥v∥2+ ∥z∥2

)
> 0,

as long as u , 0 or z < Range(L) and therefore Re(β) > 0. In the case u = 0 and z ∈ Range(L)

we get

B


0

v

z

 = β


0

v

z

 ,
from where we obtain

∇h(x∗)v+L′z = 0.

But from Proposition 3.3, we have that v = 0 and z ∈ Null(L′) and since z ∈ Range(L) as well,

it must be that z = 0. Hence we have a contradiction since we assumed that (u′,v′,z′) , 0′ and

therefore the real part of β must be positive. In addition, it can be easily checked that the matrix

B has n eigenvalues equal to 1
α and their corresponding eigenspace is

{
(0′,0′,z′)′ | z ∈ Null (L′)

}
.

The following theorem addresses the local convergence properties of Algorithm (A1), which,

under some assumptions on the functions fi(x) and hi(x), states that provided the initial values

used in the Algorithm (A1) are close enough to a solution of the first order necessary conditions of

(P2), and a small enough step-size α is used, the sequence {xk,µk,λk} converges to this solution.

Theorem 4.1: Let Assumptions 2.1 and 2.2 hold and let (x∗,µ∗,λ∗) with λ∗ ∈Range(L), be a lo-

cal minimum-Lagrange multipliers pair of (P2). Assume also that ∇2
xxL (x∗,µ∗,λ∗) is positive def-

inite. Then there exits ᾱ, such that for all α ∈ (0, ᾱ], (x∗,µ∗,λ∗+Null (L′)) are points of attraction

of iteration (19)-(21) and if the sequence {xk,µk,λk} converges to the set (x∗,µ∗,λ∗+Null (L′)),

the rate of convergence of ∥xk −x∗∥, ∥µk −µ∗∥ and
∥∥∥λk −

[
λ∗+Null (L′

])∥∥∥ is linear.

Proof: Using the Lagrangian function defined in (22), iteration (19)-(21) can be equivalently

expressed as 
xk+1

µk+1

λk+1

 = M̄α(xk,µk,λk), (25)
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with

M̄α(x,µ,λ) =


x−α∇xL(x,µ,λ)

µ+α∇µL(x,µ,λ)

λ+α∇λL(x,µ,λ)

 .
It can be easily checked that (x∗,µ∗,λ∗+Null (L′)) is a set of fixed points of M̄α. Let us now

consider the transformation λ̃ = (I−J)λ, where J = ηη
′

η′η ⊗ I, with η the left eigenvector of the

Laplacian L, corresponding to the zero eigenvalue. This transformation extracts the projection

of λ on the nullspace of L′ from λ and therefore λ̃ is the error between λ and its orthogonal

projection on Null (L′). Under this transformation, iteration (25) becomes
xk+1

µk+1

λ̃k+1

 =Mα(xk,µk, λ̃k)

with

Mα(x,µ, λ̃) =


x−α∇xL(x,µ, λ̃)

µ+α∇µL(x,µ, λ̃)

(I−J) λ̃+α∇λ̃L(x,µ, λ̃)

 ,
where we used the fact that (I− J)λ̃ = (I− J)λ and L′J = JL = 0. Clearly (x∗,µ∗,λ∗) is a fixed

point for Mα and we have that

∇Mα
(
x∗,µ∗,λ∗

)
= I−αB,

where

B =


∇2

xxL (x∗,µ∗,λ∗) ∇h(x∗) L′

−∇h(x∗)′ 0 0

−L 0 1
αJ

 .
By Lemma 4.1 we have that the real parts of the eigenvalues of B are positive and therefore

we can find an ᾱ so that for all α ∈ (0.ᾱ] the eigenvalues of ∇Mα (x∗,µ∗,λ∗) are strictly within

the unit circle. Using a similar argument as in Proposition 4.4.1, page 387, [1], there exist a

norm ∥ · ∥ and an open sphere S with respect to the norm centered at (x∗,µ∗,λ∗) such that the

induced norm of ∇Mα (x,µ,λ) is less than one within the sphere S. Therefore, using the mean

value theorem, it can be argued that Mα (x,µ,λ) is a contraction map in the sphere S and the

result follows by invoking the contraction map theorem (see for example Chapter 7 of [4]).
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Let us know reformulate the above theorem so that the local convergence result can be applied

to problem (P1).

Corollary 4.1: Let Assumptions 2.1 and 2.2 hold and let (x∗,µ∗) be a local minimum-Lagrange

multiplier pair of (P1). Assume also that ∇2 fi(x∗)+ µ∗i∇2hi(x∗) is positive definite for all i =

1, . . . ,N. Then there exits ᾱ, such that for all α ∈ (0, ᾱ], (x∗,µ∗) is a point of attraction for

iteration (2) and (4), for all i = 1, . . . ,N, and if the sequence
{
xi,k,µi,k

}
converges to (x∗,µ∗), then

the rate of convergence of ∥xi,k − x∗∥ and ∥µi,k −µ∗∥ is linear.

Proof: By Proposition 3.1 we have that x∗ = 1 ⊗ x∗ is a local minimum of (P2) with

corresponding Lagrange multipliers (µ∗,λ∗+Null (L′)), with λ∗ ∈ Range(L). In addition, by

Proposition 3.4 we have that µ∗ = µ∗. Using the definition of the Lagrangian function introduced

in (22), we discover that

∇2
xxL
(
x∗,µ∗,λ∗

)
= diag

(
∇2 fi(x∗)+µ∗i∇2hi(x∗), i = 1, . . . ,N

)
.

But since we assumed that ∇2 fi(x∗)+µ∗i∇2hi(x∗) ≻ 0 for all i, it follows that ∇2
xxL (x∗,µ∗,λ∗) ≻ 0

as well. Using Theorem 4.1, the result follows.

Remark 4.1: In the previous corollary matrices ∇2 fi(x∗)+ µ∗i∇2hi(x∗) were assumed to be

positive definite for all i = 1, . . . ,N. If we apply directly results from the optimization literature

(see for instance Proposition 4.4.2, page 388, [1]) concerning convergence of first-order methods

used to compute local minima and their corresponding Lagrange multipliers, we only require∑N
i=1∇2 fi(x∗)+µ∗i∇2hi(x∗) to be positive definite, and not each element of sum. Obviously the

assumption in Corollary 4.1 does imply the latter, but is not necessary. It appears that this

additional constraint on fi(x) and hi(x) is the price paid for being able to prove local convergence

of the distributed algorithm.

V. Conclusions

We presented a multi-agent distributed algorithm for solving a particular type of non-convex

optimization problem with equality constraints. In this problem, the cost function is expressed as

a sum of functions and each agent is aware of only one function of the sum and has its own local

equality constraint. We demonstrated the non-heuristic nature of the algorithm by showing that it

resulted from applying a first order numerical method to solve the first order necessary conditions

of an augmented optimization problem; optimization problem whose solution embeds the solution
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of our original problem. In addition, we gave sufficient conditions for local convergence of the

algorithms; conditions similar to the conditions used to prove local convergence of centralized

algorithms.
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